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Newton’s 2"d Law of Motion

In general, for a body of mass m,

ma = )F
where, a is the acceleration of the body and ) F is the vector sum of the external forces
acting on the body.

For a fluid element,
ma = FB + FS (1)

where,
0 Fpgisthe body force due to the gravity, i.e., the weight of the fluid element
0 Fgisthe surface force due to the pressure and viscous friction on the surface of the fluid element

In fluids, often times the motion equation is written for a unit volume by using the
relationship m = p¥ and dividing Eq. (1) by the volume ¥,

pa=fu,+fs

where, f1, and f are the body and surface forces per unit volume.



Newton’s 2" Law of Motion — Contd.

Body force (Weight of the fluid)
Fg = Wk = —pg¥Vk

“f» = —pgk

Surface force
[s= fp + [y
where,

0 f, =—Vp due to the pressure
O f, =V -t dueto the viscous shear stress

General motion equation for fluids
pa=—-pgk—Vp+V-1 (2)

Note: gor one dimensional flow of Newtonian fluids,
T=U d—u. This implies that the viscous shear stress (or

the shear force) is caused by the relative motion
between fluid particles.
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Special Case: Fluids at Rest

For fluids at rest, i.e., with no motion, Eg. (2) can be simplified as

pa=—pgk—Vp+V 1
=0 =0
or,
) Vp=pg (3)
where, g = —gk.
 If rewrite Eq. (3) in components,

dp dp dp
— =0, — =0, — = — 4
dx dy 0z~ P8 )

Thus, p is independent of x and y (i.e., the pressure remains constant in any

horizontal direction) and varies only in the vertical direction z as a result of gravity.
* If pis constant, the solution of Eq. (4) becomes

p=-yz

by taking p = 0 at z = 0. This is the hydrostatic pressure equation for incompressible
fluids at rest.



Rigid Body Motion

In rigid-body motion, all particles are in combined translation and rotation, and
there is no relative motion between particles.

With no relative motion, there are no strains or strain rates, so that the viscous
term in Eq. (2) vanishes,

pa=—pgk—Vp+V 1
=0
or,
Vp=p(g—a) (5)

where, g = —gk.

Two simple rigid-motion cases of interest are
a) Rigid body translation: Constant linear acceleration @ = a,i + a,k

b) Rigid body rotation: Constant rotation Q = Qk



Rigid Body Translation

* In case of uniform rigid-body acceleration, Eq. (5) applies, a having the same magnitude and

direction for all particles.
e The vector sum of g and —a gives the direction of the pressure gradient or the greatest rate of

increase of p.
* Then, the surfaces of constant pressure must be perpendicular to the direction of pressure

gradient and are thus tilted at a downward angle 6.

Vp=p(g—a) (5)
where,

=

g=-gk
a=a,l+ak
Thus,

Fluid
: ap A apA o 1,
at rest Vp zal_l_&k: —paxl—p(g+az)k

Equating like components,

dp dp
3 = P 5 =-pgta)

The angle of constant pressure lines
Tilting of constant-pressure surfaces in a tank of liquid in rigid-body g P !

acceleration. 0 = tan~!

gta,




Rigid Body Translation — Contd.

e One of the tilted lines (the surfaces of constant pressure) is the free surface, which is found by
the requirement that the fluid retain its volume unless it spills.
e The rate of increase of pressure in the direction g — a is greater than in the ordinary hydrostatics

and is given by
dp

=

Tilting of constant-pressure surfaces in a tank of liquid in rigid-body
acceleration.

Fluid
at rest

gsz whereG=\/a§+(g+az)2

Vp=p(g—a) (5)
where,
g=—gk
a=a,.l+ak
Thus,
dp . Op ~

Vp =al+£k = —pa,i—p(g+ a,k

Equating like components,

dp dp
3 = P 5 =-pgta)

The angle of constant pressure lines,

0 = tan~ !
gt+a,




Rigid Body Translation — Example

EXAMPLE 2.13

A drag racer rests her coffee mug on a horizontal tray while she accelerates at 7 m/s’,
The mug is 10 cm deep and 6 cm in diameter and contains coffee 7 cm deep at rest.
(a) Assuming rigid-body acceleration of the coffee, determine whether it will spill out of
the mug. (b) Calculate the gage pressure in the corner at point A if the density of coffee

is 1010 kg/m".

7 cm

et = 7 m/s?

\

The coffee tilted during the acceleration.

— ax -1 7
= = tan~!—— = 35.5°
g g8

Az = (3)(tan 35.5°) = 2.14 cm < 3 cm (no spilling)

pa = pGAs = (1010)~/(7) + (9.81)2[(0.07 + 0.0214) cos 35.5°] = 906 Pa

(Note: When at rest, py = pghrest = (1010)(9.81)(0.07) = 694 Pa)

: : d
Alternatively, since a, = 0 thus £ = —pg,

pa = pghz = (1010)(9.81)(0.07 + 0.0214) = 906 Pa
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Rigid Body Rotation

For a fluid rotating about the z axis at a constant rate () without any translation, the fluid
acceleration will be a centripetal term,
a = —rQ%i,
From Equation (5) written in a cylindrical coordinate system,
9, op —
Vp = G_I:ir + O_Zk = p(g — a) = p(rQ2i, — gk)
e Equating like components,

< e By solving the two 1%t-order PDE’s in Eq. (6),
L 202
- E—— __ Still-water p =po— pPgZ + Epr Q (7)
level
where, p, is the pressure at (1, z) = (0,0).
Axis of
rotation I A

p. e The pressure is linear in z and quadratic
' . (parabolic) in .

Development of paraboloid constant-pressure surfaces in a

fluid in rigid-body rotation. The dashed line along the direction

of maximum pressure increase is an exponential curve. 9/14/2016




Rigid Body Rotation — Contd.

* |f we wish to plot a constant-pressure surface, say p = p4, Equation (7) becomes

_ T‘Z.QZ
Po — P1 n

= a + br?

zZ =
Pg

2g

e Thus, the surfaces are paraboloids of revolution, concave upward, with their minimum points

on the axis of rotation.

h
still- Volume = - R%h 5255
water — — —J]— — — ? h:QR
level h 28
2 | L
<>
R | R

Determining the free surface position for rotation of a
cylinder of fluid about its central axis.

Similarly as in rigid body translation case, the
position of the free surface is found by conserving
the volume of fluid.

Since the volume of a paraboloid is one-half of
the base area times its height, the still-water level
is exactly halfway between the high and low
points of the free surface.

The center of the fluid drops an amount

and the edges rise an equal amount.



Rigid Body Rotation — Example

EXAMPLE 2.14

The coffee cup in Example 2.13 is removed from the drag racer, placed on a turntable, and
rotated about its central axis until a rigid-body mode occurs. Find (a) the angular velocity
that will cause the coffee to just reach the lip of the cup and (b) the gage pressure at point
A for this condition.

= 0.03

h QR?  Q%(0.03)?
=

49  4(9.81)
-I ~ Q= 36.2rad/s = 345 rpm
3cm
v L Since point Ais at (r,z) = (3 cm, —4 cm) and by putting the origin of
‘ coordinates r and z at the bottom of the free-surface depression, thus p, = 0
(i.e., gage pressure),
7cm
| 1 202
>0 Pa=po—pgz+7pr-id
1
| =0—-(1010)(9.81)(—0.04) + 5(1010)(0.03)2(36.2)2 = 990 Pa
¢ & Y
o i ol s (Note: This is about 43% greater than the still-water pressure p, = 694 Pa)

The coffee cup placed on a turntable.
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