Reynolds Transport Theorem and
Continuity Equation



RTT for Arbitrary Fixed CV

= .
o ~
/// \\\ \\
/ \‘ \\
‘!r A Y
/| h Y
A -
y
Inflow Y 4 VI
\P/' y Cv-1 | i
~ 7 I
Y /
[ £ /
1 ’; ’y
) 4
© AV~ outflow
b Y V4
Q. 7>
\\i i _/,-///

— — — Fixed control surface and system
boundary at time ¢

— —— System boundary at time ¢ + &t

Control volume (CV) and system for flow
through an arbitrary, fixed control volume

B b= B/m
m 1
mV \%

E e

The relationship between the time rate of B for a system and
that for the control volume is given by

DBys  dBey .
- + Bout - Bin
Dt dt —— —~
Time rate of Time rate of 01111 tfluxho(fjg tI}rll flux ﬁfCBS
change of B chagne of B throug roug
within a system within CV
For an arbitrary fixed CV,
Bcy = | BpdV
Ccv
Bout = BpV -ndA
CSout
Bin == BpY - ndA
CSin
or,
DPeys _ 4 BpdV + | BpV -ndA
= — ‘n
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Uniform Flow Across Discrete CS

At the ith outlet,
Bouti = j BpV; - ndA = Bip;ViA;
C

Sout:l

At the jth inlet,
By = | POV nydA = Bipya,
CSin,J

where, IV = |K|

Typical control volume with more than one inlet

and outlet.
Thus, the surface integrals for the flux terms in RTT can be replaced with simple

summations at the inlets and outlets,

DBy
Dty o (ﬁp)d¥+ E (BipiViAi)out — Ej ('prjVjAj)in
or
D By 2 ; E m
Dty _ Cv_a (Bp)d¥ + i (Bimi)out — j (ﬁj j)in

where, ,m = pVA = pQ,and Q =TVA
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Leibniz Integral Rule

Leibnitz theorem allows differentiation of an integral of which limits of integration are
functions of the variable (the time t for our case) with which you need to differentiate.
For 1D,

d b® b(t) gf , ,
dt Ju fx, t)dx = .L(t) oy @+ f(b(®),0) - b'() — fa(®),£) - a'(®)

As a special case, if a(t) and b(t) are fixed values, e.g., constants x, and x;, respectively,

d [*t 1of
EL fx,t)dx —L adx
0 0

Thus, for a fixed CV the RTT can also be written as

D

: BSYS:] i(/3 Yd¥ + | BpV -ndA
" Dt cy Ot p cs pZ 1




Steady Effects

For a steady flow,

o( )

ot 0

Thus, the RTT can be simplified as

D

Bsys 0
= (Bp)d¥ + | BpV -ndA = | BpV -ndA
Dt cv gt CS CS

Which indicate that for steady flows the amount of B within the CV does not change
with time. If the flow is uniform across discrete CS’s,

gstys = Z(,Bimi)out - Z(ﬁjmj)m
l j

D




Gauss’s Theorem

Suppose ¥ is a volume in 3D space and has a piecewise smooth boundary S. If F is a
continuously differentiable vector field defined on a neighborhood of ¥, then

jg.gd5=f\7.gd¥
S 74

This equation is also known as the ‘Divergence theorem. Thus, the two integral terms
in the RTT for a fixed CV can be combined into a single volume integral such that,

D

Beys [ [0
0 jc ) [& Bp)+7- (ﬁpz)] dv

This form of RTT will be used in Chapter 6 Differential Analysis.



Moving CV

* For most fluids problems, the CV may be considered as a fixed volume. There are,
however, situations for which the analysis is simplified if the CV is allowed to move (or

deform).
* We consider a CV that moves with a constant velocity V, without changes in its

shape, size, and orientation with time.

Control volume and system

o R at time ¢,
—_ A
-
|
v ] — ——~ Control volume
e i .
\ P at time t; > ¢,
\ -
f .
,J;” ———= System at time 1, > 1,
i f'f;
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"‘\ e _..'-"/ el Vv = Control volume velocity
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RTT for Moving CV — Contd.

* For a moving (but not deforming) CV, the only difference that needs to be considered
is that fact that relative to the moving CV the fluid velocity observed is the relative
velocity V. = V — Vv, not the absolute velocity V. (Note, W is used to denote V,. in

out text book.)
e Thus, the RTT for a moving CV with constant velocity is given by

Pleys _ 4 BpdV + | BpV. -ndA
= p PVy -1
Dt dt cV cs
Control volume /z"'“““-\
and system at time ¢ / N W=V-V,

———— System at time

t + Ot Flow as seen by an
observer moving with
velocity Ve
CV and system as seen by an observer
moving with the CV. Note that, in this
Pathlines as figure, the relative velocity is denoted by W

seen from the
moving control
volume

instead of /..
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RTT for Moving and Deforming CV

dByys d *
= V. -n)dA

The most general case where both CV and CS
change their shape and location with time

V,=V(x,t)—Vs(x,t)

o e Vs(x,t): Velocity of CS

* V(x,t): Fluid velocity in the coordinate
system in which the VI is observed

* [/.: Relative velocity of fluid seen by an
observer riding on the CV

*Ref) Fluid Mechanics by Frank M. White, McGraw Hill



Example 1

The wind blaws across & field with an approximafe
1hs,+ ty profite as shown in'Fig, P4, 78, Use By, 410 with the
saametar b 2qual o fhe velocity to determine the momentum

fowrate Across the v vertienl urfm.c A, which is of unit ;E.iﬂ"ﬁ
o {hi paper,

Byt = f pbV -fidA  (4.16)
Cc

Sout

® FIGURE P4,7%a

For momentum B = mV, the intensive parameter b(or ) = B/m = V. Thus, for CSy,¢ = AB of unit
depth,

Bout = f py V- -ndA
AB
where, V = s yifor0 <y <10andV = 15ifor 10 < y < 20 and p = 0.00238 slugs/ft3. Thus,
: 10715 15 20
Bout =j p<ﬁyi> (Eyi : i> (1)dy+f p(158)(158 - i)(1)dy
0 10
2 20

10
= pi j —y> dy+ | (15)%dy
0 10 10

10
— (0.00238)i |22 Y +225 |20 — 7.14i slug - ft/s?
= (0. )i 100 3 y1o = 7.141 slug - ft/s

0

= 7.141 Ibf
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Example 2

Given:
 Water flow (p = constant)
e D;=10cm; D, =15cm
e V,=10cm/s
e Steady flow
Find: V, to satisfy the mass conservation?

RTT for fixed CV:

DBys [ @

Dt Cvat(ﬁp)d¥+ CSﬁPK'EdA

For the mass conservation, B =mand § =1,
Steady flow

Dm 0
- SyS:O:j d¥+j pKﬂdA
Dt cvot cs




Example 2 — Contd.

Also, since the flow is uniform across discrete CS,

gstys = Z(ﬁimi)out — z(ﬁjmj)in

D

J

with B = m and 8 = 1 for one outlet and one inlet,

0=m2—m1

or
p1V141 = poVrA,
Since p1 = poy,
Vid, = V,4;
Thus,

v, =2y o (2 2V— 10cm2(10)_44
27 1=\b,) "' \15cm = 44cm/s



Example 3

g
Q3 =0.01 m3/s

l Given:
\V/ e D;=5cm;D,=7cm
= ' e V;=3m/s
@_ * Q3 =V343 =0.01 m3/s

h = constant (i.e., steady flow)
* pi = py, = p3 = p for water (incompressible)
D,=7cm Find: V, to satisfy the mass conservation ?

D;=5cm

e

Water

d

RTT for a steady and uniform flow across discrete CS:

0= Z(mi)out - z(mj)in
l- j

where, m = pQ = pVA. With one outlet and two inlets,

0 = pV4; — pV141 — pQ3
By solving for 1/,
ViA{ + 3)(m)(0.05)?/4 + (0.01
y, VAt 0 @O0 /44 00
A, (1)(0.07)%/4




Example 4

An airplane moves forward at a speed of 971 km/hr. The front area of the jet engine
is 0.80 m? and the entering air density is 0.736 kg/m3. A stationary observer
determines that relative to the Earth, the jet engine exhaust gases move away from
the engine with a speed of 1050 km/hr. The engine exhaust area is 0.558 m?, and the
exhaust gas density is 0.515 kg/m3. Estimate the mass flowrate of fuel into the
engine in kg/hr.

%

plane =

971 km/hr

57:020 Fluids Mechanics Fall2016 14



Example 4 — Contd.

plane =

971 km/hr /73

A

.’- ',_’,... V, = 1050 km/hr DB
\ Sys

W, = W, = 1050 + 971 = = ppdV + | BpV,.-ndA
bt /d’{ cv cs

G571 lnin 2021 km/hr
Section (2)

Section (1)

Assuming 1D flow,
—Meyel — P1A1Vr1 + 0242V2 =0

or
Meyel = P242Vi2 — P141V1
Since
Vit = Vi — Vplane = 0 — (—971) =971 km/hr
Vo = Vo2 — Vplane = 1050 — (—971) = 2021 km/hr
Thus,

Meyel
— (0.515)(0.558)(2021)(1000 m/km)

— (0.515)(0.558)(2021)(1000 m/km) = (580,800 — 571,700)
= 9100 kg/hr
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Continuity Equation (Ch. 5.1)

RTT with B =massand [ =1,

Dmgys d R
0= =— | pd¥+ | pV-ndA
mass conservatoin
or
R d
pV -ndd = —— | pd¥
cs dt Jey

Net rate of outflow Rate of decrease of
of mass across CS mass within CV

Note: Incompressible fluid (p = constant)

j V- nad = _Ef av (Conservation of volume)
cS cv



Simplifications

1. Steady flow
j pV -ndA =0
CS

2. If V = constant over discrete CS’s (i.e., one-dimensional flow)

j pzoﬁdA=szA—2pVA
CS :

out 1n

3. Steady one-dimensional flow in a conduit

(pVA)our — (pVA)in =0
or
p2V2A; —p1V141 =0

For p = constant
Vid, =V,4; (or Q1 = Q3)




Some useful definitions

Mass flux (or mass flow rate) 5, — J pV -dA (= pVA for uniform flow)
A

Volume flux (flow rate) Q = f V-dA (= VA for uniform flow)
A
) Note: dA = ndA

Average velocity A= Q = —j V- dA

A A, — —

: 1

Average density p = —j pdA

Ay

Note: m # p(Q unless p = constant



Example 5

Estimate the time required to fill with
water a cone-shaped container 5 ft hight

X and 5 ft across at the top if the filling rate
«— is 20 gal/min.

Apply the RTT for conservation of mass, i.e.,, f =1

d
0=— pd¥+j pV - ndA
dt Jey cs

For incompressible fluid (i.e., p = constant) and one inlet,

d
0=—| d¥— VA,
=¥ ()



Example 4 — Contd.

Volume of the cone at time t,
2

v =2 h)
12
Flow rate at the inlet,

=120 gal 231in3 / 1 728in3 = 2.674 ft3 /mi
¢= min gal T3 )T /min

The continuity eq. becomes
0 d (nD? "
S dt\ 12 ¢

dh  12Q
dt mD?

or

(1)



Example 4 — Contd.

Solve the 1t order ODE for h(t),

t .
h(t) = j 12Q gt = 12Q -t
0

D2 mD?2

Thus, the time for h =5 ftis

_mD*h  w(5ft)*(5ft)

_ _ = 12.2 mi
"=120 T 2)(2.674 i /min) .
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