Bucknell Verilog Manual

Bucknell Handbook on Verilog HDL

Dr. Daniel C. Hyde
Computer Science Department
Bucknell University
Lewisburg, PA 17837
August 25, 1995

Copyright 1995 Dr. Daniel C. Hyde

Table of Contents

1. 1. Introduction
1. 1.1 WhatisVerilog?
2. 1.2 What isVeriwdl?
3. 1.3Why Use Verilog HDL?
2. 2. The Verilog Language
1. 2.1 A First Verilog Program
2. 2.2 Lexical Conventions
3. 2.3 Program Structure
4. 2.4 Data Types
1. 2.4.1 Physical Data Types
2. 2.4.2 Abstract Data Types
5. 2.5 Operators
1. 2.5.1 Binary Arithmetic Operators
2.5.2 Unary Arithmetic Operators
2.5.3 Relational Operators
2.5.4 Logical Operators
2.5.5 Bitwise Operators
2.5.6 Unary Reduction Operators
2.5.7 Other Operators
8. 2.5.8 Operator Precedence
6. 2.6 Control Constructs
1. 2.6.1 Selection - if and case Statements
2. 2.6.2 Repetition - for, while and repeat Statements
7. 2.7 Other Statements
1. 2.7.1 parameter Statement
2. 2.7.2 Continuous Assignment
3. 2.7.3 Blocking and Non-blocking Procedural Assignments
8. 2.8 Tasks and Functions
. 2.9 Timing Control
1. 2.9.1 Delay Control (#)
2. 2.9.2 Events
3. 2.9.3 Wait Statement
10. 2.10 Traffic Light Example

No gbkwbd

©o

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (1 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

3. 3. Using the Veriwell Simulator
1. 3.1 Creating the Model File

3.2 Starting the Simulator
3.3 How to Exit the Simulator?
3.4 Simulator Options
. 3.5 Debugging
4, 4. System Tasks and Functions
4.1 $cleartrace
4.2 $display
4.3 $finish
4.4 $monitor
4.5 $scope
4.6 Psettrace
4.7 $showscopes
4.8 $showvars
4.9 $stop

10. 4.10 $time
5. References

akrwbd

© oo N U~ WDNRE

1. Introduction

Verilog HDL isaHardware Description Language (HDL). A Hardware Description Language is a language used to
describe a digital system, for example, a computer or a component of a computer. One may describe adigital system at
several levels. For example, an HDL might describe the layout of the wires, resistors and transistors on an | ntegr ated
Circuit (1C) chip, i. e, the switch level. Or, it might describe the logical gates and flip flopsin adigital system, i. e., the
gate level. An even higher level describes the registers and the transfers of vectors of information between registers. Thisis
called the Register Transfer Level (RTL). Verilog supports al of these levels. However, this handout focuses on only the
portions of Verilog which support the RTL level.

1.1 What isVerilog?

Verilog is one of the two magjor Hardware Description Languages (HDL) used by hardware designers in industry and
academia. VHDL isthe other one. The industry is currently split on which is better. Many feel that Verilog is easier to learn
and use than VHDL. As one hardware designer putsit, "1 hope the competition uses VHDL." VHDL was made an |EEE
Standard in 1987, while Verilog is still in the IEEE standardization process. Verilog is very C-like and liked by electrical and
computer engineers as most learn the C language in college. VHDL isvery Ada-like and most engineers have no experience
with Ada.

Verilog was introduced in 1985 by Gateway Design System Corporation, now a part of Cadence Design Systems, Inc.'s
Systems Division. Until May, 1990, with the formation of Open Verilog International (OV1), Verilog HDL was a proprietary
language of Cadence. Cadence was motivated to open the language to the Public Domain with the expectation that the
market for Verilog HDL-related software products would grow more rapidly with broader acceptance of the language.
Cadence realized that Verilog HDL users wanted other software and service companies to embrace the language and develop
Verilog-supported design tools.

Verilog HDL allows a hardware designer to describe designs at a high level of abstraction such as at the architectural or
behavioral level aswell as the lower implementation levels (i. e. , gate and switch levels) leading to Very Large Scale
Integration (VLSI) Integrated Circuits (IC) layouts and chip fabrication. A primary use of HDLsis the simulation of designs
before the designer must commit to fabrication. This handout does not cover all of Verilog HDL but focuses on the use of

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (2 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

Verilog HDL at the architectural or behavioral levels. The handout emphasizes design at the Register Transfer Level (RTL).
1.2 What isVeriwell?

VeriWell is acomprehensive implementation of Verilog HDL from Wellspring Solutions, Inc. VeriWell supports the
Verilog language as specified by the OV language Reference Manual. VeriWell was first introduced in December, 1992,
and was written to be compatible with both the OVI standard and with Cadence's Verilog-XL.

Wellspring offers free versions of their VeriWell product availablefromft p: //iii.net/ pub/ pub-site/
wel | spri ng. Wellspring offers free versions for DOS, Sparc and Linux. The free versions are the same as the industrial
versions except they are restricted to a maximum of 1000 lines of HDL code.

1.3Why UseVerilog HDL ?

Digital systems are highly complex. At their most detailed level, they may consists of millions of elements, i. e., transistors
or logic gates. Therefore, for large digital systems, gate-level design is dead. For many decades, logic schematics served as
the lingua franca of logic design, but not any more. Today, hardware complexity has grown to such a degree that a
schematic with logic gatesis amost useless as it shows only aweb of connectivity and not the functionality of design. Since
the 1970s, Computer engineers and electrical engineers have moved toward hardware description languages (HDLS). The
most prominent modern HDLs in industry are Verilog and VHDL. Verilog is the top HDL used by over 10,000 designers at
such hardware vendors as Sun Microsystems, Apple Computer and Motorola. Industrial designers like Verilog. It works.

The Verilog language provides the digital designer with a means of describing adigital system at awide range of levels of
abstraction, and, at the same time, provides access to computer-aided design tools to aid in the design process at these levels.

Verilog allows hardware designers to express their design with behavioral constructs, deterring the details of
implementation to alater stage of design in the design. An abstract representation helps the designer explore architectural
aternatives through simulations and to detect design bottlenecks before detailed design begins.

Though the behavioral level of Verilog isahigh level description of adigital system, it isstill a precise notation. Computer
aided design toals, i. e., programs, exist which will "compile" programs in the Verilog notation to the level of circuits
consisting of logic gates and flip flops. One could then go to the lab and wire up the logical circuits and have a functioning
system. And, other tools can "compile" programsin Verilog notation to a description of the integrated circuit masks for very
large scaleintegration (VLSI). Therefore, with the proper automated tools, one can create a VL SI description of adesignin
Verilog and send the VL SI description via electronic mail to asilicon foundry in California and receive the integrated chip
in afew weeks by way of snail mail. Verilog aso allows the designer to specific designs at the logical gate level using gate
constructs and the transistor level using switch constructs.

Our goal in the courseis not to create VLS| chips but to use Verilog to precisely describe the functionality of any digital
system, for example, a computer. However, aVLSI chip designed by way of Verilog's behavioral constructs will be rather
slow and be wasteful of chip area. The lower levelsin Verilog allow engineers to optimize the logical circuitsand VLS
layouts to maximize speed and minimize area of the VLSI chip.

2. TheVerilog Language

Thereis no attempt in this handout to describe the complete Verilog language. It describes only the portions of the language
needed to allow students to explore the architectural aspects of computers. In fact, this handout covers only a small fraction
of the language. For the complete description of the Verilog HDL, consult the references at the end of the handout.

We begin our study of the Verilog language by looking at a simple Verilog program. Looking at the assignment statements,

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (3 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

we notice that the language is very C-like. Comments have a C++ flavor, i e., they are shown by "//" to the end of theline.
The Verilog language describes a digital system as a set of modules, but here we have only a single module called "simple"”.

2.1 A First Verilog Program

/1 By Dan Hyde; August 9, 1995
[1A first digital nodel in Verilog

nmodul e si npl e;

/'l Sinple Register Transfer Level (RTL) exanple to deno Veril og.

/'l The register Ais increnented by one. Then first four bits of Bis
/1l set to "not" of the last four bits of A Cis the "and" reduction
/1l of the last two bits of A

[l declare registers and flip-flops
reg [0:7] A B;
reg G

/1 The two "initial"s and "always” will run concurrently
initial begin: stop_at
/1 WIIl stop the execution after 20 sinulation units.
#20; $stop;
end

/'l These statenents done at sinulation tine O (since no #k)

initial begin: Init
/1 Initialize the register AL The other registers have val ues of "x"
A= 0;

/1 Display a header
$display("Time A B c');

[l Prints the values anytine a value of A B or C changes
$nmonitor (" 9%d % % %", $time, A B, O);
end

[/ main_process will loop until simulation is over
al ways begi n: mai n_process

/1 #1 neans do after one unit of sinulation tine
#1 A = A + 1;

#1 B[0:3] = ~Al4:7]; I/ ~is bitwise "not" operator

#1 C = &A 6: 7]; /1l bitw se "and" reduction of last two bits
of A
end
endnodul e

Inmodul e si npl e, we declared A and B as 8-bit registers and C a 1-bit register or flip-flop. Inside of the module, the
one"al ways" andtwo "i ni ti al " constructs describe three threads of contral, i. e., they run at the same time or

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (4 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

concurrently. Withinthei ni ti al construct, statements are executed sequentially much like in C or other traditional
imperative programming languages. The al ways construct isthe same asthei ni ti al construct except that it loops
forever aslong as the ssmulation runs.

The notation #1 means to execute the statement after delay of one unit of simulated time. Therefore, the thread of control
caused by thefirsti ni ti al construct will delay for 20 time units before calling the system task $st op and stop the
simulation.

The $di spl ay system task allows the designer to print a message much like pri nt f doesin the language C. Every time
unit that one of the listed variables value changes, the $noni t or system task prints a message. The system function
$t i me returnsthe current value of simulated time.

Below isthe output of the VeriWell Simulator: (See Section 3 on how to use the Veriwell simulator.)

Ti me

O©OCoOoO~NODM~WNPEO

19
St op

A
00000000
00000001
00000001
00000001
00000010
00000010
00000011
00000011
00000011

00000100
00000100
00000100
00000101
00000101
00000110
00000110
00000111

B
XXX XXXXX
XXX XXXXX
1110xXXX
1110xxXXX
1110xXXXx
1101xxxx
1101xxxx
1100xxXXxXx
1100xxxx
1100xxxXx
1011xxxXx
1011xxXXX
1011xxXXX
1010xxXXxX
1010xxXXxX
1001xxxXx
1001xxxXx

RPOOOOOX X X (O

oNoNoNolNolNoll o

at sinmulation tine 20

Y ou should carefully study the program and its output before going on. The structure of the program istypical of the Verilog
programs you will write for thiscourse, i. e., ani ni ti al construct to specify the length of the simulation, another

i ni tial construct toinitialize registers and specify which registers to monitor and an al ways construct for the digital
system you are modeling. Notice that all the statementsin the secondi ni ti al are done at time = 0, since there are no
delay statements, i. e., #<integer>.

2.2 Lexical Conventions

The lexical conventions are close to the programming language C++. Comments are designated by / / to the end of aline or
by / * to*/ acrosssevera lines. Keywords, e. g., nodul e, arereserved and in all lower case letters. The language is case
sensitive, meaning upper and lower case letters are different. Spaces are important in that they delimit tokensin the

language.

Numbers are specified in the traditional form of a series of digits with or without a sign but also in the following form:

<si ze>

<base f or mat ><nunber >

http://xputers.informatik.uni-kl.de/hdl-tutoria s/verilog/verilog-manual .html (5 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

where <size> contains decimal digits that specify the size of the constant in the number of bits. The <size> isoptional. The
<base format> is the single character ' followed by one of the following characters b, d, o and h, which stand for binary,
decimal, octal and hex, respectively. The <number> part contains digits which are legal for the <base for mat>. Some
examples:

549 /'l deci mal nunber

"h 8FF // hex nunber

' 0765 /'l octal nunber

4'bll /1l 4-bit binary nunber 0011

3'b10x // 3-bit binary nunber with | east significant bit unknown
5'd3 /1l 5-bit decimal nunber

-4'"b11 // 4-bit two's conplenent of 0011 or 1101

The <nunber > part may not contain asign. Any sign must go on the front.
A string is a sequence of characters enclosed in double quotes.
"this is a string”
Operators are one, two or three characters and are used in expressions. See Section 2.5 for the operators.

Anidentifier is specified by aletter or underscore followed by zero or more letters, digits, dollar signs and underscores.
|dentifiers can be up to 1024 characters.

2.3 Program Structure

The Verilog language describes a digital system as a set of modules. Each of these modules has an interface to other modules
to describe how they are interconnected. Usually we place one module per file but that is not a requirement. The modules
may run concurrently, but usually we have one top level module which specifies a closed system containing both test data
and hardware models. The top level module invokes instances of other modules.

Modules can represent bits of hardware ranging from simple gates to complete systems, e. g., amicroprocessor. Modules can
either be specified behaviorally or structurally (or a combination of the two). A behavioral specification defines the
behavior of adigital system (module) using traditional programming language constructs, e. g., ifs, assignment statements. A
structural specification expresses the behavior of adigital system (module) as a hierarchical interconnection of sub
modules. At the bottom of the hierarchy the components must be primitives or specified behaviorally. Verilog primitives
include gates, e. g., nand, as well as pass transistors (switches).

The structure of amodule is the following:

nodul e <nmodul e name> (<port |ist>);
<decl ar es>

<nodul e itens>

endnodul e

The <module name> is an identifier that uniquely names the module. The <port list> isalist of input, inout and output
ports which are used to connect to other modules. The <declar es> section specifies data objects as registers, memories and
wires as wells as procedural constructs such as functions and tasks.

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (6 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

The <moduleitems> may bei ni ti al constructs, al ways constructs, continuous assignments or instances of modules.
Hereis abehavior specification of amodule NAND. The output out isthe not of the and of theinputsinl and in2.

/'l Behavi oral Mdel of a Nand gate

/1 By Dan Hyde, August 9, 1995

modul e NAND(i nl, in2, out);

i nput inl, in2;

out put out;
/1l continuous assign statenent
assign out = ~(inl & in2);
endnodul e

The portsinl, in2 and out are labels on wires. The continuous assignment assign continuously watches for changesto
variablesin its right hand side and whenever that happens the right hand side is re-evaluated and the result immediately
propagated to the left hand side (out).

The continuous assignment statement is used to model combinational cir cuits where the outputs change when one wiggles
the input.

Hereisastructura specification of amodule AND obtained by connecting the output of one NAND to both inputs of
another one.

nmodul e AND(i nl, in2, out);
[l Structural nodel of AND gate from two NANDS
i nput inl, in2;
out put out;
wre wi;
// two instances of the nodul e NAND
NAND NAND1(inl, in2, wl);
NAND NAND2(wl, wl, out);

endnodul e

This module has two instances of the NAND module called NAND1 and NAND2 connected together by an internal wire
wl.

The general form to invoke an instance of amoduleis:
<nmodul e nanme> <paraneter |ist> <instance name> (<port list>);

where <parameter list> are values of parameters passed to the instance. An example parameter passed would be the delay
for agate.

The following module is a high level module which sets some test data and sets up the monitoring of variables.

nmodul e test AND,
/1l Hi gh level nodule to test the two ot her nodul es

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (7 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

reg a, b;
W re outl, out?2;

initial begin // Test data
a=0;, b=0;

#1 a = 1;

#1 b = 1;

#1 a = 0O;
end

initial begin // Set up nonitoring
$noni tor ("Ti ne=%d a=% b=% out 1=%% out 2=%",
$tine, a, b, outl, out2);
end
/'l Instances of nmodul es AND and NAND
AND gatel(a, b, out2);
NAND gate2(a, b, outl);

endnodul e

Notice that we need to hold the values a and b over time. Therefore, we had to use 1-bit registers. reg variables store the last
value that was procedurally assigned to them (just like variables in traditional imperative programming languages). wires
have no storage capacity. They can be continuoudly driven, e. g., with acontinuous assi gn statement or by the output of a
module, or if input wires are left unconnected, they get the special value of x for unknown.

Continuous assignments use the keyword assign whereas procedural assignments have the form <reg variable> =
<expression> where the <reg variable> must be aregister or memory. Procedural assignment may only appear in
i nitial andal ways constructs.

The statements in the block of thefirsti ni ti al construct will be executed sequentially, some of which are delayed by #1,
i. e, oneunit of smulated time. The al ways construct behaves the same asthei ni t i al construct except that it loops
forever (until the simulation stops). Thei ni ti al and al ways constructs are used to model sequential logic (i. e., finite
state automata).

Verilog makes an important distinction between procedural assignment and the continuous assignment assi gn . Procedural
assignment changes the state of aregister, i. e., sequential logic, whereas the continuous statement is used to model
combinational logic. Continuous assignments drivewi r e variables and are evaluated and updated whenever an input
operand changes value. It isimportant to understand and remember the difference.

We place all three modulesin afile and run the simulator to produce the following output.

Time=0 a=0 b=0 out 1=1 out 2=0
Ti me=1 a=1 b=0 out 1=1 out 2=0
Time=2 a=1 b=1 out 1=0 out2=1
Ti me=3 a=0 b=1 out 1=1 out 2=0

Since the simulator ran out of events, | didn't need to explicit stop the simulation.

2.4 Data Types

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (8 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

2.4.1 Physical Data Types

Since the purpose of Verilog HDL isto model digital hardware, the primary data types are for modeling registers (r eg) and
wires (W r e). Ther eg variables store the last value that was procedurally assigned to them whereasthewi r e variables
represent physical connections between structural entities such as gates. A wi r e does not storeavalue. A wi r e variableis
really only alabel on awire. (Note that thewi r e datatypeisonly one of several net datatypesin Verilog HDL which
include wired and (wand), wired or (wor) and tristate bus (t r i). This handout is restricted to only thewi r e datatype.)

Ther eg andw r e data objects may have the following possible values:

| ogi cal zero or false

| ogi cal one or true

unknown | ogi cal val ue

hi gh i npedance of tristate gate

N X b O

Ther eg variables areinitialized to x at the start of the simulation. Any wi r e variable not connected to something has the x
value.

Y ou may specify the size of aregister or wire in the declaration For example, the declarations

reg [0:7] A B;
wire [0:3] Dataout;
reg [7:0] G

specify registers A and B to be 8-bit wide with the most significant bit the zeroth bit, whereas the most significant bit of
register C isbit seven. The wire Dataout is 4 bits wide.

The bitsin aregister or wire can be referenced by the notation [<start-bit>:<end-bit>].
For example, in the second procedural assignment statement

initial begin: intl

A = 8'b01011010;

B={AO0:3 | A4:7], 4 b0000};
end

B is set to the first four bits of A bitwise or-ed with the last four bits of A and then concatenated with 0000. B now holds a
value of 11110000. The {} brackets means the bits of the two or more arguments separated by commas are concatenated
together.

The range referencing in an expression must have constant expression indices. However, asingle bit may be referenced by a
variable. For example:

reg [0:7] A B;

B = 3
A[0: B] = 3'bl11; // I1LLEGAL - indices MJIST be constant!!
A[B] = 1'bl; /'l A single bit reference is LEGAL

Why such a strict requirement of constant indicesin register references? Since we are describing hardware, we want only
expressions which are realizable.

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (9 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

Memories are specified as vectors of registers. For example, Mem is 1K words each 32-bits.
reg [31:0] Mem [0:1023];

The notation M em[0] references the zeroth word of memory. The array index for memory (register vector) may be aregister.
Notice that one can not reference at the bit-level of amemory in Verilog HDL. If you want a specific range of bitsin aword
of memory, you must first transfer the data in the word to atemporary register.

2.4.2 Abstract Data Types

In addition to modeling hardware, there are other uses for variables in a hardware model. For example, the designer might
want to use ani nt eger variable to count the number of times an event occurs. For the convenience of the designer,
Verilog HDL has several data types which do not have a corresponding hardware realization. These data types include

i nt eger,real andti me. Thedatatypesi nt eger andr eal behave pretty much asin other languages, e. g., C. Be
warned that ar eg variableisunsigned and that ani nt eger variableisasigned 32-bit integer. This has important
consequences when you subtract.

t i me variables hold 64-bit quantities and are used in conjunction with the $t i me system function. Arraysof i nt eger and
t i me variables (but not reals) are allowed. Multiple dimensional arrays are not allowed in Verilog HDL. Some examples:

i nt eger Count; /'l sinple 32-bit integer

i nteger K[1:64]; /1l an array of 64 integers

time Start, Stop; // Two 64-bit time variables
2.5 Operators

2.5.1 Binary Arithmetic Operators

Binary arithmetic operators operate on two operands. Register and net (wire) operands are treated as unsigned. However,
real and integer operands may be signed. If any bit is unknown ('x") then result is unknown.

Oper at or Nane Comment s
+ Addi tion
- Subtracti on
* Mul ti plication
/ Di vi si on Di vide by zero produces an X.
% Modul us

2.5.2 Unary Arithmetic Operators

Oper at or Nane Comment s
- Unary M nus Changes sign of its operand.

2.5.3 Relational Operators

Relational operators compare two operands and return alogical value, i. e., TRUE(1) or FALSE(0). If any bit is unknown,
the relation is ambiguous and the result is unknown.

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (10 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

Oper at or Nane Comrent s
> G eater than
>= Greater than or equal
< Less than
<= Less than or equal

== Logical equality
= Logical inequality

2.5.4 Logical Operators

Logical operators operate on logical operands and return alogical value, i. e., TRUE(1) or FALSE(0). Used typically inif
and while statements. Do not confuse logical operators with the bitwise Boolean operators. For example, ! isalogical NOT
and ~ isabitwise NOT. Thefirst negates, e. g., !(5 == 6) is TRUE. The second complements the bits, e. g., ~{1,0,1,1} is
0100.

Oper at or Nanme Comment s
! Logi cal negati on

&& Logi cal AND

| | Logi cal OR

2.5.5 Bitwise Operators

Bitwise operators operate on the bits of the operand or operands. For example, the result of A & B isthe AND of each
corresponding bit of A with B. Operating on an unknown (x) bit results in the expected value. For example, the AND of an x
withaFALSE isan x. The OR of an x witha TRUE isa TRUE.

Qper at or Nane Comment s

~ Bi t wi se negation

& Bitwi se AND

| Bitwi se OR

A Bitwi se XOR

~& Bi t wi se NAND

~| Bi twi se NOR

~N or "~ Equival ence Bi t wi se NOT XOR

2.5.6 Unary Reduction Operators

Unary reduction operators produce a single bit result from applying the operator to all of the bits of the operand. For
example, & A will AND all the bits of A.

Qper at or Nanme Comment s
& AND r educti on

| OR reduction

N XOR reduction

~& NAND r educti on

~ NOR reducti on

~N XNOR reduction

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (11 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

2.5.7 Other Operators
The conditional operator operates much like in the language C.

Oper at or Nane Comment s

=== Case equality The bitw se conparison includes conparison of x and z
values. Al bits nust match for equality. Returns TRUE
or FALSE

== Case inequality The bitw se conparison includes conparison of x and z
values. Any bit difference produces inequality. Returns
TRUE or FALSE

{ ., } Concat enati on Joins bits together with 2 or nore comma-separat ed

expr essi ons,
e, g. {AI0], B[1:7]} concatenates the zeroth bit of Ato
bits 1 to 7 of B.

<< Shift left Vacated bit positions are filled with zeros,

e. g., A=A << 2; shifts Atw bits to left with zero fill.
>> Shift right Vacated bit positions are filled with zeros.
?: Condi ti onal Assi gns one of two val ues depending on the conditional

expression. E g., A=CD? B+3 : B-2 neans
if Cgreater than D, the value of Ais B+3 otherw se B-2.

2.5.8 Operator Precedence

The precedence of operators is shown below. The top of the table is the highest precedence and the bottom is the lowest.
Operators on the same line have the same precedence and associate left to right in an expression. Parentheses can be used to
change the precedence or clarify the situation. We strongly urge you to use parentheses to improve readability.

unary operators: ! & ~& | ~ ~ ~~ + - (hi ghest precedence)

2.6 Control Constructs

Verilog HDL has arich collection of control statements which can used in the procedural sections of code, i. e., within an

i nitial oral ways block. Most of them will be familiar to the programmer of traditional programming languages like C.
The main differenceisinstead of C's{ } brackets, Verilog HDL usesbegi n and end. In Verilog, the{ } brackets are used
for concatenation of bit strings. Since most users are familiar with C, the following subsections typically show only an
example of each construct.

2.6.1 Selection -i f and case Statements

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (12 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

Theif statement is easy to use.

if (A== 4)
begi n
B = 2;
end
el se
begi n
B = 4;
end

Unlike the case statement in C, the first <value> that matches the value of the <expression> is selected and the associated
statement is executed then control is transferred to after theendcase, i. e, no br eak statements are needed asin C.

case (<expression>)
<val uel>: <statenent>
<val ue2>: <st atenent >
defaul t: <statenent>
endcase

The following example checks a 1-bit signal for its value.

case (sigQ)
1'bz: $display("Signal is floating");
1' bx: $display("Signal is unknown");
default: $display("Signal is %", sig);
endcase

2.6.2 Repetition - f or ,whi | e and r epeat Statements

Thef or statementisvery closeto C'sf or statement except that the ++ and -- operators do not exist in Verilog. Therefore,
weneedtousei =i+ 1.

for(i =0; i <10; i =i + 1)
begi n
$di splay("i= %0d", i);
end

Thewhi | e statement actsin the normal fashion.

i = 0;
while(i < 10)
begi n
$di splay("i= 9%d", i);
i =i + 1
end

Ther epeat statement repeats the following block afixed number of times, in this example, five times.
repeat (5)

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (13 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

begi n
$di splay("i= %®d", i);
i =i + 1

end

2.7 Other Statements
2.7.1 parameter Statement

The parameter statement allows the designer to give a constant a name. Typical uses are to specify width of registers and
delays. For example, the following allows the designer to parameterized the declarations of a model.

par aneter byte size = 8;
reg [byte size - 1:0] A B;
2.7.2 Continuous Assignment

Continuous assignments drive wi r e variables and are evaluated and updated whenever an input operand changes value. The
following ands the values on the wiresinl and in2 and drives the wire out. The keyword assi gn isused to distinguish the
continuous assignment from the procedural assignment. See Section 2.3 for more discussion on continuous assignment.

assign out = ~(inl & in2);
2.7.3 Blocking and Non-blocking Procedural Assignments

The Verilog language has two forms of the procedural assignment statement: blocking and non-blocking. The two are
distinguished by the = and <= assignment operators. The blocking assignment statement (= operator) acts much like in
traditional programming languages. The whole statement is done before control passes on to the next statement. The non-
blocking (<= operator) evaluates al the right-hand sides for the current time unit and assigns the left-hand sides at the end of
the time unit. For example, the following Verilog program

/'l testing blocking and non-bl ocki ng assi gnnent
nodul e bl ocki ng;

reg [0:7] A B

initial begin: initl

A = 3;

#1 A = A + 1; /'l bl ocki ng procedural assignnent
B=A+1;
$di spl ay(" Bl ocki ng: A= % B= %", A B);

A= 3;

#1 A <= A+ 1; [/ non-blocking procedural assignnent
B <= A+ 1;

#1 $di spl ay("Non-bl ocking: A= % B= %", A B);
end

endnodul e

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (14 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

produces the following output:

Bl ocki ng: A= 00000100 B= 00000101
Non- bl ocki ng: A= 00000100 B= 00000100

The effect isfor all the non-blocking assignments to use the old values of the variables at the beginning of the current time
unit and to assign the registers new values at the end of the current time unit. This reflects how register transfers occur in
some hardware systems.

2.8 Tasks and Functions

Tasks are like procedures in other programming languages, e. g., tasks may have zero or more arguments and do not return a
value. Functions act like function subprograms in other languages. Except:

1. A Verilog function must execute during one simulation time unit. That is, no time controlling statements, i. e., no delay
control (#), no event control (@) or wai t statements, allowed. A task can contain time controlled statements.

2. A Verilog function can not invoke (call, enable) atask; whereas atask may call other tasks and functions.
The definition of atask isthe following:

task <task nane>; /1 Notice: no list inside ()s
<ar gunment ports>
<decl arati ons>
<st at enent s>

endt ask

An invocation of atask is of the following form:
<nane of task> (<port list>);

where <port list> isalist of expressions which correspond to the <argument ports> of the definition. Port argumentsin the
definition may bei nput , i nout or out put . Since the <argument ports> in the task definition look like declarations, the
programmer must be careful in adding declares at the beginning of atask.

[l Testing tasks and functions
/1l Dan Hyde, Aug 28, 1995
nmodul e t asks;

task add, [l task definition
i nput a, b; /1 two input argunment ports
out put c; /1 one output argunent port
reg R /'l register declaration
begi n
R =1;
if (a == b)
c=1&R
el se
c =0
end

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (15 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

endt ask

initial begin: initl
reg p;
add(1, 0, p); // invocation of task with 3 argunents
$di spl ay("p= %", p);

end

endnodul e

i nput andi nout parameters are passed by value to the task and out put andi nout parametersare passed back to
invocation by value on return. Call by reference is not available.

Allocation of all variablesis static. Therefore, atask may call itself but each invocation of the task uses the same storage, i.
e., the local variables are not pushed on a stack. Since concurrent threads may invoke the same task, the programmer must be
aware of the static nature of storage and avoid unwanted overwriting of shared storage space.

The purpose of afunction isto return avalue that is to be used in an expression. A function definition must contain at least
onei nput argument. The passing of arguments in functions is the same as with tasks (see above). The definition of a
function is the following:

function <range or type> <function nane>; // Notice: no list inside ()s
<argunent ports>
<decl arati ons>
<st at enent s>

endf uncti on

where <range or type> isthetype of the results passed back to the expression where the function was called. Inside the
function, one must assign the function name avalue. Below is afunction which is similar to the task above.

/1l Testing functions
/1 Dan Hyde, Aug 28, 1995
nodul e functi ons;

function [1:1] add2; // function definition

i nput a, b; /1 two input argunent ports
reg R /'l register declaration
begi n
R =1;
if (a == b)
add2 =1 &R
el se
add2 = 0;
end

endf uncti on

initial begin: initl
reg p;
p = add2(1, 0); // invocation of function with 2 argunents
$di splay("p= %", p);

end

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (16 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

endnodul e
2.9 Timing Control

The Verilog language provides two types of explicit timing control over when simulation time procedural statements are to
occur. Thefirst typeisadelay control in which an expression specifies the time duration between initially encountering the
statement and when the statement actually executes. The second type of timing control is the event expression, which
allows statement execution. The third subsection describes thewai t statement which waits for a specific variable to change.

Verilog isadiscrete event time simulator, i. e., events are scheduled for discrete times and placed on an ordered-by-time
wait queue. The earliest events are at the front of the wait queue and the later events are behind them. The simulator removes
all the events for the current smulation time and processes them. During the processing, more events may be created and
placed in the proper place in the queue for later processing. When all the events of the current time have been processed, the
simulator advances time and processes the next events at the front of the queue.

If there is no timing control, simulation time does not advance. Simulated time can only progress by one of the following:

1. gate or wire delay, if specified.

2. a delay control, introduced by the # synbol.

3. an event control, introduced by the @synbol.

4. the wait statenent.
The order of execution of eventsin the same clock time may not be predictable.
2.9.1 Delay Control (#)

A delay control expression specifies the time duration between initially encountering the statement and when the statement
actually executes. For example:

#10 A= A+ 1;

specifiesto delay 10 time units before executing the procedural assignment statement. The # may be followed by an
expression with variables.

2.9.2 Events

The execution of a procedural statement can be triggered with a value change on awire or register, or the occurrence of a
named event. Some examples:

@ begin /'l controlled by any value change in
A = B&C /'l the register r
end

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (17 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

@ posedge cl ock2) A = B&GC; /'l controlled by positive edge of clock2

@ negedge cl ock3) A = B&GC; /'l controlled by negative edge of clock3

forever @negedge cl ock) /'l controlled by negative edge
begi n

A = B&C
end

In the forms using posedge and negedge, they must be followed by a 1-bit expression, typically aclock. A negedge is
detected on the transition from 1 to O (or unknown). A posedge is detected on the transition from 0 to 1 (or unknown).

Verilog also provides features to name an event and then to trigger the occurrence of that event. We must first declare the
event:

event event 6;
To trigger the event, we use the -> symbol :
-> event 6;
To control ablock of code, we use the @symbol as shown:
@event6) begin
<sone procedural code>

end

We assume that the event occurs in one thread of control, i. e., concurrently, and the controlled code is in another thread.
Several events may to or-ed inside the parentheses.

2.9.3 Wait Statement
Thewai t statement alows a procedural statement or ablock to be delayed until a condition becomes true.
wait (A == 3)
begi n
A = B&GC

end

The difference between the behavior of awai t statement and an event isthat thewai t statement islevel sensitive whereas
@ posedge cl ock) ; istriggered by asignal transition or is edge sensitive.

2.10 Traffic Light Example
To demonstrate tasks as well as events, we will show a hardware model of atraffic light.

/1 Digital nodel of a traffic |ight
/1 By Dan Hyde August 10, 1995

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (18 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

nodul e traffic;

paranmeter on =1, off =0, red_tics = 35,
anber _tics = 3, green_tics = 20;

reg clock, red, anber, green;

[l will stop the sinmulation after 1000 tinme units
initial begin: stop_at

#1000; $stop;
end

/1 initialize the lights and set up nonitoring of registers
initial begin: Init

red = of f; anmber = off; green = off;

$di spl ay(" Time green anber red");

$noni t or (" %3d % % %", $tine, green, anber, red);
end

/1l task to wait for '"tics' positive edge cl ocks
/'l before turning light off
task light;
out put col or;
i nput [31:0] tics;
begi n
repeat (tics) // wait to detect tics positive edges on clock
@ posedge cl ock);
color = off;
end
endt ask

/1 waveform for clock period of 2 tine units
al ways begi n: cl ock_wave

#1 cl ock 0;
#1 cl ock 1;
end

al ways begi n: nmai n_process
red = on;
light(red, red_tics); [// call task to wait
green = on;
light(green, green_tics);
anber = on;
I'i ght (anber, anber_tics);
end

endnodul e
The output of the traffic light simulator is the following:

Ti me green anber red
0 0 0 1
70 1 0 0

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (19 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

110 0 1 0
116 0 0 1
186 1 0 0
226 0 1 0
232 0 0 1
302 1 0 0
342 0 1 0
348 0 0 1
418 1 0 0
458 0 1 0
464 0 0 1
534 1 0 0
574 0 1 0
580 0 0 1
650 1 0 0
690 0 1 0
696 0 0 1
766 1 0 0
806 0 1 0
812 0 0 1
882 1 0 0
922 0 1 0
928 0 0 1
998 1 0 0

Stop at sinulation tine 1000

3. Usingthe Veriwell Simulator

3.1 Creating the Model File

Enter the Verilog code using your favorite editor. We recommend that you use ".v" as the extension on the source file.
3.2 Starting the Simulator

VeriwWell isrun from the UNIX shell window. Type "veriwell" followed by the names of the files containing the models and
the options. The options can appear in any order and anywhere on the command line. For example:

host - nane% veriwel |l cpu.v bus.v top.v -s

Thiswill load each of the filesinto memory, compile them, and enter interactive mode. Removing the "-s" option would
cause the simulation to begin immediately. Options are processed in the order that they appear on the command line. Files
are processed in the order that they appear after the options are processed.

3.3 How to Exit the Simulator ?
To exit the simulator, you can type $f i ni sh; or press Control-d.
To stop the simulation, you press Control-c. Executing a$st op system task in the code will also stop the simulation.

3.4 Simulator Options

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (20 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

Commonly used options typed on the command line are shown below. One should consult the VeriWell User's Guide for the
others.

-i <inputfil enane>

Specifies afile that contains interactive commands to be executed as soon as interactive command mode is entered. This
option should be used with the "-s" option. This can be used to initialize variables and set time limits on the simulation.

-s
Causes interactive mode to be entered before the simulation begins.
-t
Causes all statements to be traced. Trace mode may be disabled with the $cl ear t r ace system task.
3.5 Debugging Using VeriWell's Interactive Mode

Veriwell isinteractive. Once invoked, the simulation can be controlled with simple commands. Also, VeriWell accepts any
Verilog statement (but new modules or declarations cannot be added).

Interactive mode is entered in one of three ways:

1). When the "-s" option is used on the command line (or in acommand file), interactive mode is entered before the
simulation begins,

2). When the simulation encounters the $st op system task, or,
3). When the user types Control-c during simulation (but not during compilation).
I nter active Commands

Continue ('.') [period]
Resune execution fromthe current |ocation.

Single-step with trace (',') [conma]
Execute a single statenent and display the trace for that statenent.

Single-step without trace (';"') [sem col on]
Execute a single statenment w thout trace.

Current location (":") [colon]
Di splay the current | ocation.

Control -d or $finish;
Exit VeriWell sinulator.

Typicaly, the kinds of Verilog statements executed interactively are used for debugging and information-gathering.
$di spl ay and $showar s can betyped at the interactive prompt to show the values of variables. Notice the complete

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (21 of 26)9/12/2006 12:45:58 PM

http://xputers.informatik.uni-kl.de/hdl-tutorials/verilog/veriwell-users-manual.html

Bucknell Verilog Manual

system task statement must be typed including parameters and semicolon. $scope(<nane>) ; and $showscopes; can
be typed to traverse the model hierarchy. $set t race; and $cl eartrace; will enter and exit trace mode. Typing
"#100; $st op; " will stop the execution after 100 simulation units.

4. System Tasks and Functions

System tasks are not part of the Verilog language but are build-in tasks contained in alibrary. A few of the more commonly
used one are described below. The Verilog Language Reference Manual has many more.

41%cl eartrace

The $cl ear t r ace system task turns off the trace. See $set t r ace system task to set the trace.
$cl eartrace;

4.2 $di spl ay

Displays text to the screen much likethe pri nt f statement from the language C. The general formis

$di spl ay(<par aneter>, <paranmeter>, ... <paraneter>);

where <parameter > may be a quoted string, an expression that returns avalue or anull parameter. For example, the
following displays a header.

$di spl ay(" Regi sters: A B C);

The special character % indicates that the next character is aformat specification. For each % character that appearsin the
string, a corresponding expression must be supplied after the string. For example, the following prints the value of A in
binary, octal, decimal and hex.

$di splay("A=% binary % octal % deci mal % hex", A A A A ;
produces the following output
A=00001111 binary 017 octal 15 deciml Of hex

The commonly used format specifiers are

% di splay in binary fornat

% di splay in ASCI I character fornmat
%l di splay in decinmal fornat

% di splay in hex format

%0 di splay in octal format

s di splay in string fornat

A 0 between the % and format specifier allocates the exact number of characters required to display the expression resullt,
instead of the expression's largest possible value (the default). For example, thisis useful for displaying the time as shown by

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (22 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

the difference between the following two $di spl ay statements.

$di spl ay("Ti me
$di spl ay("Ti me

= 9", $tine);
= 99d", $tine);

produces the following output

Ti me
Ti nme

1

Escape sequences may be included in a string. The commonly used escape sequences are the following:

\'n t he newl i ne character
\ 't the tab character

\\ the \ character

\ " the " character

9o t he percent sign

A null parameter produces a single space character in the display. A null parameter is characterized by two adjacent commas
in the parameter list.

Note that $di spl ay automatically adds a newline character to the end of its output. See $wr i t e in Verilog Language
Reference Manual if you don't want anewline.

43%fini sh

The $f i ni sh system task exits the simulator to the host operating system. Don't forget to type the semicolon whilein
interactive mode.

$fini sh;

4.4 $noni t or
The $noni t or system task provides the ability to monitor and display the values of any variable or expression specified as
parameters to the task. The parameters are specified in exactly the same manner asthe $di spl ay system task. When you
invoke the $noni t or task, the simulator sets up a mechanism whereby each time a variable or an expression in the
parameter list changes value, with the exception of $t i ne, the entire parameter list is displayed at the end of the time step
asif reported by the $di spl ay task. If two or more parameters change values at the same time, however, only one display
is produced. For example, the following will display aline anytime one of the registers A, B or C changes.

$nonitor (" %d % % "%, $time, A B, O);
Only one $noni t or statement may be active at any one time. The monitoring may be turned off and on by the following:

$noni t or of f;

<sone code>

$noni t or on;

4.5 $scope

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (23 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

The $scope system task lets the user assign a particular level of hierarchy as the interactive scope for identifying objects.
$scope isuseful during debugging as the user may change the scope to inspect the values of variablesin different modules,
tasks and functions.

$scope(<nane>);

The <name> parameter must be the complete hierarchical name of a module, task, function or named block. See
$showscopes system task to display the names.

46%settrace

The $set t r ace system task enables tracing of simulation activity. The trace consists of various information, including the
current ssmulation time, the line number, the file name, module and any results from executing the statement.

$settrace;
Y ou can turn off the trace using the $cl ear t r ace system task.
4.7 $showscopes

The $showscopes system task displays a complete lists of al the modules, tasks, functions and named blocks that are
defined at the current scope level.

$showscopes;

4.8
$showars

The $showars systemtask produces status information for
regi ster and net (wires) variables, both scalar and vector. Wen invoked
wi t hout paraneters, $showars displays the status of all
variables in the current scope. Wen invoked with a list of variables, it
shows only the status of the specified variables.

$showar s;
$showars(<list of variables>);

4.9
$st op

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (24 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

The $stop systemtask puts the simulator into
a halt node, issues an interactive command pronpt and passes control to the
user. See Section 3.5 on using VeriWll's interactive node.

$st op;

4.10
$time

The $tinme system function returns the current sinmulation tine
as a 64-bit integer. $tinme nust be used in an expression.

Ref er ences

1. Cadence Design Systens, Inc., Verilog-XL Reference Manual .

2. Open Verilog International (OVl), Verilog HDL Language Reference Manua
(LRM), 15466 Los Gatos Boul evard, Suite 109-071, Los Gatos, CA 95032; Tel:
(408) 353- 8899, Fax: (408) 353-8869, Emmil: OVI @etcom com $100.

3. Sternheim E. , R Singh, Y. Trivedi, R Madhaven and W Stapl eton
Digital Design and Synthesis with Verilog HDL, published by Automata
Publ i shing Co., Cupertino, CA, 1993, |SBN 0-9627488-2-X, $65.

4. Thonas, Donald E., and Philip R Morby, The Verilog Hardware Description

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (25 of 26)9/12/2006 12:45:58 PM

Bucknell Verilog Manual

Language, second edition, published by Kl uwer Academ c Publishers, Norwell
MA, 1994, | SBN 0-7923-9523-9, $98, includes DOS version of VeriWll simulator
and prograns on diskette.

5. Wellspring Solutions, Inc., VeriWll User's Guide 1.2, August,
1994, part of free distribution of VeriWll, available online.

6. Wirld Wde Wb Pages:

FAQ for conp.lang.verilog - http://ww.cray.com verilog/verilog-faq. htmni

conp. lang.verilog archives - http://ww.cray.comveril og/archive. htni

Cadence Design Systens, Inc. - http://ww. cadence. cont

Wl I spring Solutions, Inc. - ftp://iii.net/pub/pub-site/wellspring

Verilog research at Canbridge, England -
http://ww. cl.cam uk/users/njcg/ Veril og/

Page mai ntai ned by Dan Hyde, hyde@ucknell.edu Last update Septenber 10, 1995

Back to Conputer Science Home Page.

http://xputers.informatik.uni-kl.de/hdl-tutorial s/verilog/verilog-manual .html (26 of 26)9/12/2006 12:45:58 PM

http://xputers.informatik.uni-kl.de/hdl-tutorials/verilog/veriwell-users-manual.html
http://www.bucknell.edu/departments/cs

	xputers.informatik.uni-kl.de
	Bucknell Verilog Manual

