55:132/22C:160

Spring 2010

55:132/22C:160
High Performance Computer
Architecture

Instructor Information

* Instructor: Jon Kuhl (That's me)
— Office: 4322 SC

— Office Hours: 9:00-10:30 a.m. TTh (Other
times by appointment)

— E-mail: kuhl@engineering.uiowa.edu
— Phone: (319) 335-5958

Spring 2011 « TA: th.d.
— Office: t.b.d
— Office hours: t.b.d.
Class Info. Course Objectives
P ¢ Understand quantitative measures for assessing
* Website: .
. . . and comparing processor performance
www.engineering.uiowa.edu/~hpca)
. Texts: ¢ Understand modern processor design

Required: Hennessy and Patterson, Computer
Architecture—A Quantitative Approach, Morgan
Kaufmann, Fourth Edition, 2007

Supplemental: Thomas and Moorby, The Verilog
Hardware Description Language, Fifth Edition,
Springer Verlag, 2008.

Additional Reference: Shen and Lipasti, Modern
Processor Design--Fundamentals of Superscalar
Processors, McGraw Hill, 2005.

techniques, including:

— Pipelining

— high performance memory architecture
— instruction-level parallelism

— multi-threading

— Multi-core architecture

¢ Master the use of modern design tools (HDLs) to

design and analyze processors

» Do case studies of contemporary processors
 Discuss future trends in processor design

Jon Kuhl

55:132/22C:160 Spring 2010

Expected Background

_ , Course Organization
< A previous course in computer

architecture/organization covering: * Homework assignments--several
— Instruction set architecture (ISA) « Several projects (design/analysis
— Addressing modes exercises using the Verilog HDL and
— Assembly language ModelSim simulation environment)
— Basic computer organization « TWO exams:
—Memory system organization Midterm—Th. March 10, in class
* Cache Final—Mon. May 9, noon-2:00 p.m.
* virtual
— Etc.

e 22C:060 or 55:035 or equivalent

o _ Historical Perspectives
Course Organization--continued + The Decade of the 1970's: “Birth of

Microprocessors”
— Programmable Controller

° Gradlng: — Single-Chip Microprocessors
— Exams: — Personal Computers (PC)
- Better of midterm/final exam score: ~ 35% * The I_Decade”of the 1980's: “Quantitative
)) Architecture
« Poorer of midterm/final exam scores: 25% — Instruction Pipelining
— Homework: 10% — Fast Cache Memories
. — Compiler Considerations
— 0
PrOJeCtS 30% — Workstations
¢ The Decade of the 1990’s: “Instruction-Level
Parallelism”

— Superscalar,Speculative Microarchitectures
— Aggressive Compiler Optimizations
— Low-Cost Desktop Supercomputing

Jon Kuhl 2

55:132/22C:160

Spring 2010

Moore’s Law

(Bl Py G . G

Moore’s Law (1965)

» The number of devices that can be
integrated on a single piece of silicon will
double roughly every 18-24 months

* Moore’s law has held true for 40 years and
will continue to hold for at least another
decade, probably longer.

Transistor count

CPU Transistor Counts 1971-2008 & Moore's Law

2,000,000,000
1,000,000,000

100,000,000

10,000,000

1,000,000

100,000

10,000

2,300

1971

1980 1990 2000

Date of introduction

Source: Wikipedia

2008

The Computer Architect’s
Challenge

« Make Moore’s Law apply also to computer chip
performance as well as density

¢ That is, make sure that the additional chip density
(complexity) is utilized efficiently.

— Note that Moore’s law has roughly held for both chip density and
clock frequency- chips have been getting faster as well as
denser.

— So fully exploiting the increase in density and clock speed should

lead to performance increases well exceeding the growth rate of
Moore’s Law.

Jon Kuhl

55:132/22C:160 Spring 2010

Processor Performance 1978-2006

So What's Going On Here?

* Inrecent years, the increase in processor
performance has begun to level off
— No longer tracking Moore’s law

» Have Computer Architects Failed?

30 Fomi . e e

What is Constraining Performance? Moore’s Law--Processor Power Consumption

CPU power consumption, 1993-2005

¢ Diminishing Returns on Attempts to Exploit 120 -
Instruction-level Parallelism

» Power and Heat Dissipation Issues
Stagnating Clock Rates
» Lagging Memory Latencies S

Watts

Jon Kuhl 4

55:132/22C:160 Spring 2010

Moore’s Law—Clock Frequency Moore’s Law—Clock Frequency

CPU clock frequency, 1993-2005 40 = cpU clock frequency, 1993-2005

30 - 30

Gigahertz
i
I

What's going
on here???

1995 1997 1999 200

Relationship between clock rate and power Performance and Cost

« Intel Estimatel:

— Increasing clock rate by 25% will yield approx. » How should we measure performance?
15% performance increase .
C * Not so simple
— But power consumption will be doubled T .
- Power Consumption/Heat Dissapation —Scientific simulation — FP performance
issues are ushering a new era in CPU —Program development — Integer
design performance
— Focus on performance per watt —Commercial workload — Memory, 1/0

— Causing fundamental rethinking of archtecture

1 Phillip E. Ross, “ Why Clock Frequency Stalled”, IEEE Spectrum,
April, 2008

Jon Kuhl 5

55:132/22C:160 Spring 2010

Performance of Computers Defining Performance

» Want to buy the fastest computer for what

you want to do?

— Workload is all-important - Computer system user

— Correct measurement and analysis — Minimize elapsed time for program =
» Want to design the fastest computer for time_end — time_start

what the customer wants to pay? — Called response time

— Cost is always an important criterion

« Computer center manager
. Spee.d is not always the only performance — Maximize completion rate = #jobs/second
criteria: — Called throughput

* What is important to whom?

— Power
— Area
Simple Performance
Improve Performance :
Comparison
« Improve (a) response time or (b) throughput? ¢ Machine A is n times faster than machine B iff
— Faster CPU perf(A)/perf(B) = time(B)/time(A) = n
* Helps both (a) and (b) « Machine A is x% faster than machine B iff
— Add more CPUs . .
« Helps (b) and perhaps (a) due to less queuing perf(A)/perf(B) = time(B)/time(A) = 1 + x/100

¢ E.g.time(A) = 10s, time(B) = 15s
—15/10 =1.5 => A is 1.5 times faster than B
— 15/10 = 1.5 => A is 50% faster than B

Jon Kuhl

55:132/22C:160

Spring 2010

Possible Performance Metrics

MIPS and MFLOPS

MIPS (Millions of Instructions per Second
= instruction count/(execution time x 106)
= clock rate/(CPI x 108)

MFLOPS (millions of floating pt. ops per
second)

— Generally refers peak (max. possible) rate
Both have serious shortcomings

Problems with MIPS

¢ E.g. without FP hardware, an FP op may take 50

single-cycle instructions

« With FP hardware, only one 2-cycle instruction

e Thus, adding FP hardware:
— CPl increases (why?) 50/50 => 2/1

— Instructions/program 50=>1
decreases (why?)

— Total execution time decreases 50 =>2
e BUT, MIPS gets worse! 50 MIPS => 2 MIPS

Problems with MIPS

* Ignores program
¢ Usually used to quote peak performance
— Ideal conditions => guarantee not to exceed!
* When is MIPS ok?
— Same compiler, same ISA
— E.g. same binary running on Pentium-IIl, IV

—Why? Instr/program is constant and can be
ignored

Other Metrics

¢ MFLOPS = FP ops in program/(execution time x 106)
¢ Assuming FP ops independent of compiler and

ISA
— Often safe for numeric codes: matrix size determines
of FP ops/program
— However, not always safe:
» Missing instructions (e.g. FP divide, sqgrt/sin/cos)
* Optimizing compilers

* Relative MIPS and normalized MFLOPS

— Normalized to some common baseline machine
« E.g. VAX MIPS in the 1980s

Jon Kuhl

55:132/22C:160 Spring 2010

Which Programs? Types of Benchmarks
« Execution time of what program? * Real programs
« Best case — you always run the same set of ~ representative of real workload
programs — only accurate way to characterize performance

— requires considerable work
« Kernels or microbenchmarks
— “representative” program fragments

— Port them and time the whole workload
* In reality, use benchmarks

— Programs chosen to measure performance — good for focusing on individual features not big
— Predict performance of actual workload pICtUﬂ_?)
— Saves effort and money * Instruction mixes
_ Representative? Honest? Benchmarketing... — instruction frequency of occurrence; calculate CPI
Benchmarks: SPEC2000 Benchmarks: SPEC CINT2000
» System Performance Evaluation fzzchr_nark zescnpﬁop
Cooperative .gzip ompression
i i 175.vpr FPGA place and route
—Formed in 80s to combat benchmarketing 176.gcc C compiler
— SPEC89, SPEC92, SPEC95,Spec2000, now 181.mcf Combinatorial optimization
SPEC2006 186.crafty Chess
e« 12 integer and 14 f|oating_point programs 197.parser Word Proc_essing, grammatical analysis
— Sun Ultra-5 300MHz reference machine has igjeonu) > :::i"zatfot” (ray t:ac'”g)
score of 100 .perlbm script execution
. . 254.9ap Group theory interpreter
- Rep?‘(t geometric mean of ratios to reference 255 vortex Object-oriented database
machine 256.bzip2 Compression
300.twolf Place and route simulator

Jon Kuhl 8

55:132/22C:160 Spring 2010

Benchmarks: SPEC CFP2000 e PR e

Benchmark | Description

168.wupwise | Physics/Quantum Chromodynamics
171.swim Shallow water modeling

172.mgrid Multi-grid solver: 3D potential field
173.applu Parabolic/elliptic PDE
177.mesa 3-D graphics library

178.galgel Computational Fluid Dynamics

179.art Image Recognition/Neural Networks

183.equake | Seismic Wave Propagation Simulation
187.facerec | Image processing: face recognition
188.ammp Computational chemistry

189.lucas Number theory/primality testing

191.fma3d Finite-element Crash Simulation

200.sixtrack | High energy nuclear physics accelerator
design

301.apsi Meteorology: Pollutant distribution e

Benchmark Pitfalls Benchmark Pitfalls

¢ Choosing benchmark from the wrong

« Benchmark not representative application space
. _ -eg.,i I i t, choosi
— If your workload is I/0O bound, SPECint is &9 _m a reafiime environment, © OOS”_]g g(_:c
useless ¢ Choosing benchmarks from no application
i space
* Benchmark is too old — e.g., synthetic workloads, esp. unvalidated ones
— Benchmarks age poorly; benchmarketing « Using toy benchmarks (dhrystone,
pressure causes vendors to optimize whetstone)
compiler/hardware/software to benchmarks — e.g., used to prove the value of RISC in early 80's
— Need to be periodically refreshed .

Mismatch of benchmark properties with scale
of features studied
— e.g., using SPECINT for large cache studies

Jon Kuhl 9

55:132/22C:160

Spring 2010

Performance versus cost- pe rformance
3000
B SPECim2000case —e— inyS1k
2500 SPECIp2000base —— ip/Sik
2000 —_— 5
g e
& 1500
i
& S
1000
500
o
Dell Precision HP ProLiant HP ProLiant HP Integrity Sun Java
Waorkstation 380 BL25p MLISO Ga r2Be0-2 Workstation W1100z
& T i P Al P e

SPEGC2000S 1000

Percantage of peak performance

0%

60%

50%

The Problem with Peak Performance Metrics(MFLOPS)
|
58% Hanium 2
Ll W HEC Earth Simulator
Cray X1
a3%
20%
16%
10% 1% 1%
o J -
T Parales LEMHD . Cacus GBI -
plasma physics. malerials sciance astrophysics magnatic fusion

Processor Performance
Equation

Program

Processor Performance =

Instructions
Program

Cycles
Instruction

(CPI)

Time
Cycle
(cycle time)

(code size)

Scalar to Superscalar

Scalar processor—Fetches and issues at most
one instruction per machine cycle

Superscalar processor-- Fetches and issues
multiple instructions per machine cycle

Can also define superscalar in terms of how
many instructions can complete execution in a
given machine cycle.

Note that only a superscalar architecture can
achieve a CPI of less than 1

Jon Kuhl

10

55:132/22C:160

Spring 2010

Processor Performance Equation

Time
Processor Performance = ---------------
Program
Instructions Cycles | Time
Program Instruction Cycle
(code size) (CPI) (cycle time)

¢ In the 1980’s (decade of pipelining):
- CPI:5.0=>1.15

¢ Inthe 1990's (decade of superscalar):
— CPI: 1.15 => 0.5 (best case)

Processor Performance Equation

Time
Program
Instructions Cycles Time
Program Instruction Cycle
(code size) (CPI) (cycle time)

Architecture --> Implementation --> Realization

Compiler Designer Processor Designer Chip Designer

PPE—Considering Power

--------------- X Watts =
Program
Instructions Cycles Time
: X Watts
Program Instruction Cycle
(code size) (CPI) (cycle time)

Architecture --> Implementation --> Realization

Compiler Designer Processor Designer Chip Designer

Processor Performance Equation

* Instructions/Program

— Instructions executed, not static code size

— Determined by algorithm, compiler, ISA
» Cycles/Instruction

— Determined by ISA and CPU organization

— Overlap among instructions reduces this term
» Timelcycle

— Determined by technology, organization, clever
circuit design

Jon Kuhl

11

55:132/22C:160

Spring 2010

Overall Goal

* Minimize time, which is the product,
NOT isolated terms
» Common error to miss terms while
devising optimizations
— E.g. ISA change to decrease instruction
count
— BUT leads to CPU organization which
makes clock slower
» Bottom line: terms are inter-related

» This is the crux of the RISC vs. CISC
argument

PPE Example

Machine A: clock 1ns, CPI 2.0, for program P
Machine B: clock 2ns, CPI 1.2, for program P

Which is faster and how much?

Time/Program = instr/program x cycles/instr x sec/cycle

Time(A) =N x2.0x1=2N

Time(B) =N x 1.2 x 2 = 2.4N

Compare: Time(B)/Time(A) = 2.4N/2N = 1.2

So, Machine A is 20% faster than Machine B for
this program

PPE Example

Keep clock(A) @ 1ns and clock(B) @2ns
For equal performance, if CPI(B)=1.2, what
is CPI(A)?

Time(B)/Time(A) = 1 = (Nx2x1.2)/(Nx1xCPI(A))
CPI(A) = 2.4

PPE Example

» Keep CPI(A)=2.0 and CPI(B)=1.2
» For equal performance, if clock(B)=2ns,
what is clock(A)?

Time(B)/Time(A) =1 = (N x 2.0 x clock(A))/(N x 1.2 x 2)
clock(A) = 1.2ns

Jon Kuhl

12

55:132/22C:160

Spring 2010

Another Example

OoP Freq Cycles
ALU 43% 1
Load 21% 1
Store [12% 2
Branch |24% 2

« Assume stores can execute in 1 cycle by
slowing clock 15%

« Should this be implemented?

Example-- Let’s do the math:

OP Freq |Cycles
ALU 43% |1
Load 21% (1
Store 12% |2
Branch [24% |2

+ OldCPI=043+0.21+0.12x2+0.24x2=1.36
* NewCPI=0.43+0.21+0.12+0.24x2=1.24

» Speedup = old time/new time
={P x old CPI x T}{P x new CPI x 1.15 T}
=(1.36)/(1.24 x 1.15) = 0.95

» Answer: Don’'t make the change

No. of
Processors
b— 1-f —

1

Amdahl’'s Law

(Originally formulated for vector processing)

Overall speedup:

Time

f = fraction of program that is vectorizable
(1-f) = fraction that is serial
* N = speedup for vectorizable portion

Speedup

1

(1—f)+NL

Generalization of Amdahl’s Law

(To apply to any processor performance enhancement)

N1

Speedup due

to enhancement
fe— 1-f —

Time

f = fraction of program that can take

advantage of the enhancement

(1-f) = fraction that cannot take advantage

» N =speedup for enhanced portion

» Overall speedup:

Speedup =

(1—f)+NL

1

Jon Kuhl

13

55:132/22C:160 Spring 2010

Amdahl’s Law--Continued Ramifications of Amdahl’s Law
« Performance bottleneck e Consider: f=0.9, (1-f)=0.1
* Even if N is infinite For N -, Speedup - 10
— Performance limited by non-enhanceable e Consider: f=0.5, (1-)=0.5
portion (1-f) For N- infinity, Speedup > 2
* Consider: f-0.1, (1-f) =0.9
lim L s For N - infinity, Speedup - 1.1
Vg py 1o
N
Maximum Achievable Speedup Amdahl’'s Law Example

* An enhancement to a processor
architecture is proposed that would

10 ? decrease the CPI for floating point multiply

/ instructions from 20 cycles to 1 cycle (a

speedup of 20). The CPI of all other

instructions will be unchanged. What will

4 be the overall processor speedup resulting

from this modification?

12

8

Speedup
(2]

T T T T T T T T T
0 01 02 03 04 05 06 07 08 09
Fraction f of program benefitting from performance enhancement

Jon Kuhl 14

55:132/22C:160

Spring 2010

Amdahl’'s Law Example (continued)

Suppose that, in the original design, floating
point multiplies accounted for 6% of the
total execution time of a “typical program”

Then by Amdahl’'s law the speedup due to
the enhanced floating point multiply will be

1
S= ————— =1.06

 (1-0.06) +0.06/20

Amdahl’s Law Example (continued)

Now suppose that, for a different program,
floating point multiplies account for 60% of
the total execution time in the original
design

Then by Amdahl’'s law the speedup due to
the enhanced floating point multiply (for
this particular program) will be

1

S= —— =233
(1-0.6) +0.6/20

Jon Kuhl

15

