1/20/2011

Instruction Set Architecture

e |SA, the boundary between software and hardware

— Specifies the logical machine that is visible to the programmer (or
compiler).

— Also, a functional spec for the processor designers

55:132/22C:160, HPCA . What neets o be specitod by am 16
Sprlng 2011 — Operations

¢ what to perform and what to perform next
— Temporary Operand Storage in the CPU
Second Lecture Slide Set accumulator, stacks, registers
— Number of operands per instruction
— Operand location

¢ where and how to specify the operands
— Type and size of operands

Instruction Set Architecture

— Instruction-to-Binary Encoding

Basic ISA Classification

{a) Stack b)) Accumulator ich Rogist {d) Fogish terioad-slong
Procussor
Stack Architecture (zero operand):
— Operands popped from stack fros)
— Result pushed on stack ——
Accumulator (one operand): Lo
— Special accumulator register is implicit operand w

— Other operand from memory

Register-Memory (two operand):

— One operand from register, other from memory or register

— Generally, one of the source operands is also the destination

— Afew architectures—e.g. VAX, M68000—have allowed mem. to mem. |

operations Memaony

Register-Register or Load/Store (three operand):

— All operands for ALU instructions must be registers

— General format Ry <= R;op R,

— Separate Load and Store instructions for memory access

3007 D . P rmare

1/20/2011

Other Important ISA Considerations Addressing Modes
register: R; displacement M[R; + #n]
* Number of (architected) registers immediate: #n register indirect M[R]
. Addressing modes indexed: M[R; + R}] absolute: M[#n]
) memory indirect: M[M[R{]] auto-increment: M[R]; R, +=d
* Data types/sizes auto-decrement: M[R]; R; -= d
¢ Instruction functionality—simple vs. complex scaled: M[R; + #n + R; * d]
* Branch/jump/subroutine call functionality update: M[R; = R; + #n]
* Exception handling * Modes 1-4 account for 93% of all VAX operands [Clark and
Emer]

¢ Instruction format/size/regularity

* Ftc. * Note: For areview of addressing modes, see Figure B.6 in
Appendix B of the text

VAX Addressing Mode Usage* Percentage of Instructions with Immediate Operand

Memory indirect

B Floating-point average
W Integer average

Scaled

Loads

Register indirect AL operations

25%
43%
Immediate ; :
30%, All instructions
(19 5% 10% 15% 20% 25% 0%
Displacemant 55% 507 P . v e
40%
0% 10% 20% 0% 40% 50% B0%

DEC Alpha Processor, SPEC2000 Benchmarks

Frequency of the addressing mode

3007 Do . 4 rpm rmarac

*Note: Register addressing, not shown, accounts for 50% of operand accesses

1/20/2011

. Size Distribution of immediate Values Operations
- « arithmetic and logical - and, add ...
% « data transfer - move, load, store
0% g < control - branch, jump, call
257 ¢ system - system call, traps
s 20 « floating point - add, mul, div, sqrt
"": e « decimal - addd, convert
. « string - move, compare
. « multimedia? 2D, 3D? e.g., Intel MMX/SSE and Sun VIS

1 E E} 4 5 & T B 9 10 M 12 13 14 18

MNumbar of bits needed for immediate
3607 et o Al rrm e

8-bit field would capture 50% of all immediate values and 12-bit field would capture 80%

. Relative Frequency of Control Instructions
Control Instructions (Branches) auency

Floating-point average

8%
1. Types of Branches Callfreturn B Integer average
A. Conditional or Unconditional
B. Save PC? Jump
C. How is target computed?
¢ Single target (immediate, PC+immediate) a9,
¢ Multiple targets (register) Conditional branch 75%
2. Branch Architectures 0% 25% 50% 75% 100%
A. Condition code or condition registers Frequency of branch instructions

3007 D . P rmare

B. Register
DEC Alpha Processor, SPEC2000 Benchmarks

1/20/2011

of Bits Needed for Branch Displacement

A
N\

10 =

intoger 4
e aveenge] \
o distance i / '\'
¥ / \ Faoating-point average
0% / d A
/ e »
i \:\.

Bits al branch daplacemsent

3907 s . A s e

Save or Restore State

« What state?

« function calls: registers (CISC)

« system calls: registers, flags, PC, PSW, etc
« Hardware need not save registers

« caller can save registers in use

« callee save registers it will use

« Hardware register save

« IBM STM, VAX CALLS

« faster?
« Most recent architectures do no register saving

— Or do implicit register saving with register windows (SPARC)

Instruction Format (encoding)

Operation and | Address Address . » o | Address Address
no. of oparands | spacifier 1 field 1 spacifier n field n
(a) Variable {e.g., Intel 80x86, VAX)
Operation Address Address Address
field 1 field 2 field 3

(b} Fixed (e.g., Alpha, ARM, MIPS, PowerPC, SPARC, SuperH)

Operation Address Address
specifier field

Operation Address Address Address
specifiar 1 specifier 2 fiald

Opaoration Address Address Addross
spacifior fiold 1 field 2

(e} Hybrid {e.g., IBM 360/370, MIPS16, Thumb, Tl TMS320C54x)

0208 i b e et

A CISC ISA—x86 (IA-32)

This ISA was first introduced with the Intel 8086 processor in
1978

Has evolved, with many additions over the years

Main characteristics:

— Reg-mem architecture—ALU instructions can have memory operands
— Two operand format—one source operand is also destination

— Eight general purpose registers

— Seven memory addressing modes

— More than 500 instructions

— Instruction set is non-orthogonal

— Highly variable instruction size and format—instruction size varies
from 1 to 17 bytes.

1/20/2011

X86 Instruction Format

'";’Ifé‘l’.lii‘;" Opcode i ModR/M sie ‘ Displacement ‘ Immediate
Up to four 1 or 2 byte 1 byte 1 byte ~ Address Immediate
prefixes of opcode (if required) (il required) displacement data of
1-byte each of 1,2, 0rd 1.2.0r4
{optional) / \ bytes ornone byles or none
7 65 32 o 7 65 32 4]
| Mod l Ogggée RIM | [Scale | idex | Base |

X86 Addressing Modes

Absolute

Register indirect

Based

Based indexed

Based indexed with displacement

Based with scaled index

Based with scaled index and displacement

Anatomy of a RISC ISA

e Operations
simple ALU op’s, data movement, control transfer
e Temporary Operand Storage in the CPU
Large General Purpose Register (GPR) File
Load/Store Architecture
* Three operands per ALU instruction (all registers)
A<=BopC
e Addressing Modes
Limited addressing modes---e.g. register indirect addressing
¢ Type and size of operands
32/64-bit integers, IEEE floats

¢ Instruction-to-Binary Encoding
Fixed width, regular fields

MIPS ISA

The MIPS ISA was one of the first RISC instruction sets (1985)

Similar to ISAs of other RISC processors: Sun SPARC, HP PA-
RISC,DEC Alpha

Main characteristics

— Load-store architecture

— Three operand format (Ry <= R, op R))

— 32 General Purpose Registers (actually 31)

— Only one addressing mode for memory operands: reg.indirect w. displ.
— Limited, highly orthogonal instruction set: 52 instructions

— Simple branch/jump/subroutine call architecture

1/20/2011

MIPS Instruction Format

lypa instruction

bytos, half woeds, words,

Jurnp register, j

{rd = 0, 5 = e oj

R-type instriction

Jtypa instruction
& 26

Opcada I Offset added 1o PC ‘

The Role of the Compiler

* Phases to manage complexity
Parsing --> intermediate representation
Procedure inlining
Loop Optimizations
Common Sub-Expression
Jump Optimization
Constant Propagation
Register Allocation
Strength Reduction
Pipeline Scheduling
Code Generation --> assembly code

Dynamic-Static Interface*

Program (Software)

Compiler Exposed to

complexity software “Static”
["Architecture DSH |

Hardware Hidden in “Dynamic”

complexity hardware

Machine (Hardware)

¢ Semantic gap between s/w and h/w
¢ Placement of DSI determines how gap is
bridged

*This term comes from Shen and Lipasti

Dynamic-Static Interface

~RISC
e e i vyl HLL Program

7777777777777777777777777777777 Hardware

* Low-level DSI exposes more knowledge of hardware through
the ISA
— Places greater burden on compiler/programmer
¢ Optimized code becomes specific to implementation
— In fact: happens for higher-level DSI also

