
55:132/22C:160 Spring 2011

Jon Kuhl 1

Pipelined Processors

HPCA, Spring 2011

Ideal Pipelining
Comb. Logic
n Gate Delay

Gate
DelayL Gate

DelayL

L BW = ~(1/n)

n--
2

n
--2 BW = ~(2/n)

Throughput =~(1/n)

Throughput =~(2/n)

• Ideally, throughput increases linearly with
pipeline depth

Gate
DelayL Gate

DelayL Gate
DelayLn--

3
n
--3

n--
3 BW = ~(3/n)Throughput =~(3/n)

Ideal Pipeline Performance

Unpipelined operation

time T

Inputs Ik, Ik-1,…, I2, I1
Outputs Ok,…,O2, O1

Time required to process K inputs = KT

Perfect Pipeline (N stages):

T/N T/N T/NT/N

Stage
1

Stage
2

Stage
3

Stage
N

…

I1
I1I2

I3 I2 I1
…

Time required to process K inputs = (K + N-1)(T/N)

IN IN-1 IN-2
… I1 O1

Note” For K >>N, the processing time approaches KT/N

…

… …

… … … …

Factors Inhibiting Ideal Pipeline
Performance

• Unequal distribution of work among stages
– Clock cycle time must accommodate slowest

stage

• Staging logic introduces additional delays• Staging logic introduces additional delays

• May not be able to keep the pipeline full
– Stall behavior

– Much more about this later

55:132/22C:160 Spring 2011

Jon Kuhl 2

Example: FP Multiplier
• Exponent: excess 128 (8 bits)
• Mantissa: sign-magnitude fraction with hidden bit (57 bits total)

• Algorithm:

Sign Exponent Mantissa

1. Check if any operand is ZERO.
2. ADD the two characteristics (physical bit patterns of the exponents)

and correct for the excess 128 bias, i.e. e1+ (e2-128)
3. Perform fixed-point MULTIPLICATION of the mantissas.
4. NORMALIZE the product of the mantissas, i.e. may require one left

shift and decrement the exponent.
5. ROUND the result by adding 1 to the first guard bit; if mantissa

overflows, then shift right one bit and increment the exponent.

Nonpipelined Implementation

Add/Sub

e1e1 m1 m2e1 e2

Add/Sub

s1 s2

Fixed Point

1 8 561 8 56

Mantissa
 Multiplier

•

e3 m3

Rounding

Normalize

Add/Sub

Normalize

Rounding

m3

Add/Sub

e3s3

1 8 56

•

Nonpipelined Implementation
Total Chip counts and delays:

Chip Count Delay
P. P. Generation

34 125 ns
P. O. Reduction

72 150 ns
Final Reduction

21 55 ns

Normalization
2 20 ns

Rounding
15 50 ns

Exponent SectionExponent Section
4 --------

Input Registers
17 --------

Output Registers
10 --------

175 400 ns

• Unpipelined clock period = 400 nsec. (2.5 MFLOPS)
(based on very old IC technology)

Pipelined Implementation
s2

Add/Sub

e1e1
m1 m2e1 e2

Add/Sub

s1

P.P. Generation

P.P. Reduction

125 ns

150 ns

s1

e3
m3

Rounding

Normalize

Add/Sub

Normalize

Rounding

m3

Add/Sub

e3s3

Final Reduction

Clock

55 ns

50 ns

20 ns
• •

55:132/22C:160 Spring 2011

Jon Kuhl 3

Pipelined Implementation
• Three Stage Pipelining:

– Longest delay path within a stage (PP Reduction) = 150 nsec.

• Hence can have pipeline clock period of 150 nsec. plus
22 nsec. in pipeline overheads (totaling 172 nsec.)

• Number of ICs added: 82 edge-triggered registers; 175
+ 82 = 257
– Original total delay - 400 nsec (2 5 MFLOPS)– Original total delay - 400 nsec (2.5 MFLOPS)
– New min. clock period - 172 nsec (5.8 MFLOPS)
– Original no. of ICs - 175 chips
– New total of ICs - 257 chips

• Less than 50% increase in hardware more than
doubles the throughput (from 2.5 to 5.8 MFLOPS)

• Note that an ideal 3-stage pipeline would have
achieved a clock period of 400/3 = 133 nsec. and a
maximum throughput of 7.5 MFLOPS

Processor Pipelining

• The “computation” to be pipelined.
– Instruction Fetch (IF)

– Instruction Decode (ID)

Operand(s) Fetch (OF)– Operand(s) Fetch (OF)

– Instruction Execution (EX)

– Operand Store (OS)

– Update Program Counter (PC)

Granularity of Pipeline Stages

IF
ID

IF

ID

OF

EX

1

2

3

DELAY

ID

DELAY

DELAY

4

5

6

1

2

3

7

ID

IF

OF

EX1

IF

OF

ID

DELAY

DELAY

DELAY

OS

EX 3

4

EX2 8EX2

OS

10

11

EX

OS

9

DELAY

DELAY

• Logic needed for each pipeline stage.

• Register file ports needed to support all the stages

• Memory accessing ports needed to support all the stages

Example Pipelines

IF

RD

IF

ID

OF

1

2

IF

ID

PC GEN.PC GEN

PC GEN.Cache Read

PC GEN.Cache Read

PC GEN.Decode

1

2

3

4

MIPS R2000/R3000 AMDAHL 470V/7

EX

OS

ALU

MEM

WB

3

4

5

OF

EX

OS

PC GEN.Add GEN

PC GEN.Read REG

PC GEN.Cache Read

PC GEN.Cache Read

PC GEN.EX 1

PC GEN.E X 2

PC GEN.Write Result

PC GEN.Check Result

5

6

7

8

9

10

11

12

55:132/22C:160 Spring 2011

Jon Kuhl 4

Development of a simple RISC Pipeline

• Consider a simple MIPS-like ISA
– Complete ISA Specification provided in

Lecture notes section of class web site

– Some example instructions

LW R2, 10(R1) // Reg[R2] <- Mem[Reg[R1]+10]LW R2, 10(R1) // Reg[R2] Mem[Reg[R1] 10]

SW 10(R1), R2 // Mem[Reg[R1]+10] -> R2

ADD R1,R2,R3 // Reg[R1] <- Reg[R2]+Reg[R3]

BEQZ R1, 16 // If (Reg[R1]==0) PC <- PC + 16

JMP -24 // PC <- PC -24

ALU Instruction Specification
(MIPS-like ISA)

Generic
subcomputations

1. ALU Instruction Type:

Integer instruction Floating-point instruction

IF - Fetch instruction
(access I-memory)

- Fetch instruction
(access I-memory)

ID - Decode instruction - Decode instruction

OF - Access register file - Access FP register file

EX - Perform ALU operation - Perform FP operation

OS - Write back to reg. file - Write back to FP reg. file

Memory Instruction Specification
Generic
subcomputations

2. Load/Store Instruction Type:

Load instruction Store instruction

IF - Fetch instruction
(access I-cache)

- Fetch instruction
(access I-cache)

ID - Decode instruction - Decode instruction

OF - Access register file
(base address)

G t ff ti dd

- Access register file
(register operand,

d b dd)- Generate effective address
(base + offset)

- Access (read) memory
location (D-mem)

and base address)

EX - -

OS - Write back to reg. file - Generate effective
address (base + offset)
- Access (write) memory

location (D-mem)

Branch Instruction Specification
Generic
subcomputations

3. Branch Instruction Type:

Jump (uncond.) instruction Conditional branch instr.

IF - Fetch instruction
(access I-memory)

- Fetch instruction
(access I-memory)

ID - Decode instruction - Decode instruction

OF - Access register file
(base address)

- Access register file
(base address) & test reg()

- Generate effective address
(base + offset)

() g
- Generate effective
address (base + offset)

EX - - Evaluate branch
condition

OS - Update program counter
with target address

- If condition is true,
update program

counter with target
address

55:132/22C:160 Spring 2011

Jon Kuhl 5

The Unified Pipeline

Read Instr.
From
I_Mem; PC++

Read Instr.
From
I_Mem; PC++

Read Instr.
From
I_Mem; PC++

Read Instr.
From
I_Mem; PC++

Decode Instr.
Read Regs (Src.

operands)

Decode Instr.
Read Reg (mem

base addr.)

Decode Instr.
Read Regs (mem
base addr; store

data)

Decode Instr.
Read Reg
(test reg)

ALU instr. LOAD instr. STORE instr. BRANCH instr.

IF stage

ID/RD stage

data)

ALU Operation
Compute Mem.

Address
Compute Mem.

Address

Compute Branch
Target Address

(PC + displ.)
Test branch

condition

Memory Read Memory Write PC Update

Write Result to
Dest. Reg

Write Data to Dst.
Reg.

ALU stage

MEM stage

WB stage

5-stage MIPS Pipeline (Datapath)

Memory
Access (MEM)

Write
Back (WB)

Instruction
Fetch (IF)

Instr. Decode
Reg. Fetch (ID)

Execute
Addr. Calc (EX)

IM Re

M
U

Zero?

I I

M
E

EX

4

A
dder

Next SEQ PC Next SEQ PC
Next PC

A
d

RS1

RS2

M
U

X

18

A
LU

Instr.
em

ory

eg File

U
X

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

IF/ID

ID
/EX

EM
/W

B

X
/M

EM

Rd Rd Rd

W
B

D
at

a

ddress
Imm

5-stage MIPS Pipeline (Datapath)

Memory
Access (MEM)

Write
Back (WB)

Instruction
Fetch (IF)

Instr. Decode
Reg. Fetch (ID)

Execute
Addr. Calc (EX)

IM Re

M
U

Zero?

I I

M
E

EX

4

A
dder

Next SEQ PC Next SEQ PC
Next PC

A
d

RS1

RS2

M
U

X

19

A
LU

Instr.
em

ory

eg File

U
X

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

IF/ID

ID
/EX

EM
/W

B

X
/M

EM

Rd Rd Rd

W
B

D
at

a

ddress

Imm

Something is wrong
Here. Can you see
The problem??

5 Steps of MIPS-like Datapath (corrected)

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

IM Re

M
U

Zero?

I I

M
E

EX

4 A
dder

Next SEQ PC Next SEQ PC

Next PC

RS1

RS2

M
U

X

20

A
LU

Instr.
em

ory

eg File

U
X

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

IF/ID

ID
/EX

EM
/W

B

X
/M

EM

Rd Rd Rd

W
B

D
at

a

PC

Imm
Note: This is still not
quite right. Can you
see the problem?

55:132/22C:160 Spring 2011

Jon Kuhl 6

Visualizing Pipelining

I
n
s
t

Time (clock cycles)

Reg
ID A

LU EX

Dmem
MEM

Ifetch
IF

Reg
WB

U

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

21

r.

O
r
d
e
r

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

An Even Simpler View

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Instr i

Instr i+1

Instr i+2

Instr i+3

1 2 3 4 5 6 7 8

Clock cycle

Theoretical Speedup of 5-Stage MIPS
Pipeline

• Assume:
– Cycle Time of non-pipelined implementation

of MIPS datapath is t

– Cycle time of pipelined data path (5 stages) isCycle time of pipelined data path (5 stages) is
t/5

– Pipeline always operates at full capacity

• Then:
– Speedup of pipelined implementation versus

non-pipelined version approaches FIVE.

But, Pipelining is not quite that easy!

• Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle
– Structural hazards: HW cannot support this

combination of instructions (single person to fold and
put clothes away)

24

put clothes away)

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

– Control hazards: Caused by delay between the
fetching of instructions and decisions about changes in
control flow (branches and jumps).

55:132/22C:160 Spring 2011

Jon Kuhl 7

One Memory Port/Structural Hazard

I
n
s
t

Time (clock cycles)

Load

Instr 1

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

25

r.

O
r
d
e
r

Instr 2

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

One Memory Port/Structural Hazards

I
n
s
t

Time (clock cycles)

Load

Instr 1

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

26

r.

O
r
d
e
r

Instr 2

Stall

Instr 3

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe?

Processor Performance Equation for
Pipelined Processor

(accounting for Stalls)

Time/Program =
Instructions/Program x (Ideal CPI + Stalls/instruction) x CycleTime

For simple (scalar) RISC Ideal CPI = 1 so:

27

For simple (scalar) RISC, Ideal CPI = 1, so:

Time/Program =
Instructions/Program x (1 + Stalls/instruction) x CycleTime

Example: Dual-port vs. Single-port

• Machine A: Dual ported memory (“Harvard Architecture”)

• Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate

• Ideal CPI = 1 for both

• Load/stores are 40% of instructions executed

28

TA = N x 1 x 1 = N

TB = N x (1 + 0.4(1)) x 1/1.05 = 1.33

Speedup = TB/TA = 1.33/1 = 1.33

So Machine A is 1.33 times faster than Machine B

55:132/22C:160 Spring 2011

Jon Kuhl 8

I
n
s
t

add r1,r2,r3

sub r4 r1 r3 Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Data Hazard on R1

Time (clock cycles)

IF ID/RF EX MEM WB

29

r.

O
r
d
e
r

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

• Read After Write (RAW)
InstrJ tries to read operand before InstrI

writes it

Three Generic Data Hazards

I: add r1,r2,r3
J b 4 1 3

30

• Caused by a “Dependence” (in compiler
nomenclature). This hazard results from an
actual need for communication.

J: sub r4,r1,r3

• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards

31

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:

– All instructions take 5 stages, and

– Register Reads are always in stage 2, and

– Register Writes are always in stage 5

Three Generic Data Hazards

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

•

C ll d “ t t d d ” b il it

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

32

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:

– All instructions take 5 stages, and

– Register Writes are always in stage 5

• Will see WAR and WAW in more complicated pipes

55:132/22C:160 Spring 2011

Jon Kuhl 9

Data Hazard Example (quicksort/MIPS)

for (; (j < high) && (array[j] < array[low]) ; ++j);
$10 = j
$9 = high
$6 = array
$8 = low

bge done, $10, $9
mul $15, $10, 4
addu $24, $6, $15addu $24, $6, $15
lw $25, 0($24)
mul $13, $8, 4
addu $14, $6, $13
lw $15, 0($14)
bge done, $25, $15

cont:
addu $10, $10, 1
. . .

done:
addu $11, $11, -1

33

Resolution of Pipeline Hazards

• Pipeline hazards
– Potential violations of program dependences

– Must ensure program dependences are not violated

• Hazard resolution
S /– Static: compiler/programmer guarantees correctness

– Dynamic: hardware performs checks at runtime

• Pipeline interlock
– Hardware mechanism for dynamic hazard resolution

– Must detect and enforce dependences at runtime

34

Data Hazard Mitigation

• A better response – forwarding
– Also called bypassing

• Comparators ensure register is read after
it is writtenit is written

• Instead of stalling until write occurs
– Use mux to select forwarded value rather than

register value

– Control mux with hazard detection logic

35

I
n
s
t

add r1,r2,r3

sub r4,r1,r3

Reg A
LU

DMem

Ifetch

Reg

Reg A
LU DMem Reg

Data Hazard on R1

Time (clock cycles)

Bubble Bubble

IF ID EX MEM WB

IF

Bubble Bubble B bbl B bblSt ll

36

r.

O
r
d
e
r

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

ID EX MEM WB

IF ID EX MEM WB

Bubble Bubble Bubble Bubble

BubbleStall Bubble Bubble Bubble

Stall

and r6,r1,r7

55:132/22C:160 Spring 2011

Jon Kuhl 10

Time (clock cycles)

Forwarding to Avoid Data Hazards

I
n
s
t
r.

add r1,r2,r3

sub r4,r1,r3 Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

37

O
r
d
e
r

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Time (clock cycles)

RAW Data Hazards Involving Loads

I
n
s
t
r.

lw r1,10(r3)

sub r4,r1,r3 Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

38

O
r
d
e
r

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Data Hazard Even with Forwarding

Time (clock cycles)

I
n
s
t
r

lw r1, 0(r2) Reg A
LU DMemIfetch Reg

39

or r8,r1,r9

r.

O
r
d
e
r

sub r4,r1,r6

and r6,r1,r7

RegIfetch A
LU DMem RegBubble

Ifetch A
LU DMem RegBubble Reg

Ifetch A
LU DMemBubble Reg

How is this detected?

HW Change for Forwarding

M
EM

/

ID
/E

EX
/M

E

D t

A
LU

m
uxRegister

NextPC

40

W
B

EX EM

Data
Memory

m
ux

rs

Immediate

m
ux

What circuit detects and resolves this hazard?

55:132/22C:160 Spring 2011

Jon Kuhl 11

Time (clock cycles)

Forwarding to Avoid LW-SW Data Hazard

I
n
s
t
r.

add r1,r2,r3

lw r4, 0(r1) Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

41

O
r
d
e
r

sw r4,12(r1)

or r8,r6,r9

xor r10,r9,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Control Dependences

• Conditional branches
– Branch must execute to determine which instruction to

fetch next

– Instructions following a conditional branch are control
dependent on the branch instruction

• Unconditional Branches (including subroutine callsUnconditional Branches (including subroutine calls
• Branch can’t take place until branch target address is

calculated

• Exceptions
– Interrupts

– Hardware Exceptions

– Trap Instructions
42

Branch Frequencies
(From Hennessy & Patterson,Computer Architecture—A Quantitative Approach, 2nd Ed

43

Branching Behavior
(From Hennessy & Patterson,Computer Architecture—A Quantitative Approach, 2nd Ed.)

44

55:132/22C:160 Spring 2011

Jon Kuhl 12

Control Flow Hazards

• Important Pipeline Considerations:
– Where is branch target address (BTA)

computed?

– For conditional branches, how/where is the
branch outcome determined.

• For our 5 stage pipeline
– BTA is computed in EX stage, PC update

done during IF stage

– Branch Outcome is determined during EX
stage.

45

Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7 Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

46

22: add r8,r1,r9

36: xor r10,r1,r11

A

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

What do you do with the 3 instructions in between?
How do you do it?
Where is the “commit”?

Branch Stall Impact

• If CPI = 1, 30% branch,
Stall 3 cycles => new CPI = 1.9!

• Two part solution:
– Determine branch outcome(taken/not-taken) sooner,

47

AND

– Compute branch target address earlier

• MIPS branch tests if register = 0 or 0

• MIPS Solution:
– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

– 1 clock cycle penalty for branch versus 3

A
dder

Pipelined MIPS Datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

M R

Zero?

M
E

EX

4

A
dder

Next
SEQ PC

Next PC

RS1

RS2

M
U

X

I

48

IF/ID

A
LU

em
ory

Reg File

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

EM
/W

B

X
/M

EM

RD RD RD W
B

D
at

a

• Interplay of instruction set design and cycle time.
•Hardware Cost: Additional Adder for BTA generation

PC

Imm

ID
/EX

55:132/22C:160 Spring 2011

Jon Kuhl 13

Four Branch Hazard Alternatives
#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
– Execute successor instructions in sequence

– “Cancel” instructions in pipeline if branch actually taken

– Advantage of late pipeline state update

– 47% MIPS branches not taken on average

49

– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average

– But haven’t calculated branch target address in MIPS
• MIPS still incurs 1 cycle branch penalty

• Other machines: branch target known before outcome

Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER following instruction(s)

branch instruction
sequential successor1
sequential successor

50

sequential successor2
........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target
address in 5 stage pipeline

– MIPS uses this

Branch delay of length n
(branch shadow)

Scheduling Branch Delay Slots

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then

delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

51

• A is the best choice, fills delay slot & reduces instruction count (IC)
• In B, the sub instruction may need to be copied, increasing IC

• In B and C, must be okay to execute sub when branch fails

if $2=0 then

add $1,$2,$3
add $1,$2,$3
if $1=0 then

sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

Delayed Branch
• Compiler effectiveness for single branch delay slot:

– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots
useful in computation

– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: As processor go to deeper
i li d lti l i th b h d l

52

pipelines and multiple issue, the branch delay grows
and need more than one delay slot
– Delayed branching has lost popularity compared to more

expensive but more flexible dynamic approaches

– Growth in available transistors has made dynamic approaches
relatively cheaper

55:132/22C:160 Spring 2011

Jon Kuhl 14

Evaluating Branch Alternatives

Assume 4% unconditional branch, 6% conditional branch- untaken,
10% conditional branch-taken

Scheduling Branch CPI speedup v. speedup v.

Pipeline speedup = Pipeline depth
1 +Branch frequency Branch penalty

53

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 1 1.2 4.17 1.0
Predict not taken 1* 1.14 4.39 1.05
Delayed branch 0.5 1.10 4.55 1.09
* Only for wrong prediction

Assumes Branch Outcome determination and BTA generation in
decode stage, 50% of delay slots filled with useful instructions
for delayed branching

Problems with Pipelining

• Exception: An unusual event happens to an instruction
during its execution
– Examples: divide by zero, undefined opcode

• Interrupt: Hardware signal to switch the processor to a
new instruction stream
– Example: a sound card interrupts when it needs more audio

54

Example: a sound card interrupts when it needs more audio
output samples (an audio “click” happens if it is left waiting)

• Problem: It must appear that the exception or interrupt
must appear between 2 instructions (Ii and Ii+1)
– The effect of all instructions up to and including Ii is

totally complete
– No effect of any instruction after Ii can take place

• or The interrupt (exception) handler either aborts
program restarts at instruction Ii+1

Precise Exceptions in Static Pipelines

Key observation: architected state only change
in memory and register write stages.

55

Limits on Scalar Pipeline Performance
[Agerwala and Cocke 1987]

• Internal IBM study: Limits of a scalar pipeline?
• Memory Bandwidth

– Fetch 1 instr/cycle from I-cache
– 40% of instructions are load/store (D-cache)

• Code characteristics (dynamic)Code characteristics (dynamic)
– Loads – 25%
– Stores 15%
– ALU/RR – 40%
– Branches – 20%

• 1/3 unconditional (always taken)
• 1/3 conditional taken
• 1/3 conditional not taken

55:132/22C:160 Spring 2011

Jon Kuhl 15

Limits on Scalar Processor
Performance

• Cache Performance
– Assume 100% hit ratio (upper bound)
– Cache latency: I = D = 1 cycle default

• Load and branch scheduling
Loads– Loads

• 25% cannot be scheduled (delay slot empty)
• 65% can be moved back 1 or 2 instructions
• 10% can be moved back 1 instruction

– Branches
• Unconditional – 100% schedulable (fill one delay slot)
• Conditional – 50% schedulable (fill one delay slot)

CPI Optimizations

• Goal and impediments
– CPI = 1, prevented by pipeline stalls

• No cache bypass of RF, no load/branch
scheduling
– Load penalty: 2 cycles: 0 25 x 2 = 0 5 CPILoad penalty: 2 cycles: 0.25 x 2 = 0.5 CPI
– Branch penalty: 2 cycles: 0.2 x 2/3 x 2 = 0.27 CPI
– Total CPI: 1 + 0.5 + 0.27 = 1.77 CPI

• Bypass, no load/branch scheduling
– Load penalty: 1 cycle: 0.25 x 1 = 0.25 CPI
– Total CPI: 1 + 0.25 + 0.27 = 1.52 CPI

More CPI Optimizations

• Bypass, scheduling of loads/branches
– Load penalty:

• 65% + 10% = 75% moved back, no penalty
• 25% => 1 cycle penalty
• 0.25 x 0.25 x 1 = 0.0625 CPI

– Branch Penalty
• 1/3 unconditional 100% schedulable => 1 cycle
• 1/3 cond. not-taken, => no penalty (predict not-taken)
• 1/3 cond. Taken, 50% schedulable => 1 cycle
• 1/3 cond. Taken, 50% unschedulable => 2 cycles
• 0.25 x [1/3 x 1 + 1/3 x 0.5 x 1 + 1/3 x 0.5 x 2] = 0.167

• Total CPI: 1 + 0.063 + 0.167 = 1.23 CPI

Simplify Branches
• Assume 90% can be PC-relative

– No register indirect, no register access
– Separate adder (like MIPS R3000)
– Branch penalty reduced

• Total CPI: 1 + 0.063 + 0.085 = 1.15 CPI

PC l ti S h d l bl P lt

15% Overhead
from program
dependences

PC-relative Schedulable Penalty

Yes (90%) Yes (50%) 0 cycle

Yes (90%) No (50%) 1 cycle

No (10%) Yes (50%) 1 cycle

No (10%) No (50%) 2 cycles

