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Chapter 6 Differential Analysis of Fluid Flow

Fluid Element Kinematics

Fluid element motion consists of translation, linear defor-
mation, rotation, and angular deformation.
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Linear deformation of a fluid element
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Change inoV :
ou
OV =| —oOoxX [(6yoz)ot
(2 ox|(syor)

the rate at which the volume OV is changing per unit vol-
ume due to the gradient ou/ox is

1 d(ov) i {(au/c’}x)&t} _ou

St X

If velocity gradients 0v/0y and ow/0z are also present, then
using a similar analysis it follows that, in the general case,

1d(ov) ou ov ow

V-V

+—+—=
ov dt OX oy oz

This rate of change of the volume per unit volume is called
the volumetric dilatation rate.

Angular Motion and Deformation

For simplicity we will consider motion in the x-y plane,
but the results can be readily extended to the more general
case.
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Angular motion and deformation of a fluid element

The angular velocity of line OA, woa, IS

i oo
Wop = lim —

For small angles

(ov/ox)oxst  ov

tan oa = oo = 5 p ot
X X
so that
(ov/ox)dt | ov
w-, = lim = —
OA  §t50 St OX

Note that if Ov/0X is positive, mop Will be counterclockwise.

Similarly, the angular velocity of the line OB is

Wog = Iimﬁza—u
a0 S5t oy

In this instance if 0u/dy is positive, wog Will be clockwise.
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The rotation, ®,, of the element about the z axis is defined
as the average of the angular velocities mop and wog Of the
two mutually perpendicular lines OA and OB. Thus, if
counterclockwise rotation is considered to be positive, it

follows that
1({ov ou
W, =—| ———
ZEax @yj

Rotation of the field element about the other two coordinate
axes can be obtained in a similar manner:

1( ow ov
W, =—| ———
2\ oy oz
1/ou ow
W, == ———
Y2\ oz ox

The three components, wy,my, and ®, can be combined to
give the rotation vector, , in the form:

1 1
O=0it+oj+ok =§CurIV:§VxV

since
| ] kK
VA LRI
2 2|0x oy oz
u Vv W

1(ow  ov ). 1(8u an 1(ov  ou
== ——— i+ ——— |j+=| ——— |k
2\ oy oz 2\ 0Z OX 2\ OX oy
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The vorticity, ¢, is defined as a vector that is twice the rota-
tion vector; that is,
c=20=VxV

The use of the vorticity to describe the rotational character-
istics of the fluid simply eliminates the (1/2) factor associ-
ated with the rotation vector. If VxV =0 the flow is
called irrotational.

In addition to the rotation associated with the derivatives
ou/oy and ov/0x, these derivatives can cause the fluid ele-
ment to undergo an angular deformation, which results in a
change in shape of the element. The change in the original
right angle formed by the lines OA and OB is termed the
shearing strain, dy,
oy = oa +of

The rate of change of dy is called the rate of shearing strain
or the rate of angular deformation:

. i Sy . Sy (0v/0x)6t + (Ou/dy)dt _0v  0u
Yoy = 508t~ siso 6t 5t _$+@

Similarly,
. dw Jdu
Vxz = 5 + R

. _Ow 0Ov
yyz - E + E

The rate of angular deformation is related to a correspond-
Ing shearing stress which causes the fluid element to
change in shape.
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The Continuity Equation in Differential Form

The governing equations can be expressed in both integral
and differential form. Integral form is useful for large-scale
control volume analysis, whereas the differential form is
useful for relatively small-scale point analysis.

Application of RTT to a fixed elemental control volume
yields the differential form of the governing equations. For
example for conservation of mass

>pV-A=—] P gv
CS cVv ot

net outflow of mass = rate of decrease
across CS of mass within CV
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Consider a cubical element oriented so that its sides are| | to

b
vk wana Mog s len Al AxT) Ay de
Qulydt | B ox ok vewa Mo )
,a\)'
inlet ma: Az
pudy Y sion
¥
- term

We assume that the element is infinitesimally small such
that we can assume that the flow is approximately one di-
mensional through each face.

The mass flux terms occur on all six faces, three inlets, and
three outlets. Consider the mass flux on the x faces

9,
Xflux = |:pll + a_X(pu) dX:l dde|outflux B plldeZ influx

:ﬁ(pu)dxdydz
OX
\/

Similarly for the y and z faces

0
Yiux = @ (pV)dXdde

%)
Zilux = E (pW)dXdde
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The total net mass outflux must balance the rate of decrease
of mass within the CV which iIs

op
———dxdvdz
ot y

Combining the above expressions yields the desired result

op 0 0 0
—+—(pu)+—(pV)+—(pw) |dxdydz =0
Lﬂ aX(p) ay(p) az(p )} y

d\

o oW V)¢ (ow) =0 per unit
ot ox differential form of con-

tinuity equations

op
P iv.-(pV)=0
p (pV)

H_/

pV-V+V-Vp
%_vayzo E g-l-y \%
Dt Dt ot

Nonlinear 1* order PDE; ( unless p = constant, then linear)
Relates V to satisfy kinematic condition of mass conserva-
tion

Simplifications:
1. Steady flow: V-(pV)=0

2. p=constant: V-V =0
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The continuity equation in Cylindrical Polar Coordinates

The velocity at some arbitrary point P can be expressed as
V=ve +Vve,+V.e,
The continuity equation:
op  13(rpv,)  12(py,) , 3(pv.)
oo r or r o6 0z

=0

For steady, compressible flow
Ea(rpvr) +£8(pve) ) o(pv,)
r or r o6 0z

=0

For incompressible fluids (for steady or unsteady flow)
10(rv, ) 1ov, , v, _
r or r 80 oz
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The Stream Function

Steady, incompressible, plane, two-dimensional flow repre-
sents one of the simplest types of flow of practical im-
portance. By plane, two-dimensional flow we mean that
there are only two velocity components, such as u and v,
when the flow is considered to be in the x-y plane. For this
flow the continuity equation reduces to

ou ov

—+—=0
- 0X oy

We still have two variables, u and v, to deal with, but they
must be related in a special way as indicated. This equation
suggests that if we define a function y(x, y), called the
stream function, which relates the velocities as

W9V _ov

oy OX

then the continuity equation is identically satisfied:

ooy N 8(_81//)_ 52l//_52l// 0
oX\ oy oy\ OX OXoy  oxoy

Streamling

Velocity and velocity components along a streamline

10
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Another particular advantage of using the stream function
is related to the fact that lines along which vy is constant are
streamlines.The change in the value of y as we move from
one point (X, y) to a nearby point (x + dx, y + dy) along a
line of constant y 1s given by the relationship:

dy =— oy dx+%y dy = —vdx+udy =0

OX
and, therefore, along a line of constant
dy _v
dx u
k—\\ |
i

]

The flow between two streamlines
The actual numerical value associated with a particular
streamline is not of particular significance, but the change
in the value of v is related to the volume rate of flow. Let
dqg represent the volume rate of flow (per unit width per-
pendicular to the x-y plane) passing between the two
streamlines.

de+_l//

OX oy
Thus, the volume rate of flow, g, between two streamlines
such as yl and y2, can be determined by integrating to
yield:

dq =udy —vdx = dy =dy

11
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L
a=["dy =y, -y,
L4

In cylindrical coordinates the continuity equation for in-
compressible, plane, two-dimensional flow reduces to

19(rv,) 10y,
r or r 0o

_ lay

¥ r g
<§
v
ol
1y =
of

-.__f
F %
- x
- L5

and the velocity componénts, Vv, and vy, can be related to the
stream function, y(r, 0), through the equations

y Loy o _ Oy

“ro0' ¢ or

Navier-Stokes Equations

Differential form of momentum equation can be derived by
applying control volume form to elemental control volume

The differential equation of linear momentum: elemental
fluid volume approach

12
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“

fenl x % (et ")‘*‘X Haels

2L dsdt ——ﬁ o™
M g
P et T, A s o Yt

e e

d
sE==| pvave | vov-sda
at cv CcS
€] 2

(1) == (pV)dxdydz = ( V+p )dxdydz

(2) = aa_x (puV) + % (pvV) + aa_z (pwV) | dxdydz

x—face y—face z—face
[pu—+Vapu pv —+ Vapv + pw —+ Vapw] dxdydz

combining and making use of the continuity equation yields

YF =1V —+V (pV) +p( +V- VV) dxdydz

=0

DV _ by
- XE =p_——dxdydz or Yf=p—
where }F = 2Fpody + 2 Fsurface V-v= uaa—x+ v%+ Waa—z
TRl A AN

Xf= Zfbody + Zfsurface

13
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Body forces are due to external fields such as gravity or
magnetics. Here we only consider a gravitational field; that
IS,

ZEbody dF grav pngdde
and g=-gk for g¢ z1

e, tbody = _pgl2

Surface forces are due to the stresses that act on the sides of
the control surfaces

symmetric (Gij = Gji)

Gijj= - pSij + Tj 2nd order tensor
§i=1 =]
normal pressure viscous stress | §;=0 | #
EIN = | -p+Ty Tyy Ty
A i Tyx Pty T
! / . Tzx Tzy -p+12

As shown before for p alone it is not the stresses them-
selves that cause a net force but their gradients.

dFysuf = a_x(cxx)'F%(ny)"‘%(ze ):|dXdde

_[ o, @ o o
- ox GX( )+@(Txy)+§(sz)}dXdde

14
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This can be put in a more compact form by defining vector
stress on x-face

Ty = Tyxl +Txy]+rxzk

and noting that

dFy surf = {— @ +V-1, }dxdydz
OX

0 :
fX,surf = _a_)F:"' V 'IX per Un|t VOIUme
similarly for y and z
f _ ap v _ 2 2 I’&
y.surf — _@"' Ty Ty =Tyl + Ty ]+ Ty,
8p 2 ~ >
fz,surf - _E‘*‘V'Iz Ty :sz|+szJ+Tzzk

finally if we define
T =Ixl + Ty )+1,K then

fsut =—VP+V-1;=V.-0; Ojj =—Po;j + T

15
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Putting together the above results

DV
>f= fbody + g = pﬁ

1_:b0dy = _pgk
fsurface =—VP+V- Tij

DV _ oV |
Dt ot

a= V-VV

P@Z_PQR\_VFH'V'TU

inertia  body \ \
force force  surface surface force

due to force due
gravity top

due to viscous
shear and normal
stresses

16
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For Newtonian fluid the shear stress is proportional to the
rate of strain, which for incompressible flow can be written

%+%)
an axi

Tij = 20€;5 = M(
where,

u = coefficient of viscosity

g;j = rate of strain tensor

- u 1/0v , du 1 /0w . du\
e 1)
0x 2\0x Oy 2 \0x 0z

1/0u , ov ov 1 /0w _ Ov
I
2\0dy O0x ady 2 \dy 0z

L(2y 0wy 1(0v oy O

L2 \0z 0x 2 \0z ady 0z -

Ex) 1-D flow
du
_ i TTHY
pa=—pgk—Vp+V- (1)

where,

. 0 6ui auj _ 62ui 0 auj
V (T‘J)_Maxj<6xj+axi)_u +

pa = —pgk — Vp + uv3y

Navier-Stokes Equation
Continuity Equation

17



57:020 Mechanics of Fluids and Transport Processes Chapter 6
Professor Fred Stern Fall 2014 18

Four equations in four unknowns: V and p
Difficult to solve since 2" order nonlinear PDE

[ou ou ou ou op 0%°u . 0%u . 9%u
P R B e
p_6t+uax+vay+waz 0x 6x2+6y2+622

) TN P NSO O
y-p | ot dx dy azl oy 9x2  9y2  9z2

. [aw aw aw awl _ _ap [GZW 92w azw]
Z'p[6t+uax+v6y+waz]_ 9z Pg T H 6x2+6y2+622
ou ov oOw
+—+—=0
oX oy oz

Navier-Stokes equations can also be written in other coor-
dinate systems such as cylindrical, spherical, etc.

There are about 80 exact solutions for simple geometries.
For practical geometries, the equations are reduced to alge-
braic form using finite differences and solved using com-

puters.

18
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Ex) Exact solution for laminar incompressible steady flow
In a circular pipe

dr

NS

(a) (h)

Use cylindrical coordinates with assumptions

d .
prl 0 : Steady flow
= = 0 : Fully-developed flow

v, = 0 : Flow is laminar and parallel to the wall

d . . :
Vo = o = 0 : Flow is axisymmetric with no swirl

Continuity equation:

10(rvy) |, 10vy |, dvy
r oJr T r 00 T 0z

=0

Thus, (v,, vg, v,) satisfies the continuity equation

19
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Momentum equation:

vy 0vy | Vg OV, vg avr)
p(’dt+vr6r+r60 r+v

op [1 0/ ) 3 2 J

= —— —_Nr—) —-= LA A — 4L

or T Pgr TH r or or r2 +r2 002 r2 00 + 0z2

v v vy 0V VA vy
p(__e_w 9ve , v Ove | Vrve , ., _g)

ot r or r 90 Z 3z , ,
_ _1lop [li( 2"_9)_”_6 10ve , 2 0vr a_ﬁ]
= Trae TPIe T H[T5\T ) 2t 250z T72%0 T 522
Py, Doy V0T, 00
p\6t+vr 6r+r ae+vZ 9z , ,
_ _op [11( 01) 107y, a_v_z]
o 6z+'0’gz+'u r or T(’)r +r2892+622
or
0:—pgsin0—a—p (1)
ar
_ 10dp
0 =—pgcosH ey (2)
__0p [li( %)]
0= 6z+‘u r or rar (3)
where,
gr = —gsinf
gg = —gcosf

Equations (1) and (2) can be integrated to give
p=—pg(rsind) + f1(z) = —pgy + f1(2)

— pressure p is hydrostatic and dp/0dz is not a func-
tionof r or 6

20
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Equation (3) can be written in the from

16( avz)_lap
ror rar  uoz

and integrated (using the fact that dp/0dz = constant) to
give

dv, 1 <6p
- _

2
= C
or 2u az)r T

Integrating again we obtain
1 <6p
vZ

” az)r +CiInr + G,

B.C.
v,(r=0)+0 = ;=0

v,(r=R)=0 = C, = —i(Z—Z)RZ

M 41,11(62) (r* = R%)

—> at any cross section the velocity distribution is parabolic

21
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1) Flow rate Q:

R R TR* [dp
Q = Jo v,dA = ano v,rdr = _E(E)

where, dA = (2nr)dr

If the pressure drops Ap over a length ¢: Ajp = - Z—Z
_ mR*Ap
- 8ut

2) Mean velocity V:

V_Q_(l)nR4Ap _ R?Ap
A \mR2J\ 8uft | 8ut

3) Maximum velocity v, 4,

R? /0p\ R?Ap
Umax = Vz(r =0) = _E(E> = Y, =2V
=
L1 (f)
vmax R

22
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4) Wall shear stress (7,,).,.,:

wall *

dv N avz) dv,
ar

Trz = U (%Z = U or
where

dv, 2r 4Vr

T (‘ ﬁ) TRz

Thus, at the wall (i.e., r = R),

4uv
(Trz)wall = _T
and with Q = nR?V,
4uQ
|(Trz)wall| - ﬁ

Note: Only valid for laminar flows. In general, the flow
remains laminar for Reynolds numbers, Re = pV (2R)/u,
below 2100. Turbulent flow in tubes is considered in Chap-
ter 8.

23
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Differential Analysis of Fluid Flow

We now discuss a couple of exact solutions to the Navier-
Stokes equations. Although all known exact solutions
(about 80) are for highly simplified geometries and flow
conditions, they are very valuable as an aid to our under-
standing of the character of the NS equations and their so-
lutions. Actually the examples to be discussed are for in-
ternal flow (Chapter 8) and open channel flow (Chapter
10), but they serve to underscore and display viscous flow.
Finally, the derivations to follow utilize differential analy-
sis. See the text for derivations using CV analysis.

Couette Flow

s 2 8 ‘3-‘15414:"(.1

%I 1’\""25\ I'ﬁ
7 VA S S S a4 Qo meo

X

boundary conditions

First, consider flow due to the relative motion of two paral-
lel plates

o ou )
Continuity Ve 0 u = u(y)
> V=0
d°u P_P_g
Momentum O=p—r oX oy
dy
J

or by CV continuity and momentum equations:

24



57:020 Mechanics of Fluids and Transport Processes Chapter 6
Professor Fred Stern Fall 2014 25

puU;AY = pu,Ay
Uy = Uy

> F, =X upV-dA=pQ(u, —u;)=0

= pAy—(p+d—prjAy—IAX+ T+$dy AX=0
dx dy

dy ?'-}"t%{a/\«a
o e ) e
T

u(0)=0=D=0
u(t):U:Czp%

T= ud—u = % =constant

25
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Generalization for inclined flow with a constant pressure
gradient

o ou ) _
Continutity —=0 u = u(y)
2 V=0
> op
Momentum O——i(p+ Z)+ d’ @:O
o PFYZ) TR 0y? )
l.e d’u _, h = p/y +z = constant
, H 0y? Vi Y
plates horizontal az =0
dx
plates vertical %:-1
dx
which can be integrated twice to yield
du dh
—=7—Y+A
de dey

dh y?
u=y—-—+Ay+B
K dez y

26
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now apply boundary conditions to determine A and B
uy=0)=0 = B=0
uly=9=U

ul = yj—h%+At:>A &— @1

t dx2

+
udx 2 pu

This equation can be put in non-dimensional form:
u__ ot dhn (1 XJLX
U 2pU dx\ t/)t t

define: P = non-dimensional pressure gradient

2
:_L% h:E-l-Z

ZMUdX\ Y
Y =yt _ 7 {1dp dz}

ZuU ydx dx

27



57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2014

Chapter 6

28

S S S 10 LSS >/ LKL S LSS S S LSS

i
Y L —

h 0.8 //77‘ w\
e Y o 2/ 5

AT

Y A W 7/ 22
-04 -02 0 ) 0.2 04 06 08 1.0 12 14

SN

Fig. 5.2. Couette flow between two parallel flat walls
P > 0, pressure decrease in direction of wall motion; P < 0, pressure increase; P = 0, zero pressure gradient

u_Py Py’ y

U t 2 t

—Reit~ 1000
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The maximum velocity occurs at the value of y for which:

du d(u P 2P 1
=0 S =0=" Tyt
dy dy\ U t 27t
Z>Y=L(P+1)=£+L@u forU=0,y=t/2
2P 2 op M U Y=
" U = U(Y ):ﬁ+g+£
Lo mxIT 4 2 4P
note: 1IfU=0; L:P/PZZ
u 6/ 4 3

max

The shape of the velocity profile u(y) depends on P:

1. 1IfP>0, i.e.,j—h < 0 the pressure decreases in the
X

direction of flow (favorable pressure gradient) and the
velocity is positive over the entire width

yd_x: dx dx
a) d—p<0

dx
b) d—p<ysin6

29
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1. If P <0, i.e., dh/dx >0 the pressure increases in the di-
rection of flow (adverse pressure gradient) and the ve-
locity over a portion of the width can become negative
(backflow) near the stationary wall. In this case the
dragging action of the faster layers exerted on the fluid
particles near the stationary wall is insufficient to over-
come the influence of the adverse pressure gradient.

gE—ysine>0
dx
@>ysine or ysin9<d—p
dx dx
. dh : s
2. IfP=0,1.e, ™ =0 the velocity profile is linear
X
u—gy
t
a) dp _ 0and®=0 Note: we derived
dx this special case
) P _.sine
dx

For U = 0 the form %: PY(1-Y)+Y is not appropriate
u=UPY(L-Y)+UY

2
- _tdn 1-Y)+UyY
21 dx
2
NowletU=0: u= —ﬂ@Y(l—Y)

21 dx

30
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3. Shear stress distribution

Non-dimensional velocity distribution

u
=—=P.Y(1-Y)+Y
u 0 ( )+

u

where u’ =3 IS the non-dimensional velocity,
t* dh . : : _
PE_zyy—u&'s the non-dimensional pressure gradient

y. ) ] )
Y E? IS the non-dimensional coordinate.

Shear stress

T= yd—u
dy
In order to see the effect of pressure gradient on shear
stress using the non-dimensional velocity distribution, we

define the non-dimensional shear stress:

T* _ T
=T
sz
Then
S 1 Ud(ul)  2u du”
1puzﬂ td(y/t) pUtdY
2
2p
=—"—(-2PY +P+1)
pUt
:2—”(—2PY+P+1)
pUt
= A(-2PY + P +1)
2 : ..
where A=250 jsa positive constant.

pUt

So the shear stress always varies linearly with Y across any

section.

31
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At the lower wall (Y =0).

7y = A(1+P)
At the upper wall (Y =1).

7o = A(1-P)

For favorable pressure gradient, the lower wall shear stress
Is always positive:
1. For small favorable pressure gradient (0<P <1):
., >0 and 7, >0
2. For large favorable pressure gradient (P >1):
>0 and 7, <0

(0<P<1) (P>1)

For adverse pressure gradient, the upper wall shear stress is
always positive:
1. For small adverse pressure gradient (-1<P<0):
7., >0 and 7, >0
2. For large adverse pressure gradient (P <-1):
7., <0 and 7., >0

32
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(-1<P<0) (P<-1)

For U =0, i.e., channel flow, the above non-dimensional
form of velocity profile is not appropriate. Let’s use dimen-
sional form:
yt? dh y dh
= i (1—Y)_—Z—y(t—y)
Thus the fluid always flows in the direction of decreasing
piezometric pressure or piezometric head because

.. dh . : :
ﬁ>o, y>0and t—y>0.Soif _ isnegative, U is posi-

i .. dh . .. i i
tive; if — - is positive, U is negative.

Shear stress:

: 1 : :
Since (t—gyj >0, the sign of shear stress 7 is always oppo-

: : : : . dh
site to the sign of piezometric pressure gradient ol and the

magnitude of - is always maximum at both walls and zero
at centerline of the channel.

33
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: dh
For favorable pressure gradient, 50, 7> 0

: dh
For adverse pressure gradient, Foie 0, 7<0

P NAN T
S
@<O ﬁ>0
dx dx

Flow down an inclined plane

uniform flow = velocity and depth do not
change in x-direction

Continuity g_u =0
X
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o d?u
x-momentum O=—(p+vyZ)+u——

0
y-momentum 0= —@(p + yZ) —> hydrostatic pressure variation

dp
dx

=0

d?u .
—— =—vySInO
dez Y

d—u:—xsin Oy +C

dy p

u=——sm9y +Cy+D
) 2

du —0=—"sinod+c=c=+"'sinod

dy y=d H K

u(0)=0 = D=0

u:——sm6y + = smedy
1 2 u

=" singy(2d-y)
2
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sin@
uy) =52 y(2d -y)
d 3 d .
q=[udy= Y sine dy? Yy dlscharg_e per
0 2L 3 1, unit width
= = 43sino
3u

2

Vavg :9 =11d28in9 =£Sin6
d 3u 3v

in terms of the slope S, =tan 6 ~ sin 6

gd”s,
3v

V=

Exp. show Regi: ~ 500, i.e., for Re > 500 the flow will be-
come turbulent

P = —yC0S0 Re i = vd ~ 500
oy v
p=-—ycosOy+C

p(d)=p, =—ycosbd+C
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ie. p=ycosO(d-y)+p,
* p(d) > po

*i1f0=0  p=y(d-y)+p
entire weight of fluid imposed

ifo=n/2 p=p,
no pressure change through the fluid
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