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Chapter 5 Finite Control Volume Analysis

5.1 Continuity Equation

RTT can be used to obtain an integral relationship expressing
conservation of mass by defining the extensive property B = M
such that g = 1.

B = M = mass
B=dB/dM =1

General Form of Continuity Equation for moving and deforming
CV,

dM_O_dj dV—l—f V, - dA
dt_ _dt CVp pR_

CS
Or
d
pVr-dA = pd¥
cs — Cdt
Net rate of outflow Rate of decrease of
of mass across CS mass within CV

where, Vg =V — Vs Is the relative velocity of fluid and Vs is the
control surface velocity.



57:020 Mechanics of Fluids and Transport Processes Chapter 5
Professor Fred Stern Fall 2013

Simplifications for fixed CV (i.e, V5=0):

. d —
1. Steady flow: _Efcv pd¥ =0

2. V = constant over discrete dA (flow sections):

| pv-da=>"v-da
CS CS

3. Incompressible fluid (p = constant)

d
jz-d_Az—— v
cs dt

cv

I.e., conservation of volume

4. Steady One-Dimensional Flow in a Conduit:
>pV-A=0
CS

—p1ViA1L + p2Vo A, =0

forp=constant Q;=Q;
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Some useful definitions:

Mass flux m=[pV-dA
A
Volume flux Q=[V-dA
A
Average Velocity V=Q/A
. - 1
Average Density p= A [pdA

Note: m=#pQ unless p = constant
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Example

¥

f{ D=y’

*Steady flow
*V11213 =50 fpS

*At @, V varies linearly
from zero at wall to
Vmax at pipe center

*find M, Qa, Vimax

0 *water, pw = 1.94 slug/ft’

fpV-da=0=— oav |
CS cv m,

€., -p1ViAi1 - p2VoAy + psVsAsz Hp J V,dA,=0

4

p = const. = 1.94 Ib-s® /ft* = 1.94 slug/ft’

m4 = p_[ V4dA4 = pV(Al + A, - A3) V1:V2:V3:V:50f/3

=19 50 ™12 4 22 ~1.52)
144 4

= 1.45 slugs/s
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Qs=m,/p=.75 ft’/s

= [V, dA,
A4
velocity profile YA

21 r P i .

[ Ve (1— —eredr > e

0 r — v
0 ) L&i&

~ dA, (

Qs =

O —c

V4¢V4(9) V= ““"‘?‘(\"vf‘(b\ y Aﬁmf—\rd\vda.-
r r
=21 [V | 1—— |rdr
0 o 1
_ Q 3nr02Vmax
V4 = — =
Iy r2 A Ttroz
=21V, o || F—— (dr 1
0 ro = gvmax
2| 3 |"
I I
=21V | — ——
2 . 3r, .
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5.2 Momentum Equation

Derivation of the Momentum Equation

Newton’s second law of motion for a system is

Time rate of change = Sum of external
of the momentum forces acting on
of the system the system

Since momentum is mass times velocity, the momentum of a
small particle of mass pd¥ is V pd¥ and the momentum of the
entire system is fSySKPd¥- Thus,

D
— | vpd¥ = E E

Recall RTT:

DBsys _ @ d¥ + Ve - dA
Dt - dt Cvﬁp Csﬁp_R et

stys
=V,
am —

With Bs,s = MV and =

D j d
o7 | vodv == | vpdv+ [ vpv,-da
Dt Ssys dt cv CS
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Thus, the Newton’s second law becomes

where,

d
= voaw+ [ vpve-aa= Y
cv CS
Rate of change  Net rate of flow l;Iet external
of momentum of momentum orce acting
in the CV through the CS on the CV

V is fluid velocity referenced to an inertial frame (non-
accelerating)

Vs
Vg

Is the velocity of CS referenced to the inertial frame

= I/ — Vs is the relative velocity referenced to CV

Y. Fry = X Fg + ). Fs is vector sum of all forces acting on

—
=5
D

CV

Fg 1s body force such as gravity that acts on the entire
mass/volume of CV

Fs is surface force such as normal (pressure and
viscous) and tangential (viscous) stresses acting on the
CS
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e.g., Surface forces:

R = R,1+ R, j = resultant
v force on fluid in CV due to p,,

and t,,, 1.e. reaction force on
fluid:

R, = f (=p, 7 + 1,,E) - idA
A

R, = j (—p, A+ 1,t) - jdA
A

Note that, when CS cuts through solids, Fg may also include
reaction force (or anchoring force).

e.g., the anchoring force Fg required to hold nozzle when CS
cuts through the bolts that are holding the nozzle/bend in place

Water:
1000 k g_fm 3

p, =0 (gage)

i
= ——
—

Dy=3cm

D, =10cm &LP

Control volume

(i) ()
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Important Features (to be remembered)

1) Vector equation to get component in any direction must use
dot product

X equation Carefully define coordinate
system with forces positive in
SF, = d [pudM + [puVp -dA positive direction of
dt cv cs coordinate axes

y equation

>F _d [pvdV¥ + [pvVg -dA
dt v cs

Z equation

> F, :E [pwd¥ + [pwVg -dA
dt cv cs

2) Carefully define control volume and be sure to include all
external body and surface faces acting on it.
- For example,

(Rx,Ry) = reaction
force on fluid

(Rx,Ry) = reaction
force on nozzle
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3) Velocity V and V must be referenced to a non-accelerating
inertial reference frame. Sometimes it is advantageous to use
a moving (at constant velocity) reference frame: relative
inertial coordinate. Note Vg =V — V; Is always relative to
CS.

4) Steady vs. Unsteady Flow
d
Steady flow = — [pVd¥ =0
dt cv

5) Uniform vs. Nonuniform Flow

[VpVg -dA = change in flow of momentum across CS
CS

=2VpVr-A uniform flow across A
6) Fores = —[pndA [VId¥ = [fnds
\V S

f = constant, Vf=0
=0 for p = constant and for a closed surface

I.e., always use gage pressure
7) Pressure condition at a jet exit

a
‘f at an exit into the atmosphere jet
—=> pressure must be p,

-~
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Applications of the Momentum Equation

Initial Setup and Signs

Jet deflected by a plate or a vane

Flow through a nozzle

Forces on bends

Problems involving non-uniform velocity distribution
Motion of a rocket

Force on rectangular sluice gate

Water hammer

Steady and unsteady developing and fully developed pipe
flow

9. Empting and filling tanks

10. Forces on transitions

11. Hydraulic jump

12. Boundary layer and bluff body drag

13. Rocket or jet propulsion

14. Propeller

Nk wdE
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1. Jet deflected by a plate or vane

Consider a jet of water turned through a horizontal angle

CV and CS are

£ % for jet so that Fy
and Fy are vane
reactions forces
on fluid

x-equation: > F, =F, =Ejpud\%+ [puV-dA
dt cs

F =YpuV-A steady flow
CS

= pV (=V1A) +pV,, (VLA))

continuity equation: pA1V: = pA,V, = pQ forAi = A,
V1 - V2
Fx = PQ(sz - le)

y-equation: Y F =F =YpvV-A
CS

Fy = pViy(— A1V1) + pVay(— A2V))
= pQ(VZy - Vly)

for above geometry only
where: Vi, =V1 Vyp =-V,0080 Vyy =-V5s8IiN0 Vi, =0
note: F« and Fy are force on fluid
- Fx and -F, are force on vane due to fluid
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If the vane is moving with velocity V,, then it is convenient to
choose CV moving with the vane

I.e., VR=V -V, andV used for B also moving with vane

x-equation:  F = [puVg -dA
CS

Fy = ple['(v - Vv)lAl] + pVZX[(V - VV)ZAZ]

Continuity: 0= [pVg -dA

L.e.,, p(V-V\)iA1 = p(V-V,)A; = p(V-V,)A

Qrel
Fx = p(V-V\)A[V2x — V4]
T Qrel
on fluid Vox=(V=V\)x | For coordinate system
Vix=(V =V [ moving with vane
Power = -F,V, l.e., =0forV,=0

I:y = pQreI(VZy— V1y)
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2. Flow through a nozzle

Consider a nozzle at the end of a pipe (or hose). What force is
required to hold the' nozzle in place?
required to hold

N - nozzle in place

Assume elth&'the plpé’;velomty or pressure% known. Then, the
unknown (velocity or pressure) and the exit velocity V, can be
obtained from combined use of the continuity and Bernoulli
equations.

CV =nozzle
and fluid
v, - (R« Ry) =force

Bernoulli:  p; +yz, +%pr =p, +72, +%pV22 2,=7,

1 1
Pq +§pV12 = EpVZZ

Continuity:  AV:=AV,=0Q
2
V2 :ﬁvl :(Ej Vl

1 ., D)’
V2 1-| =] |=0
p1+2p 1( (dj ]
~ —1/2
. —2p,
Say p; known: V= .
(-] )

To obtain the reaction force Ry apply momentum equation in x-
direction



57:020 Mechanics of Fluids and Transport Processes Chapter 5
Professor Fred Stern Fall 2013 15

RO JupdV + [puV-dA
dt cv cs
=Y puV-A steady flow and uniform
cs flow over CS

Ry + P1A1 — P2A; = pVi(-ViA1) + pVa(V2AY)
= pQ(V2-Vy)
Rx =pQ(V2 - Vi) - piAy

To obtain the reaction force R, apply momentum equation in y-
direction

>F, =>pvV-A=0  since no flow in y-direction
CS

Ry—Wi—Wy=0 ie,R,=W+Wy

Numerical Example: Oil with S = .85 flows in pipe under
pressure of 100 psi. Pipe diameter is 3” and nozzle tip diameter
is1” Sy
p=—=1.65
g
V, = 14.59 ft/s _
V, = 131.3 ft/s bid =3

2
Q = E(ij V2
R, = 141.48 — 706.86 = —569 Ibf 4\ 12
R, =10 Ibf = 716 ft’/s

This is force on nozzle
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3. Forces on Bends

Consider the flow through a bend in a pipe. The flow is
considered steady and uniform across the inlet and outlet
sections. Of primary concern is the force required to hold the
bend in place, i.e., the reaction forces Ryand Ry which can be
determined by application of the momentum equation.

A\\/\ = AL\)L: &R

___-%,x

% ’?uA\ —p A en® + 2y = QQ—\\’IF\}N
“ \‘\\Vz\ Pohy in©a (Lov
U - = \I-,_ -\,
ot Kﬁ 2L A & (La W 240 ) Vb\

\‘\ .,,\% N N
N

N

R« Ry = reaction force on
bend i.e., force
required to hold

%‘&ﬁ’ Ao :ZL@ v bend in place

Continuity: 0= pV-A=—pV,A; +pV,A,
I.e., Q = constant = VA, =V, A,

X-momentum: > F =>puV-A
1A —P,A,c0s0+R, =pVy (-VIA;)+pV,, (V,A,)
= pQ(VZx _le)

y-momentum; ZFy =>pVV-A
PoA,SINO+R, —we —wy = pvly(_ VIA; )+ Pvzy(VzAz)
= pQ(ng _Vly)
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4. Force on a rectangular sluice gate

The force on the fluid due to the gate is calculated from the x-
momentum equation;

K v 4—- $KM - [« L2 I SN A
L o A s
§] / Al o AN
0o/
i! / \&3*‘/\ { A A
ol P Fue O
>
T g e
/7
- A Qﬁ FL

—**—ﬂ’é‘:-&—*-:—q-———z“w -

<.s.

;g)'(xu:‘ ré%’ @ '*‘"\ @ “ ;
Yo V= Cmshed R RONT g s e ok S

oy Saviea
FOPDT oy

SF =YpuV-A
F+Fow —Fiise = F2 = PV1(_ V1A1)+ pV, (VzAz)

usually can be neglected
Fow = F —F +pQ(V, = Vp )+ F i

= YL;'Yzb_Y%'Wb"’PQ(Vz -V;)
1
Few = EbY(yg -1 )"‘ pQ(V, - V) V, = Q
pQZ ( I - 1 j ylb
by, W V, -9
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5. Application of relative inertial coordinates for a moving but
non-deforming control volume (CV)

The CV moves at a constant velocity V. with respect to

the absolute inertial coordinates. If v, represents the
velocity in the relative inertial coordinates that move
together with the CV, then:

VR =V _Vcs

Reynolds transport theorem for an arbitrary moving deforming
CV:

dB,, d
i ijﬂp stﬂp_R n

For a non-deforming CV moving at constant velocity, RTT for
incompressible flow:
dB

op
— B — | Ldv+ -ndA
ot pcjv p pcfsﬂ\LR n

1) Conservation of mass
By, =M, and B=1:
dM

= V. -ndA
dt pCIS—R—

For steady flow:
I V;-ndA=0
cs



57:020 Mechanics of Fluids and Transport Processes Chapter 5
Professor Fred Stern Fall 2013 19

2) Conservation of momentum

Byy =M (Vo +Ves ) and f=0dB,, /dM =V, +Vy

d[M (v +VCS) o(Ve +vCS)

=2E=r]
For steady flow with the use of continuity:
SE= pj( +V g5 |V, - ndA

0
=P I ViVi -ndA+ pV dA
cs cs

2E =p]VaVe ndA
CS

dV+pI(\£+\LCS)\i-ﬂdA
CS

Example (use relative inertial coordinates):

Ex) A jet strikes a vane which moves to the right at constant velocity v. on a
frictionless cart. Compute (a) the force F, required to restrain the cart and (b)
the power p delivered to the cart. Also find the cart velocity for which (c) the
force £, is @a maximum and (d) the power p is a maximum.
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Solution:

Assume relative inertial coordinates with non-deforming CV i.e. CV moves
at constant translational non-accelerating

VCS = Ucgl + Vcs) + Wcsk = Vcl

then Vg =V =V ¢ . Also assume steady flow v = v(t) with p = constant and neglect
gravity effect.

Continuity:
_[ V,-ndA=0
cs

Bernoulli without gravity:

o 1 o 1
/pl/ +§IOVF221:,92/ +§/0VR22

VRl :VRZ
Since PNV A = PV, A,
A=A=A

Momentum:

YE=p| VgVg-ndA
cs—

zFx =—F = pf VrxVg - ndA
cs

—F = pVp 1(=Vr141) + pVg 2(VroA43)

0=p | Vgp-ndA
cs

—pVr141 + pVr2A4; = 0
Vr1d1 = VgoAy = (VJ - Vc) A;

VR1=VR,,1=Vj=V¢
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~F, = p(Vy ~ Vo) (V) ~ Ve)Ay] + p(V) — Vi) cos6 (1 — V)

Fe = p(V; = V¢)“4;[1 — cos 6]

Power = V.F, = Vcp(V; — VC)ZAj(l — cos6)

Fepae = PVPA (1 —cosB), V=0
Prax = ;—II; =0
Cc
P =Vep(V? —2VeV; + VE)A;(1 — cos 6)

= p(V?Ve — 2V2V; + Vg)Aj(1 — cos0)

dP
dVC_p(]

3V —4ViVe + V72 =0

— 4VeV; + 3VZ)A4;(1 —cos6) =0

+4V; + \/16111-2 — 12V

VC=

V(2
Py = 3P (?> A;j(1—cosB)

—4V3A(1 0)
=57 p cos
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5.3 Enerqy Equation

Derivation of the Enerqy Equation

The First Law of Thermodynamics

The difference between the heat added to a system and the work
done by a system depends only on the initial and final states of
the system; that is, depends only on the change in energy E:
principle of conservation of energy

AE=Q-W

AE = change in energy
Q = heat added to the system
W = work done by the system

E = E, + Ex + E, = total energy of the system

'\ ¥ potential energy
Kinetic energy

Internal energy due to molecular motion

The differential form of the first law of thermodynamics
expresses the rate of change of E with respect to time

dE . .
—=Q-W
\ rate of work being done by system

rate of heat transfer to system
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Enerqy Equation for Fluid Flow

The energy equation for fluid flow is derived from Reynolds
transport theorem with

Bsystem = E = total energy of the system (extensive property)

B = E/mass = e = energy per unit mass (intensive property)
=U+ecte

GE_d
dt  dt’®v

. . d R -
Q-W =5 Cvp(u+ek+ep)d¥+fcsp(u+ek+ep)\i-d_A

pedV + [cspeV - dA

This can be put in a more useable form by noting the following:

_ Total KE of masswith velocityV ~ AMV?/2  V?

mass AM 2
Ep _ 'YAVZ _

ep = =
AM  pAV

ey V-V,

gz (for E, due to gravity only)

> 0.

2 2
—~W d p(V?+gz+dol++Cp[V?+gz+G]\i-d_A

| & \
rate of work rate of change flux of energy
done by system of energy in CV out of CV

(ie, across CS)
rate of heat

transfer to sysem
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Rate of Work Components: W =W, + W,

For convenience of analysis, work is divided into shaft work W
and flow work Wx

W; = net work done on the surroundings as a result of
normal and tangential stresses acting at the control
surfaces

- Wf pressure + Wf shear

W, = any other work transferred to the surroundings
usually in the form of a shaft which either takes
energy out of the system (turbine) or puts energy into
the system (pump)

Flow work due to pressure forces Wz, (for system)
Note: here V' uniform over A

System at time t

Work = force x distance
at 2 W, = p,A; x VLAt (on surroundings)
rate of work= W, =p,A,V, =p,V,-A,

neg. sign since pressure at1 W;=-p;A; x V1At
force on surrounding W, =p,V; A
fluid acts in a direction

opposite to the motion

of the system boundary
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In general,

Wfp =pV-A
for more than one control surface and V not necessarily uniform
over A:

Wfp = ICS py -dA = ICS P(EJM -dA

Wi = Wi, + Wgpear

Basic form of energy equation

Q _Ws _Wfshear o ICS P (%j\i ’ d_A

d V? n V? .
% cV,o(7+ gz+ujd\7¢+J‘CSp(7+ gz+u]\i-d_A

Q-W, -W —ijl £+gz+0 dv-
S shear dt CV'O 2

Usually this term can be V 2 . P
eliminated by proper choice of +I p|l—+0z+u+— |V-dA
CV, i.e. CS normal to flow lines. cs 2 o,

Also, at fixed boundaries the T

velocity is zero (no slip h=enthalpy
condition) and no shear stress

flow work is done. Not included

or discussed in text!
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Simplified Forms of the Enerqy Equation

Energy Equation for Steady One-Dimensional Pipe Flow

Consider flow through the pipe system as shown

‘\ws

Energy Equation (steady flow)

- M * V2 p A
Q-W,=| p|—+09z+—+U |V -dA

3
Q-W, +| £&+gz +ujp1V1Al+J ﬁdﬁﬁ
Al p A
_I (—+gz +U jpzv A2+j '02 : dA,

*Although the velocity varies across the flow sections the
streamlines are assumed to be straight and parallel,
consequently, there is no acceleration normal to the streamlines

and the pressure is hydrostatically distributed, i.e., p/p +gz =
constant.
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*Furthermore, the internal energy u can be considered as
constant across the flow sections, i.e. T = constant. These
quantities can then be taken outside the integral sign to yield

v, 4 Pigz v Vi

Q Ws+[p +921+U1JPIA1V1dA&+PIAi 5 dA
(Peygr 4 v,

_(,0 JrgzeruzJ,o_[AQVZdA2 +,o_[A2 5 dA,

Recallthat Q=[V-dA=VA

So that p[V-dA=pVA=m mass flow rate
3 —3 —2
Define: ij—dAzapVAzaV m
A2 2 2

S M — .
K.E. flux K.E. flux for V=V =constant across pipe

3
l.e., o= 1 | (X) dA = Kkinetic energy correction factor
AV

—2 —2
Q-W +[%+ gzl+l]1+alv71]m:(%+ gzz+ﬁz+azv72]m

—2 —2

1,. . p ~ Vi P ~ V2
E(Q—W) —+ + gzl+u1+a17=—2+gzz+u2+a27

Note that: a =1 if V is constant across the flow section
a > 11f V is nonuniform

|—= "
— e -

laminar flow o = 2 turbulent flow o = 1.05 ~ 1 may be used
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Shaft Work

Shaft work is usually the result of a turbine or a pump in the
flow system. When a fluid passes through a turbine, the fluid is
doing shaft work on the surroundings; on the other hand, a pump
does work on the fluid

W, =W, - W, where W, and W, are

time
Using this result in the energy equation and deviding by g
results in

magnitudes of power (Workj

W 2 77 G,-0 G

_—p-l-&-l-zl-l-alvl :V_Vt +p2+22+a2V2 e ke W Q

mg 7y 2 mg vy 2 g mg
mechanical part thermal part

Note: each term has dimensions of length
Define the following:

" mg pQg 1Q
W
hy=——"
mg
e e Q _ head loss
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Head Loss

In a general fluid system a certain amount of mechanical energy
Is converted to thermal energy due to viscous action. This effect
results in an increase in the fluid internal energy. Also, some
heat will be generated through energy dissipation and be lost

(i.e. -Q). Therefore the term

/ from 2" law
represents a loss in

U, — Q )
h = -—>0 mechanical energy due
to viscous stresses

Note that adding Q to system will not make h, = 0 since this

also increases Au. It can be shown from 2" law of
thermodynamics that h_ > 0.

Drop — over V and understand that V in energy equation refers
to average velocity.

Using the above definitions in the energy equation results in
(steady 1-D incompressible flow)

2 2

V;
&+oc1—+zl+hp _|O—2+oc2—+zz+ht+hL

2 2
Q g Y g -

form of energy equation used for this course!
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Comparison of Energy Equation and Bernoulli Equation

Apply energy equation to a stream tube without any shaft work

=

& F |

Infinitesimal stream tube = OL1=02=

2
Energy eq : &+—+z _p—2+—+z +h,

29 Y 29

elf h =0 (i.e., u = 0) we get Bernoulli equation and
conservation of mechanical energy along a streamline

e Therefore, energy equation for steady 1-D pipe flow can be
interpreted as a modified Bernoulli equation to include viscous
effects (h.) and shaft work (h, or h)

Summary of the Energy Equation

The energy equation is derived from RTT with

B = E = total energy of the system

B =e=E/M =energy per unit mass
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9E _ 9 1 oedvr [peV-dA=Q-W
dt dtcy cs I
heat work
add done

Neglected in text presentation

W=WS+W|O+\N'V

WA

done on or pressure Viscous stress
by system  work done work on CS
(pump or on CS

turbine)
W, = [pV-dA =p(p/p)V -dA
cVv CS
W, = W, - W,

from 1% Law of
Thermodynamics

Q- W, +W, _ JpedV + [p(e+p/e)V -dA
dt cv cs

e:0+%vz+gz

For steady 1-D pipe flow (one inlet and one outlet):

1) Streamlines are straight and parallel
= p/p +gz = constant across CS
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2) T = constant = u = constant across CS

3
3) define « _1 [ (XJ dA = KE correction factor
Acs\V

2

= ij3dA apv A:aV?m
: Thermal
mechanical energy
5 ——— 5 / energy
P, Yz en =P2ig Y2y ih +h
1 1 p 2 2 t L
Y 29 Y 29
Y Note: each term
=W, /m
IO/ g @
_\W, /g units of length
t V is average velocity
G -d O (vector dropped) and
h =—% . - g~ head loss corrected by o

> 0 represents loss in mechanical energy due to viscosity
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Concept of Hydraulic and Energy Grade Lines

2 2
&+alv—1+zl+hp :|O—2+oc2V—2+z2 +h +h_
Y 29 Y 29
Define HGL = P47 point-by-point
Y application is
p ve | graphically

HGL corresponds to pressure tap measurement + z
EGL corresponds to stagnation tube measurement + z

FGL and HGL EGL=HGLifV=0
EGL; =EGL; + h. T \ EGL L V2
for by =he=0 ol e ) "o
é\ W i.e., linear variation in L for D,
T V, and f constant
i \‘\»\* f = friction factor
) = T f=f(Re)
FIGURE 7.4 i 2
BGL and HGL in a l
straight pipe. Datum

pressure tap: P2 _ h
! h = height of fluid in

- . P V22 tan/tub
stagnation tube: —+a2—:h ap/tube
Y g

EGLl + hp - EGL2 + ht + h|_
EGL2 - EGLl + hp - ht - h|_

H_J
abrupt \f L V2

change due e
to h, or h;
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Helpful hints for drawing HGL and EGL

1. EGL = HGL + aV?/2g = HGL for V =0

2
2.&3. h :f%V— in pipe means EGL and HGL will slope

29
downward, except for abrupt changes due to h; or h,

FIGURE 7.5 o ~
Rise in EGL and HGL A%%‘Et tise Iin
e to ehi”a
HGL and EGL
[ EGL
2 TR e ——
P1 Vi py Vi
_+Zl+—:_+22 L2
h,, head given
y 29 y zg up to turbine
HGLZ = EGLl _ hL
2
V -
h| = ——for abrupt expansion
29 Gradual expansion of conduit atlows e
wcrortne e e

duee to furbine. hence the HGL. approaches the EGL.
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4.p=0=HGL=z

2
5. for h =f£v— = constant x L

2

) T~ I.e., linearly increased for
2
EGL/HGL slope downward increasing L with s|0pe i\z/_g

6. for change in D = change in V
3\
Le.  V/AI=V,A
. Ez 2w D2 change in distance between
v, "L v, ™2\ = HGL & EGL and slope
24 , 4 change due to change in h.

Va
Large EE because

smaller pipe here

Steeper EGL and HGL
because greater 4,
per length of pipe

Head ioss
at outlet
£ EGL and HGL
Y ~
\L"-;“:“ ““““““““““““““
N
_j/’ ...... -

FIGURE 7.8 .
Change in EGL and HGL
due to change in

diameter of pipe.
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7. IfHGL <zthenp/y<0 i.e., cavitation possible

HGL and EGL

. P . P
Positive 7 Negative

Va
FIGURE 7.9 2
Subatmospheric pressure
z= 0

when pipe is above HGL.

condition for cavitation:

N
P=Pys = 2000—2
m
N
gage pPressure Py, g =Pa =Pam ® —Pam = _100’000F
Pya.g ~—10m
Y

\ 9810 N/m?
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108 4 Energy Considerations in Steady Flow
4,15 METHOD OF SOLUTION OF FLOW PROBLEMS

For the solutions of probiems of liquid flow thers are two Tundamental equa-
tons, the equation of continuity (3.10} and the energy equation in one of the
forms from Eqgs. {4.5) to {4.10). The following procedure may be employed:

. Choose a datum plane through any convenient point.

2. Note at what sections the velocity is known or is to be assumed. If at any
point the section area is greal compared with its value elsewhers, the velocity
head is sc small that it may be disragarded.

3, Note at what points the pressure is known or is to be assumed. In a body of
Hquid at rest with a free surface the pressure is known at every point within
the body. The pressure in a jet is the same as that of the medium surrounding
the jet.

4. Mote whether or not there is any point where afl three terms, pressure, ele-
vation, and velocity, are known.

5. Note whether or not there is any point where there is only one unknown
quantity,

it is generally possible Lo write an energy equation that wili fulfill conditions
4 and 3. If there are two unknowns in the equation, then the continuity equation
must be used also. The application of these principles is shown in the following
lustrative examples.

Hlustrative Example 4.7 A pipeline with 2 pump leads to a nozzle as shown in the ACCOmPany-
ing Agure. Find the fow rate when the nump develons 3 head of 88 f1. Assame that the head loss in
the d-in-diameter pipe may be expressed by b, = TF%72y, while the head loss in the 4-in-diameter pipe
is iy = 12¥5/29. Sketch the energy line and hydraulic grade line, and find the pressure head at the
suction side of the pamp.

Sgfect the datum as the elevation of the water surface jn the reservolr. Note from continuity that

Vo = (71, = 0251, and Ve = 3PV, = 0.363F,

where V; i3 the jet velocity. Writing an etiergy cguation from the surface of the resarvoir to the jet,

yl VI
'(zr +%+4)uhb,+h,—hh=zs+§%+i

2g ¥
Pi Vi Vi
3+ SN QR . AR T, Tl P SO R |
2g 3 2g

Express ait velocities in terms of ¥

50,254, (0.5633,)7 i
Stk Y/ B L | ot S S
g 2g g

¥, = 29.7 fps

3 z
0= dy ¥y = E‘(E) 297 = 145 chs

iy
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4.15 Method of Solution of Flow Problems 115

K Head loss in suction pipe:
VIOH025KE 031292
hf. el 5— = =
g 2g ig

ER

¥Head loss in discharge pipe:

12(0.563%,)%
120385 $01ft
ig g

v vi vi
— = 13T — =430 — =086 =090
2y 2y 2a

The energy bine and hydrawlic grade %ine are drawn on the figure to scale. Inspection of the figuse

shows that the pressure head on the suction side of the pump is pgir = 148 {1 Likewise, the pressure
head al any point in the pipe may be (ound if the Hpure i3 1o scale.

v
g

: . 137
S ar 22l L} ey 8o

A ) /ﬁﬁﬁ'i
g g}ﬁ[,= 4.3"i/ Flev. 70

o r
]

3" diam jat ;3

8" diarm.

4

Elev. 50

‘..-': B £
Y PRI IRy, “‘}'M-LK
Hllnatrative Fxample 4.7

A
&
D=§E4li°,.xi“.\.\nh

k] e

Hhustrative Example 48 Given the two-dimensional flow as shown in the accompenying figure.
Determine the flow rate. Assume no head toss,

-

I R 1. .....,w\( -

. I3
h ;'ﬁ'rh b a2 7
" e, L 1 1{3
WY .-
[ -
=
5 7€
poi v ",

. Fluscrative Example 4.8

‘,‘{‘KP
=7 Yo,
g LR

i .
e p Ay
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Application of the Energy, Momentum, and
Continuity Equations in Combination

In general, when solving fluid mechanics problems, one should
use all available equations in order to derive as much
information as possible about the flow. For example, consistent
with the approximation of the energy equation we can also apply
the momentum and continuity equations

Energy:
v/ Vs
&+a1—1+zl +h, :|O—2+oc2—2+z2 +h,+h,
Y 29 Y 29
Momentum: \
YF =pV;A, —pVPA; =pQ(V, -V;) | oneinletand
» one outlet
Continuity: p = constant
AV, = AV, =Q = constant
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Abrupt Expansion

Consider the flow from a small pipe to a larger pipe. Would like
to know h_ = h. (V1,V,). Analytic solution to exact problem is
extremely difficult due
to the occurrence of
flow separations and
turbulence. However, if
the assumption is made
that the pressure in the
separation region
remains approximately
constant and at the
value at the point of
separation, i.e, p1, an approximate solution for h,_ is possible:

Apply Energy Eq from 1-2 (o; = o, = 1)
2 2

V V
&+zl+—1=p—2+22 +—2+h,

Y 29 v 29
Momentum eg. For CV shown (shear stress neglected)

> =pA;, —pA, -Wsina =3 puV-A

/ =pV1(-V1A,) +pV, (V,A,)
yAZLE =pV; A, —pVPA,
——
W sin a
next divide momentum equation by yA,
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P1 Py

Y oY g g A,

— 7
~—

from energy equation

V_22_V_12_|_h _V22_V12 Al
29 29 - g g A,
2 2
ho= Ve Vi 2A
20 29 A,

h, = i{v; +V2 —2Vf %}

29 2
H_/
-2V,
1 2
h =—[V,-V
L zg[ 2 1]
If V, << Vj,
h, =2 \2

Vz2 _V12 A :Vl2 A (Al _1j

g A\A,

( continutity eq.

V1A1 - V2A2
A _Ve
AZ Vl
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Forces on Transitions

Example 7-6
30-cm diameter _ Q = _707 m3/S
B 20 e 2
head loss = .1V—2
29

(empirical equation)

e . Fluid = water
- \ommmmooSeos i p1 = 250 kPa
— [ . —x D1=30cm
3 e N— N D, =20 cm
[ ’ /o Fx="?

Control surface

First apply momentum theorem
Z I:x = Zpuy ) A
Fx + p1A1 — P2A2 = pVi(=V1iA1) + pV2a(V2A,)

Fx = pQ(V2— V1) — p1As + poA,

\ force required to hold transition in place
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The only unknown in this equation is p,, which can be obtained
from the energy equation.

\V& V?
L M P 2 +h, note:z;=z,and o =1

Yy 20 vy 29

Vi Vf .
=p,—-y| —=——"+Nh drop in pressure
P2 =P Y{ 29 2g L pImnp
ViV
=1 PQ(Vz —V1)+A{p1 _Y(ﬁ_iJr hLJ:| —PA;
B; (note: if p, = 0 same as nozzle)
In this equation, continuity — A;Vi = AV,
A
V, = Q/A; = 10 m/s V, = A—lVl
V, = Q/A, = 22. _ 2
’ leg > ms l.e. Vo>V,
h, =.1-%=258m
29
F,=-8.15 kN IS negative x direction to hold

transition in place
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