
55:132/22C:160 Spring 2010

Jon Kuhl 1

55:132/22C:160
High Performance Computer

ArchitectureArchitecture
Spring 2011

Instructor Information
• Instructor: Jon Kuhl (That’s me)

– Office: 4322 SC
– Office Hours: 9:00-10:30 a.m. TTh (Other

times by appointment)
– E-mail: kuhl@engineering.uiowa.edu@ g g
– Phone: (319) 335-5958

• TA: t.b.d.
– Office: t.b.d
– Office hours: t.b.d.

Class Info.
• Website:

www.engineering.uiowa.edu/~hpca

• Texts:
Required: Hennessy and Patterson, Computer

Architecture—A Quantitative Approach, Morgan
Kaufmann, Fourth Edition, 2007

Supplemental: Thomas and Moorby, The Verilog
Hardware Description Language, Fifth Edition,
Springer Verlag, 2008.

Additional Reference: Shen and Lipasti, Modern
Processor Design--Fundamentals of Superscalar
Processors, McGraw Hill, 2005.

Course Objectives
• Understand quantitative measures for assessing

and comparing processor performance
• Understand modern processor design

techniques, including:
– Pipelining
– high performance memory architecture
– instruction-level parallelism
– multi-threading
– Multi-core architecture

• Master the use of modern design tools (HDLs) to
design and analyze processors

• Do case studies of contemporary processors
• Discuss future trends in processor design

55:132/22C:160 Spring 2010

Jon Kuhl 2

Expected Background
• A previous course in computer

architecture/organization covering:
– Instruction set architecture (ISA)

– Addressing modes

– Assembly languagey g g

– Basic computer organization

– Memory system organization
• Cache

• virtual

– Etc.

• 22C:060 or 55:035 or equivalent

Course Organization

• Homework assignments--several

• Several projects (design/analysis
exercises using the Verilog HDL and
ModelSim simulation environment)ModelSim simulation environment)

• Two exams:
Midterm—Th. March 10, in class

Final—Mon. May 9, noon-2:00 p.m.

Course Organization--continued

• Grading:
– Exams:

• Better of midterm/final exam score: 35%

P f idt /fi l 25%• Poorer of midterm/final exam scores: 25%

– Homework: 10%

– Projects 30%

Historical Perspectives
• The Decade of the 1970’s: “Birth of

Microprocessors”
– Programmable Controller

– Single-Chip Microprocessors

– Personal Computers (PC)

• The Decade of the 1980’s: “Quantitative
Architecture”
– Instruction Pipelining

– Fast Cache Memories

– Compiler Considerations

– Workstations

• The Decade of the 1990’s: “Instruction-Level
Parallelism”
– Superscalar,Speculative Microarchitectures

– Aggressive Compiler Optimizations

– Low-Cost Desktop Supercomputing

55:132/22C:160 Spring 2010

Jon Kuhl 3

Moore’s Law
Moore’s Law (1965)

• The number of devices that can be
integrated on a single piece of silicon will
double roughly every 18-24 months

• Moore’s law has held true for 40 years and
will continue to hold for at least another
decade, probably longer.

Source: Wikipedia

The Computer Architect’s
Challenge

• Make Moore’s Law apply also to computer chip
performance as well as density

• That is, make sure that the additional chip density
(complexity) is utilized efficiently.

N t th t M ’ l h hl h ld f b th hi d it d– Note that Moore’s law has roughly held for both chip density and
clock frequency– chips have been getting faster as well as
denser.

– So fully exploiting the increase in density and clock speed should
lead to performance increases well exceeding the growth rate of
Moore’s Law.

55:132/22C:160 Spring 2010

Jon Kuhl 4

Processor Performance 1978-2006
So What’s Going On Here?

• In recent years, the increase in processor
performance has begun to level off
– No longer tracking Moore’s law

Have Computer Architects Failed?• Have Computer Architects Failed?

What is Constraining Performance?

• Diminishing Returns on Attempts to Exploit
Instruction-level Parallelism

• Power and Heat Dissipation Issues

St ti Cl k R t• Stagnating Clock Rates

• Lagging Memory Latencies

Moore’s Law--Processor Power Consumption

55:132/22C:160 Spring 2010

Jon Kuhl 5

Moore’s Law—Clock Frequency Moore’s Law—Clock Frequency

What’s going
on here???

Relationship between clock rate and power

• Intel Estimate1:
– Increasing clock rate by 25% will yield approx.

15% performance increase

– But power consumption will be doubled

Power Consumption/Heat Dissapation• Power Consumption/Heat Dissapation
issues are ushering a new era in CPU
design
– Focus on performance per watt

– Causing fundamental rethinking of archtecture

1 Phillip E. Ross, “ Why Clock Frequency Stalled”, IEEE Spectrum,
April, 2008

Performance and Cost

• How should we measure performance?

• Not so simple
– Scientific simulation – FP performancep

– Program development – Integer
performance

– Commercial workload – Memory, I/O

55:132/22C:160 Spring 2010

Jon Kuhl 6

Performance of Computers
• Want to buy the fastest computer for what

you want to do?
– Workload is all-important

– Correct measurement and analysis

• Want to design the fastest computer for• Want to design the fastest computer for
what the customer wants to pay?
– Cost is always an important criterion

• Speed is not always the only performance
criteria:
– Power

– Area

Defining Performance

• What is important to whom?

• Computer system user
– Minimize elapsed time for program =

time end time starttime_end – time_start

– Called response time

• Computer center manager
– Maximize completion rate = #jobs/second

– Called throughput

Improve Performance

• Improve (a) response time or (b) throughput?
– Faster CPU

• Helps both (a) and (b)

– Add more CPUs
• Helps (b) and perhaps (a) due to less queuing

Simple Performance
Comparison

• Machine A is n times faster than machine B iff

perf(A)/perf(B) = time(B)/time(A) = n

• Machine A is x% faster than machine B iff

perf(A)/perf(B) = time(B)/time(A) = 1 + x/100perf(A)/perf(B) = time(B)/time(A) = 1 + x/100

• E.g. time(A) = 10s, time(B) = 15s
– 15/10 = 1.5 => A is 1.5 times faster than B

– 15/10 = 1.5 => A is 50% faster than B

55:132/22C:160 Spring 2010

Jon Kuhl 7

Possible Performance Metrics
• MIPS and MFLOPS

• MIPS (Millions of Instructions per Second
= instruction count/(execution time x 106)

= clock rate/(CPI x 106)()

• MFLOPS (millions of floating pt. ops per
second)
– Generally refers peak (max. possible) rate

• Both have serious shortcomings

Problems with MIPS

• E.g. without FP hardware, an FP op may take 50
single-cycle instructions

• With FP hardware, only one 2-cycle instruction

 Thus adding FP hardware: Thus, adding FP hardware:
– CPI increases (why?)
– Instructions/program

decreases (why?)
– Total execution time decreases

 BUT, MIPS gets worse!

50/50 => 2/1
50 => 1

50 => 2
50 MIPS => 2 MIPS

Problems with MIPS

• Ignores program

• Usually used to quote peak performance
– Ideal conditions => guarantee not to exceed!

• When is MIPS ok?
– Same compiler, same ISA

– E.g. same binary running on Pentium-III, IV

– Why? Instr/program is constant and can be
ignored

Other Metrics

• MFLOPS = FP ops in program/(execution time x 106)

• Assuming FP ops independent of compiler and
ISA
– Often safe for numeric codes: matrix size determines

of FP ops/programp p g
– However, not always safe:

• Missing instructions (e.g. FP divide, sqrt/sin/cos)
• Optimizing compilers

• Relative MIPS and normalized MFLOPS
– Normalized to some common baseline machine

• E.g. VAX MIPS in the 1980s

55:132/22C:160 Spring 2010

Jon Kuhl 8

Which Programs?

• Execution time of what program?

• Best case – you always run the same set of
programs
– Port them and time the whole workload

• In reality, use benchmarks
– Programs chosen to measure performance

– Predict performance of actual workload

– Saves effort and money

– Representative? Honest? Benchmarketing…

Types of Benchmarks

• Real programs
– representative of real workload
– only accurate way to characterize performance
– requires considerable work

• Kernels or microbenchmarks• Kernels or microbenchmarks
– “representative” program fragments
– good for focusing on individual features not big

picture
• Instruction mixes

– instruction frequency of occurrence; calculate CPI

Benchmarks: SPEC2000

• System Performance Evaluation
Cooperative
– Formed in 80s to combat benchmarketing
– SPEC89, SPEC92, SPEC95,Spec2000, now , , , p ,

SPEC2006

• 12 integer and 14 floating-point programs
– Sun Ultra-5 300MHz reference machine has

score of 100
– Report geometric mean of ratios to reference

machine

Benchmarks: SPEC CINT2000
Benchmark Description

164.gzip Compression

175.vpr FPGA place and route

176.gcc C compiler

181.mcf Combinatorial optimizationp

186.crafty Chess

197.parser Word processing, grammatical analysis

252.eon Visualization (ray tracing)

253.perlbmk PERL script execution

254.gap Group theory interpreter

255.vortex Object-oriented database

256.bzip2 Compression

300.twolf Place and route simulator

55:132/22C:160 Spring 2010

Jon Kuhl 9

Benchmarks: SPEC CFP2000
Benchmark Description

168.wupwise Physics/Quantum Chromodynamics

171.swim Shallow water modeling

172.mgrid Multi-grid solver: 3D potential field

173.applu Parabolic/elliptic PDE

177.mesa 3-D graphics library

178 l l C t ti l Fl id D i178.galgel Computational Fluid Dynamics

179.art Image Recognition/Neural Networks

183.equake Seismic Wave Propagation Simulation

187.facerec Image processing: face recognition

188.ammp Computational chemistry

189.lucas Number theory/primality testing

191.fma3d Finite-element Crash Simulation

200.sixtrack High energy nuclear physics accelerator
design

301.apsi Meteorology: Pollutant distribution

SPEC2006

Benchmark Pitfalls

• Benchmark not representative
– If your workload is I/O bound, SPECint is

useless

Benchmark is too old• Benchmark is too old
– Benchmarks age poorly; benchmarketing

pressure causes vendors to optimize
compiler/hardware/software to benchmarks

– Need to be periodically refreshed

Benchmark Pitfalls

• Choosing benchmark from the wrong
application space
– e.g., in a realtime environment, choosing gcc

• Choosing benchmarks from no application
space
– e.g., synthetic workloads, esp. unvalidated ones

• Using toy benchmarks (dhrystone,
whetstone)
– e.g., used to prove the value of RISC in early 80’s

• Mismatch of benchmark properties with scale
of features studied
– e.g., using SPECINT for large cache studies

55:132/22C:160 Spring 2010

Jon Kuhl 10

Performance versus cost-performance
The Problem with Peak Performance Metrics(MFLOPS)

Processor Performance
Equation

Processor Performance = ---------------
Time

Program

Instructions Cycles

Program Instruction
Time
Cycle

(code size)

= X X

(CPI) (cycle time)

Scalar to Superscalar

• Scalar processor—Fetches and issues at most
one instruction per machine cycle

• Superscalar processor-- Fetches and issues
multiple instructions per machine cyclemultiple instructions per machine cycle

• Can also define superscalar in terms of how
many instructions can complete execution in a
given machine cycle.

• Note that only a superscalar architecture can
achieve a CPI of less than 1

55:132/22C:160 Spring 2010

Jon Kuhl 11

Processor Performance Equation

Processor Performance = ---------------
Time

Program

Instructions Cycles Time= X X

• In the 1980’s (decade of pipelining):
– CPI: 5.0 => 1.15

• In the 1990’s (decade of superscalar):
– CPI: 1.15 => 0.5 (best case)

Program Instruction Cycle

(code size)

X X

(CPI) (cycle time)

Processor Performance Equation

Time

Program

Instructions Cycles Time

=

X X

Architecture --> Implementation --> Realization

Compiler Designer Processor Designer Chip Designer

Program Instruction Cycle

(code size)

X X

(CPI) (cycle time)

PPE—Considering Power

Watts
Program

Instructions Cycles Time

=X

X

Time

X WattsX

Architecture --> Implementation --> Realization

Compiler Designer Processor Designer Chip Designer

Program Instruction Cycle

(code size)

X

(CPI) (cycle time)

X Watts X

Processor Performance Equation

• Instructions/Program
– Instructions executed, not static code size

– Determined by algorithm, compiler, ISA

• Cycles/Instruction
– Determined by ISA and CPU organization

– Overlap among instructions reduces this term

• Time/cycle
– Determined by technology, organization, clever

circuit design

55:132/22C:160 Spring 2010

Jon Kuhl 12

Overall Goal
• Minimize time, which is the product,

NOT isolated terms

• Common error to miss terms while
devising optimizations

E g ISA change to decrease instruction– E.g. ISA change to decrease instruction
count

– BUT leads to CPU organization which
makes clock slower

• Bottom line: terms are inter-related

• This is the crux of the RISC vs. CISC
argument

PPE Example

• Machine A: clock 1ns, CPI 2.0, for program P

• Machine B: clock 2ns, CPI 1.2, for program P

• Which is faster and how much?
Time/Program = instr/program x cycles/instr x sec/cycleg p g y y

Time(A) = N x 2.0 x 1 = 2N

Time(B) = N x 1.2 x 2 = 2.4N

Compare: Time(B)/Time(A) = 2.4N/2N = 1.2

• So, Machine A is 20% faster than Machine B for
this program

PPE Example

Keep clock(A) @ 1ns and clock(B) @2ns

For equal performance, if CPI(B)=1.2, what
is CPI(A)?

Time(B)/Time(A) = 1 = (Nx2x1.2)/(Nx1xCPI(A))
CPI(A) = 2.4

PPE Example

• Keep CPI(A)=2.0 and CPI(B)=1.2

• For equal performance, if clock(B)=2ns,
what is clock(A)?

Time(B)/Time(A) = 1 = (N x 2.0 x clock(A))/(N x 1.2 x 2)
clock(A) = 1.2ns

55:132/22C:160 Spring 2010

Jon Kuhl 13

Another Example

OP Freq Cycles

ALU 43% 1

Load 21% 1

Store 12% 2

• Assume stores can execute in 1 cycle by
slowing clock 15%

• Should this be implemented?

Branch 24% 2

Example-- Let’s do the math:

• Old CPI = 0 43 + 0 21 + 0 12 x 2 + 0 24 x 2 = 1 36

OP Freq Cycles

ALU 43% 1

Load 21% 1

Store 12% 2

Branch 24% 2

• Old CPI = 0.43 + 0.21 + 0.12 x 2 + 0.24 x 2 = 1.36

• New CPI = 0.43 + 0.21 + 0.12 + 0.24 x 2 = 1.24

• Speedup = old time/new time
= {P x old CPI x T}/{P x new CPI x 1.15 T}

= (1.36)/(1.24 x 1.15) = 0.95

• Answer: Don’t make the change

Amdahl’s Law
(Originally formulated for vector processing)

No. of
Processors

N

1

f1-f

• f = fraction of program that is vectorizable
• (1-f) = fraction that is serial
• N = speedup for vectorizable portion
• Overall speedup:

Time
1

N

f
f

Speedup



)1(

1

Generalization of Amdahl’s Law
(To apply to any processor performance enhancement)

Speedup due
to enhancement

N

Time
1

f1-f

• f = fraction of program that can take
advantage of the enhancement

• (1-f) = fraction that cannot take advantage
• N = speedup for enhanced portion
• Overall speedup:

N

f
f

Speedup



)1(

1

55:132/22C:160 Spring 2010

Jon Kuhl 14

Amdahl’s Law--Continued

• Performance bottleneck

• Even if N is infinite
– Performance limited by non-enhanceable

portion (1 f)portion (1-f)

f
N
f

f
N 




 1

1

1

1
lim

Ramifications of Amdahl’s Law

• Consider: f = 0.9, (1-f) = 0.1
For N  , Speedup  10

• Consider: f = 0.5, (1-f) = 0.5

For N infinity, Speedup  2

• Consider: f – 0.1, (1-f) = 0.9
For N  infinity, Speedup  1.1

Maximum Achievable Speedup

8

10

12

p

0

2

4

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

parallelizable fraction f

S
p

ee
d

u
p

Speedup

Fraction f of program benefitting from performance enhancement

Amdahl’s Law Example

• An enhancement to a processor
architecture is proposed that would
decrease the CPI for floating point multiply
instructions from 20 cycles to 1 cycle (a
speedup of 20) The CPI of all otherspeedup of 20). The CPI of all other
instructions will be unchanged. What will
be the overall processor speedup resulting
from this modification?

55:132/22C:160 Spring 2010

Jon Kuhl 15

Amdahl’s Law Example (continued)

Suppose that, in the original design, floating
point multiplies accounted for 6% of the
total execution time of a “typical program”

Then by Amdahl’s law the speedup due to
the enhanced floating point multiply will be

S =
1

(1 – 0.06) + 0.06/20
= 1.06

Amdahl’s Law Example (continued)

Now suppose that, for a different program,
floating point multiplies account for 60% of
the total execution time in the original
design

Then by Amdahl’s law the speedup due to
the enhanced floating point multiply (for
this particular program) will be

S =
1

(1 – 0.6) + 0.6/20
= 2.33

