55:132/22C:160

Spring 2011

Pipelined Processors

HPCA, Spring 2011

Ideal Pipelining

Comb. Logi
n Gate D ?

ate
S CXHA NS

Throughput =~(1/n)

« I|deally, throughput increases linearly with
pipeline depth

Throughput =~(2/n)

N Gat
—’h:g Sﬁte 3 [();e z%/l*'*{g Delayl—— Throughput =~(3/n)

Ideal Pipeline Performance

e

time T

Inputs 1y, lg,..

e pe—

Unpipelined operation

Time required to process K inputs = KT
Perfect Pipeline (N stages):

| «TIN> | <TINA | +TIN>|

| < TIN>

| Stage
1

|, Stage Stage
2

Stage
N

L%
I, |
Iy

[

Time required to process K inputs = (K + N-1)(T/N)

Note” For K >>N, the processing time approaches KT/N

Outputs' Oy,...,0,, O,

Factors Inhibiting Ideal Pipeline
Performance

» Unequal distribution of work among stages

— Clock cycle time must accommodate slowest
stage

 Staging logic introduces additional delays

» May not be able to keep the pipeline full
— Stall behavior

— Much more about this later

Jon Kuhl

55:132/22C:160

Spring 2011

Example: FP Multiplier

Exponent: excess 128 (8 bits)

Nonpipelined Implementation

1 1 8 8 56 56
* Mantissa: sign-magnitude fraction with hidden bit (57 bits total) [my] | mp
o]] |)
Add/Sub 1Xed Poin
Mantissa —]
« Algorithm:
|
1. Check if any operand is ZERO. N {————— [Normalize]
2. ADD the two characteristics ghysical bit patterns of the exponents)
and correct for the excess 128 bias, i.e. el+ (e2-128)
3. Perform fixed-point MULTIPLICATION of the mantissas. Add/Sub }~——— [Rounding]
4. NORMALIZE the product of the mantissas, i.e. may require one left
shift and decrement the exponent.
5. ROUND the result by adding 1 to the first guard bit; if mantissa [S3]
overflows, then shiftright one bit and increment the exponent. 1 8 56
Nonpipelined Implementation Pipelined Implementation
Total Chip counts and delays:
Chip Count Delay
P. P. Generation 2 126 ns
P. O. Reduction 3 7
72 150ns
Final Reduction 2 s5ns
Normalization 2 20ns
Rounding 5 sons @ 150 ns
Exponent Section 4 N | —
Input Registers 7 i et 55 ns
Output Registers 0 T
175 400ns]_> 20 ns
« Unpipelined clock period = 400 nsec. (2.5 MFLOPS) u 5
(based on very old IC technology) [Rounding | 50 ns
—kEI &1 M]
oc

Jon Kuhl

55:132/22C:160

Spring 2011

Pipelined Implementation

Three Stage Pipelining:

— Longest delay path within a stage (PP Reduction) = 150 nsec.
Hence can have pipeline clock period of 150 nsec. plus
22 nsec. in pipeline overheads (totaling 172 nsec.)
Number of ICs added: 82 edge-triggered registers; 175
+ 82 =257

— Original total delay -

— New min. clock period -
— Original no. of ICs - 175 chips

— New total of ICs - 257 chips

Less than 50% increase in hardware more than
doubles the throughput (from 2.5 to 5.8 MFLOPS)
Note that an ideal 3-stage pipeline would have
achieved a clock period of 400/3 = 133 nsec. and a
maximum throughput of 7.5 MFLOPS

400 nsec (2.5 MFLOPS)
172 nsec (5.8 MFLOPS)

Processor Pipelining

« The “computation” to be pipelined.
— Instruction Fetch (IF)

Instruction Decode (ID)

Operand(s) Fetch (OF)

Instruction Execution (EX)

Operand Store (OS)

Update Program Counter (PC)

Granularity of Pipeline Stages

Logic needed for each pipeline stage.
Register file ports needed to support all the stages
Memory accessing ports needed to support all the stages

Example Pipelines
MIPS R2000/R3000

AMDAHL 470V/7

i

© ® N o U A~ W N

Jon Kuhl

55:132/22C:160

Spring 2011

BEQZ R,, 16
JMP -24

/I PC <-PC -24

Development of a simple RISC Pipeline

» Consider a simple MIPS-like ISA
— Complete ISA Specification provided in
Lecture notes section of class web site
— Some example instructions
LW R,, 10(R;) // Reg[R,] <- Mem[Reg[R,]+10]
SW 10(Ry), R, // Mem[Reg[R,]+10] -> R,

ADD R;,R,R; /I Reg[R,] <- Reg[R,]+Reg[R,]
Il 1f (Reg[R,]==0) PC <- PC + 16

ALU Instruction Specification
(MIPS-like ISA)

Generic
subcomputations

1. ALU Instruction Type:

Integer instruction

Floating-point instruction

IF - Fetch instruction - Fetch instruction

(access I-memory) (access I-memory)
1D - Decode instruction - Decode instruction
OF - Access register file - Access FP register file
EX - Perform ALU operation | - Perform FP operation
os - Write back to reg. file - Write back to FP reg. file

Memory Instruction Specification

Generic
subcomputations

2. Load/Store Instruction Type:

Branch Instruction Specification

Load instruction

Store instruction

IF

- Fetch instruction
(access I-cache)

- Fetch instruction
(access I-cache)

Generic
subcomputations

3. Branch Instruction Type:

Jump (uncond.) instruction

Conditional branch instr.

ID

- Decode instruction

- Decode instruction

OF

- Access register file
(base address)

- Generate effective address
(base + offset)

- Access (read) memory
location (D-mem)

- Access register file
(register operand,
and base address)

EX

0os

- Write back to reg. file

- Generate effective

address (base + offset)

- Access (write) memory
location (D-mem)

IF - Fetch instruction - Fetch instruction
(access I-memory) (access I-memory)

1D - Decode instruction - Decode instruction

OF - Access register file - Access register file
(base address) (base address) & test reg

- Generate effective address - Generate effective

(base + offset) address (base + offset)

EX - - Evaluate branch

condition
[eF] - Update program counter - If condition is true,

with target address

update program
counter with target
address

Jon Kuhl

55:132/22C:160 Spring 2011

5-stage MIPS Pipeline (Datapath)

The Unified Pipeline

. . STORE | . Instruction Instr. Decode Execute Memory Write
ALU instr. LOAD instr. instr. BRANCH instr. Fetch (IF) Reg. Fetch (ID) Addr. Calc (EX) Access (WEM) Back (WB)
Read Instr. Read Instr. Read Instr. Read Instr.
From From From From P
@ I_Mem; PC++ I_Mem; PC++ |_Mem; PC++ |_Mem; PC++ Next PC Next SEQ PC
Decode Instr. Decode Instr.
Decode Instr. Decode Instr.
R,
| ID/RD stage | Read Regs (Src. Read Reg (mem F:J:g :gg? (sr::)er;" F(z; :?r’:ef St
operands) base addr.) : 9 E Rs,
l data) 3
Compute Branch <=-; —
ALU stage ALU Operation Compute Mem. Compute Mem. T?;gceiA:i:‘rj;s ~< —
Address Address 2
Test branch
condition
] 5
MEM stage Memory Read Memory Write PC Update fmm @
2

WB stage Write Resultto Write Data to Dst.
Dest. Reg Reg.

18

5 Steps of MIPS-like Datapath (corrected)

Instruction , Instr.Decode
Instr. Decode Execute Memory Werite Fetch i Reg.Fefch
Reg. Fetch (ID) ~ Addr. Calc (EX) ~ Access (MEM) Back (WB)

5-stage MIPS Pipeline (Datapath)

Execute . Memory
Addr. Calc Access

: Write
Back

Instructio
Fetch (IF)

Next PC

Next PC

Next SEQ PC lext SEQPC

Next SEQ PC lext SEQPC

Rst Rs;
Rsz R
—] —
—
o
5 Note: This is still not
Imm g quite right. Can you
= see the problem?
Something is wrong
Here. Can you see
The problem??
19 20

Jon Kuhl 5

Spring 2011

21

Visualizing Pipelining An Even Simpler View
Time (clock cycles) Clock cycle
H H 1 2 3 4 5 6 7 8
Cycle1 : Cycle 2 Cyclelié Cycle4§CycIe5 Cycle 6 i Cycle7 Instri 1= D EX |MEM]| wB
f; Instr i+1 F | D | Ex [MEM]| wB
5 j . Instr i+2 F | D | Ex [MEM| wB
I] i Instr i+3 IF ID | EX |MEM | WB
:
0 !]
0 T 0 mSy0 T '
’ JEm sEni o5y .

Theoretical Speedup of 5-Stage MIPS
Pipeline

e Assume:

— Cycle Time of non-pipelined implementation
of MIPS datapath is t

— Cycle time of pipelined data path (5 stages) is
t/5
— Pipeline always operates at full capacity
e Then:

— Speedup of pipelined implementation versus
non-pipelined version approaches FIVE.

But, Pipelining is not quite that easy!

 Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle
— Structural hazards: HW cannot support this
combination of instructions (single person to fold and
put clothes away)

— Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

— Control hazards: Caused by delay between the
fetching of instructions and decisions about changes in
control flow (branches and jumps).

24

Jon Kuhl

55:132/22C:160

Spring 2011

One Memory Port/Structural Hazard

Time (clock cycles)

Cycle1 | Cycle2 | Cycle3 | Cycle4 i Cycle | Cycle6 i Cycle7
I Load :g'!F
‘: Instr 1 :% Igr =]
" Instr 2 3 IQFE
o
g Instr 3 .: 3 |Er EI
- Instr 4 :g,
2

RS

S0 QyQ

One Memory Port/Structural Hazards

Time (clock cycles)

Cyclel i Cycle2 : Cycle3 i Cycle4: Cycle5 : Cycle6 i Cycle7

Load
Instr 1

Instr 2 El
Stall Bubble

Instr 3 1z aE =) =]

26

Reg

T O

Bubble

G0 [

1 W
4

How do you “bubble” the pipe?)

Processor Performance Equation for
Pipelined Processor
(accounting for Stalls)

Time/Program =
Instructions/Program x (Ideal CPI + Stalls/instruction) x CycleTime

For simple (scalar) RISC, Ideal CPI =1, so:

Time/Program =
Instructions/Program x (1 + Stalls/instruction) x CycleTime

27

Example: Dual-port vs. Single-port

Machine A: Dual ported memory (“Harvard Architecture”)

Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate

Ideal CPI =1 for both
Load/stores are 40% of instructions executed

To=Nx1x1=N
Tg=Nx(1+0.4(1)x 1/1.05=1.33

Speedup = TB/TA =1.33/1 =1.33
So Machine A is 1.33 times faster than Machine B

28

Jon Kuhl

55:132/22C:160 Spring 2011

Data Hazard on R1 Three Generic Data Hazards

Time (clock cycles)

» Read After Write (RAW)

IF ID/RF EX MEM WB .
Instr, tries to read operand before Instr,

I Fetcl - .
7| add ri,r2,r3 writes it
o 1: add ri1,r2,r3
| sub r4,rl,r3 J: sub r4,r1,r3
r.
o| and r6,r1,r7 Caused by a “Dependence” (in compiler
. nomenclature). This hazard results from an
e|Or r8,rlro9 | actual need for communication.
r
xor ri10,rl,rl1 frere[] =5[] '2 Reg

29 30

Three Generic Data Hazards Three Generic Data Hazards

e Write AfFer Read (WAR) _ « Write After Write (WAW)
Instr; writes operand before Instr, reads it Instr; writes operand before Instr, writes it.
I: sub r4,r1,r3 : I: sub ri1,r4,r3
J: add r1,r2,r3 J: add r1,r2,r3
K: mul r6,rl1,r7 K: mul r6,r1,r7

» Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

« Can’t happen in MIPS 5 stage pipeline because: « Can’t happen in MIPS 5 stage pipeline because:
— Al instructions take 5 stages, and — All instructions take 5 stages, and

— Register Reads are always in stage 2, and — Register Writes are always in stage 5
- Register Writes are always in stage 5 * Will see WAR and WAW in more complicated pipes

» Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

32
31

Jon Kuhl 8

55:132/22C:160 Spring 2011

Data Hazard Example (quicksort/MIPS) Resolution of Pipeline Hazards
for (; 7(j.<h\gh) && (array[j] < array[low]) ; ++j); A Pipeline hazal’ds
i :éoz_hjigh — Potential violations of program dependences
f} 22 i — Must ensure program dependences are not violated
bge done, $10, $9

mul
addu
w
mul
addu
Iw
bge

« Hazard resolution
— Static: compiler/programmer guarantees correctness
— Dynamic: hardware performs checks at runtime
 Pipeline interlock
addu $10, $10, 1 — Hardware mechanism for dynamic hazard resolution

done: — Must detect and enforce dependences at runtime
addu $11, $11, -1

cont:

33

34

Data Hazard on R1
Data Hazard Mitigation ,
Time (clock cycles)
* Abetter response — forwarding add rir2.r3 | | © | X |vew| we
— Also called bypassing I
. . 71 sub r4,r1,r3 "
» Comparators ensure register is read after : o
it is written .| stan obis el uprlalhuntia
* Instead of stalling until write occurs ol stan U o
r
— Use mux to select forwarded value rather than J
register value e 0| BX [MEM WE
. . . r
— Control mux with hazard detection logic and r6,rl,r7 e Lo | ex lvew | we
35

Jon Kuhl 9

55:132/22C:160

Spring 2011

Squa3N

N~ 0xQ

Forwarding to Avoid Data Hazards

Time (clock cycles)

add ri,r2,r3

sub r4,r1,r3

and r6,rl,r7

or rg,rli,r9

xor rl0,r1,rll

RAW Data Hazards Involving Loads

Time (clock cycles)

SN

and r6,rl,r7

N0 Q

or r8,rl,r9

xor rl0,rl,rll

38

S wuax N

S0 Q3Q

Data Hazard Even with Forwarding

Time (clock cycles)
Iwrl, 0(r2) freef "= rﬁ
sub r4,r1,r6
and r6,r1,r7
or r8,r1,r9
How is this detected? 39

HW Change for Forwarding

NextPC

o
o
=3
'fp —>1
s
@ Data
Memory
Immediate — é
X
What circuit detects and resolves this hazard? 20

Jon Kuhl

10

55:132/22C:160 Spring 2011

Forwarding to Avoid LW-SW Data Hazard Control Dependences

¢ Conditional branches

Time (clock cycles) . L. .
24 — Branch must execute to determine which instruction to

I
nladd rl1,r2,r3 fetch ngxt . »
s — Instructions following a conditional branch are control
4 dependent on the branch instruction
r{ lw r4, 0(rl)
o ¢ Unconditional Branches (including subroutine calls
r « Branch can’t take place until branch target address is
g | Sw r4,12(rl) calculated
e
“lor r8,r6,ro 1 a1 m5)] 1 [* Exceptions
— Interrupts
xor ri0,r9,ril e[> lﬁ = — Hardware Exceptions

— Trap Instructions
41 42

Branch Frequencies Branching Behavior

. - _ "
(From Hennessy & Patterson,Computer Architecture—A Quantitative Approach, 2" Ed (From sy-& Patterson,C er Architecture—A Quantitative Approach, 2nd Ed.)

bl

43 - 4

s ”11”1]1

Jon Kuhl 11

55:132/22C:160 Spring 2011

Control Hazard on Branches
Three Stage Stall

10: beq ri1,r3,36 I

Control Flow Hazards

« Important Pipeline Considerations:

— Where is branch target address (BTA) e and r2. 0508
computed? ’ T
— For conditional branches, how/where is the 18: or r6,ri,r7
branch outcome determined.
» For our 5 stage pipeline 22: add r8,r1,ro

— BTA s computed in EX stage, PC update

done during IF stage)]

— Branch Outcome is determined during EX What do you do with the 3 instructions in between?
How do you do it?

36: xor rio,rl,rll

Stage' Where is the “commit”?
45 46
Pipelined MIPS Datapath
Branch Stall Impact , .
Instruction Instr. Decode Execute Memory Werite
. lfCPI = 1,30% branch, Fetch Reg. Fetch - Addr. Calc;_ Access _._ Back

Next PC

lext

Stall 3 cycles => new CPI = 1.9!

» Two part solution:

— Determine branch outcome(taken/not-taken) sooner,
AND

I : 2]
. 3 5 == (|2
— Compute branch target address earlier g X @—» 2l EEHSH
. . o
* MIPS branch tests if register = 0 or = 0 =Y |
. Sign £
* MIPS Solution: 2
£
— Move Zero test to ID/RF stage A Ro_] RO A RD A_|
— Adder to calculate new PC in ID/RF stage + Interplay of instruction set design and cycle time.
— 1 clock cycle penalty for branch versus 3 a7 ‘Hardware Cost: Additional Adder for BTA generation 48

Jon Kuhl 12

55:132/22C:160

Spring 2011

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
— Execute successor instructions in sequence
— “Cancel” instructions in pipeline if branch actually taken
Advantage of late pipeline state update
— 47% MIPS branches not taken on average
— PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
— 53% MIPS branches taken on average
— But haven’ t calculated branch target address in MIPS
« MIPS still incurs 1 cycle branch penalty
« Other machines: branch target known before outcome

49

Four Branch Hazard Alternatives

#4: Delayed Branch
— Define branch to take place AFTER following instruction(s)

branch instruction
sequential successor,
sequential successorz\
sequential successor,
branch target if taken

Branch delay of length n
(branch shadow)

— 1 slot delay allows proper decision and branch target
address in 5 stage pipeline

— MIPS uses this
50

A. From before branch

Scheduling Branch Delay Slots

B. From branch target C. From fall through

add $1,$2,$3 sub $4,35,36 add $1,$2,$3
if $2=0 then — if $1=0 then —
add $1,$2,$3
if $1=0 then
— sub $4,%$5,%$6+—
becomes 1 becomes 1 becomes 1
add $1,%$2,$3
if $2=0 then — if $1=0 then —
add $1,$2,$3 add $1.$2.$3 sub $4,$5,$6
if $1=0 then
— sub $4,$5,$6

Ais the best choice, fills delay slot & reduces instruction count (IC)
In B, the sub instruction may need to be copied, increasing IC
In B and C, must be okay to execute sub when branch fails

51

Delayed Branch

Compiler effectiveness for single branch delay slot:
— Fills about 60% of branch delay slots
— About 80% of instructions executed in branch delay slots
useful in computation
— About 50% (60% x 80%) of slots usefully filled

« Delayed Branch downside: As processor go to deeper

pipelines and multiple issue, the branch delay grows
and need more than one delay slot

— Delayed branching has lost popularity compared to more
expensive but more flexible dynamic approaches

— Growth in available transistors has made dynamic approaches
relatively cheaper

52

Jon Kuhl

13

55:132/

22C:160

Spring 2011

Evaluating Branch Alternatives

Pipeline depth

Pipeline speedup = 1 +Branch frequency x Branch penalty

Assume 4% unconditional branch, 6% conditional branch- untaken,
10% conditional branch-taken

Scheduling Branch CPI speedupv. speedupv.

scheme penalty unpipelined stall
Stall pipeline 1 12 4.17 1.0
Predict not taken 1* 114 4.39 1.05
Delayed branch 05 110 4.55 1.09

* Only for wrong prediction

Assumes Branch Outcome determination and BTA generation in
decode stage, 50% of delay slots filled with useful instructions
for delayed branching

53

Problems with Pipelining

« Exception: An unusual event happens to an instruction
during its execution

— Examples: divide by zero, undefined opcode
* Interrupt: Hardware signal to switch the processor to a
new instruction stream

— Example: a sound card interrupts when it needs more audio
output samples (an audio “click” happens if it is left waiting)

« Problem: It must appear that the exception or interrupt
must appear between 2 instructions (I; and I;,,)

— The effect of all instructions up to and including |; is
totally complete

— No effect of any instruction after I, can take place
+ or The interrupt (exception) handler either aborts
program restarts at instruction I,

54

Precise Exceptions in Static Pipelines

Inst.

Mem Decode

Tllzgal Data Addr

Except

PC Address

Exceptions

Kill F I Kill D
Stage Stage

Key observation: architected state only change

in memory and register write stages. o

Limits on Scalar Pipeline Performance
[Agerwala and Cocke 1987]

¢ Internal IBM study: Limits of a scalar pipeline?
¢ Memory Bandwidth

— Fetch 1 instr/cycle from I-cache

— 40% of instructions are load/store (D-cache)
¢ Code characteristics (dynamic)

— Loads — 25%

— Stores 15%

— ALU/RR - 40%

— Branches — 20%

« 1/3 unconditional (always taken)

« 1/3 conditional taken
« 1/3 conditional not taken

Jon Kuhl

14

55:132/22C:160

Spring 2011

Limits on Scalar Processor
Performance

¢ Cache Performance
— Assume 100% hit ratio (upper bound)
— Cache latency: | = D = 1 cycle default
» Load and branch scheduling
— Loads
« 25% cannot be scheduled (delay slot empty)
* 65% can be moved back 1 or 2 instructions
« 10% can be moved back 1 instruction
— Branches
« Unconditional — 100% schedulable (fill one delay slot)
« Conditional — 50% schedulable (fill one delay slot)

CPI Optimizations

¢ Goal and impediments

— CPI =1, prevented by pipeline stalls

* No cache bypass of RF, no load/branch

scheduling

— Load penalty: 2 cycles: 0.25 x 2 =0.5 CPI

— Branch penalty: 2 cycles: 0.2 x 2/3 x 2 =0.27 CPI
— Total CPI: 1 +0.5 +0.27 = 1.77 CPI

¢ Bypass, no load/branch scheduling

— Load penalty: 1 cycle: 0.25 x 1 =0.25 CPI
— Total CPI: 1 + 0.25 + 0.27 = 1.52 CPI

More CPI Optimizations

« Bypass, scheduling of loads/branches

— Load penalty:
* 65% + 10% = 75% moved back, no penalty
* 25% => 1 cycle penalty
* 0.25x0.25x 1 =0.0625 CPI
— Branch Penalty
« 1/3 unconditional 100% schedulable => 1 cycle
« 1/3 cond. not-taken, => no penalty (predict not-taken)
« 1/3 cond. Taken, 50% schedulable => 1 cycle
« 1/3 cond. Taken, 50% unschedulable => 2 cycles
¢ 0.25x[1/3x1+1/3x05x1+1/3x0.5x2]=0.167

» Total CPI: 1 + 0.063 + 0.167 = 1.23 CPI

Simplify Branches

* Assume 90% can be PC-relative
— No register indirect, no register access
— Separate adder (like MIPS R3000) dependences
— Branch penalty reduced
e Total CPI: 1 + 0.063 + 0.085 = 1.15 CPI

PC-relative |Schedulable | Penalty
Yes (90%) |Yes (50%) |0 cycle
Yes (90%) |No (50%) 1 cycle
No (10%) Yes (50%) |1 cycle
No (10%) No (50%) 2 cycles

15% Overhead
from program

Jon Kuhl

15

