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Chapter 3 Bernoulli Equation 
3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 

1) A streamline  𝜓�𝑥, 𝑡� is a line that is everywhere tangent to the velocity 
vector at a given instant. 

 
Examples of streamlines around an airfoil (left) and a car (right) 

2) A pathline is the actual path traveled by a given fluid particle. 

 
An illustration of pathline (left) and an example of pathlines, motion of water induced by surface waves (right) 

3) A streakline is the locus of particles which have earlier passed through a 
particular point.   

 
An illustration of streakline (left) and an example of streaklines, flow past a full-sized streamlined vehicle in the GM aerody-

namics laboratory wind tunnel, and 18-ft by 34-ft test section facilility by a 4000-hp, 43-ft-diameter fan (right) 
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Note: 

1. For steady flow, all 3 coincide. 
2. For unsteady flow, 𝜓(𝑡) pattern changes with time, whereas pathlines and 

streaklines are generated as the passage of time 

Streamline: 

By definition we must have 𝑉 × 𝑑𝑟 = 0 which upon expansion yields the 
equation of the streamlines for a given time 𝑡 = 𝑡1 

𝑑𝑥
𝑢

=
𝑑𝑦
𝑣

=
𝑑𝑧
𝑤

= 𝑑𝑠 

where 𝑠 = integration parameter.  So if (𝑢, 𝑣, 𝑤) know, integrate with respect to 𝑠 
for 𝑡 = 𝑡1 with I.C. (𝑥0, 𝑦0, 𝑧0, 𝑡1) at 𝑠 = 0 and then eliminate 𝑠. 

Pathline: 

The path line is defined by integration of the relationship between velocity 
and displacement. 

𝑑𝑥
𝑑𝑡

= 𝑢    
𝑑𝑦
𝑑𝑡

= 𝑣    
𝑑𝑧
𝑑𝑡

= 𝑤 

Integrate 𝑢, 𝑣, 𝑤 with respect to 𝑡 using I.C. (𝑥0, 𝑦0, 𝑧0, 𝑡0) then eliminate 𝑡. 

Streakline: 

To find the streakline, use the integrated result for the pathline retaining 
time as a parameter.  Now, find the integration constant which causes the path-
line to pass through (𝑥0, 𝑦0, 𝑧0) for a sequence of time 𝜉 < 𝑡.  Then eliminate 𝜉. 

 

  



57:020 Mechanics of Fluids and Transport Processes 
Professor Fred Stern  Fall 2014 
 

Chapter 3 
3 

3.2 Streamline Coordinates 

Equations of fluid mechanics can be expressed in different coordinate sys-
tems, which are chosen for convenience, e.g., application of boundary conditions: 
Cartesian (𝑥, 𝑦, 𝑧) or orthogonal curvilinear (e.g., 𝑟, 𝜃, 𝑧) or non-orthogonal curvi-
linear.  A natural coordinate system is streamline coordinates (𝑠, 𝑛, ℓ); however, 
difficult to use since solution to flow problem (V) must be known to solve for 
steamlines. 

For streamline coordinates, since V is tangent to 𝑠 there is only one velocity 
component. 

V�𝑥, 𝑡� = 𝑣𝑠�𝑥, 𝑡�𝒔� + 𝑣𝑛�𝑥, 𝑡�𝒏� 

where 𝑣𝑛 = 0 by definition. 

 

Figure 4.8 Streamline coordinate system for two-dimensional flow. 

The acceleration is 

𝑎 =
𝐷V
𝐷𝑡

=
𝜕V
𝜕𝑡

+ �V ⋅ ∇�V 

where, 

∇=
𝜕
𝜕𝑠
𝒔� +

𝜕
𝜕𝑛

𝒏�;     V ⋅ ∇= 𝑣𝑠
𝜕
𝜕𝑠
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𝑎 = 𝑎𝑠𝒔� + 𝑎𝑛𝒏� =
𝜕V
𝜕𝑡

+ 𝑣𝑠
𝜕V
𝜕𝑠

                                                 

                           = �
𝜕𝑣𝑠
𝜕𝑡

𝒔� + 𝑣𝑠
𝜕𝒔�
𝜕𝑡
� + 𝑣𝑠 �

𝜕𝑣𝑠
𝜕𝑠

𝒔� + 𝑣𝑠
𝜕𝒔�
𝜕𝑠
� 

 

Figure 4.9 Relationship between the unit vector along the streamline, 𝒔�, and the radius of 
curvature of the streamline, 𝕽 

Space increment 

 

 

 

𝒔� +
𝜕𝜃
𝜕𝑠

𝑑𝑠𝒏� = 𝒔� +
𝜕𝒔�
𝜕𝑠
𝑑𝑠 

𝜕𝒔�
𝜕𝑠

=
𝒏�
ℜ

 

Time increment 

 

 

 

𝒔� +
𝜕𝒔�
𝜕𝑠
𝑑𝑠 𝜕𝜃

𝜕𝑠
𝑑𝑠𝒏� 

𝑑𝜃 

𝒔� 

𝑑𝑠 = ℜ𝑑𝜃 
Normal to 𝑠̂ 

𝒔� +
𝜕𝒔�
𝜕𝑡
𝑑𝑡 𝜕𝜃

𝜕𝑡
𝑑𝑡𝒏� 

𝑑𝜃 

𝒔� 

𝒔� +
𝜕𝜃
𝜕𝑡
𝑑𝑡𝒏� = 𝒔� +

𝜕𝒔�
𝜕𝑡
𝑑𝑡 

𝜕𝒔�
𝜕𝑡

=
𝜕𝜃
𝜕𝑡
𝒏� 
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𝑎 = �
𝜕𝑣𝑠
𝜕𝑡

+ 𝑣𝑠
𝜕𝑣𝑠
𝜕𝑠

� 𝒔� + �𝑣𝑠
𝜕θ
𝜕𝑡���

𝜕𝑣𝑛 𝜕𝑡⁄

+
𝑣𝑠2

ℜ
�𝒏� 

or 

𝑎𝑠 =
𝜕𝑣𝑠
𝜕𝑡

+ 𝑣𝑠
𝜕𝑣𝑠
𝜕𝑠

,   𝑎𝑛 =
𝜕𝑣𝑛
𝜕𝑡

+
𝑣𝑠2

ℜ
 

where, 

 
𝜕𝑣𝑠
𝜕𝑡

 = local 𝑎𝑠 in 𝑠̂ direction 

𝜕𝑣𝑛
𝜕𝑡

 = local 𝑎𝑛 in 𝑛� direction 

𝑣𝑠
𝜕𝑣𝑠
𝜕𝑠

 = convective 𝑎𝑠 due to spatial gradient of V  

i.e. convergence /divergence 𝜓 

𝑣𝑠2

ℜ
 = convective 𝑎𝑛 due to curvature of  : centrifugal accerleration 
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3.3 Bernoulli Equation 

Consider the small fluid particle of size 𝛿𝑠 by 𝛿𝑛 in the plane of the fig-
ure and 𝛿𝑦 normal to the figure as shown in the free-body diagram below. For 
steady and inviscid flow, the components of Newton’s second law along the 
streamline and normal directions can be written as following: 

 

1) Along a streamline 

 𝛿𝑚 ⋅ 𝑎𝑠 = ∑𝛿𝐹𝑠 = 𝛿𝒲𝑠 + 𝛿𝐹𝑝𝑠 

where, 

  𝛿𝑚 ⋅ 𝑎𝑠 = (𝜌𝛿V) ⋅ �𝑣𝑠
𝜕𝑣𝑠
𝜕𝑠
� 

 𝛿𝒲𝑠 = −𝛾𝛿V sin 𝜃 

  𝛿𝐹𝑝𝑠 = (𝑝 − 𝛿𝑝𝑠)𝛿𝑛𝛿𝑦 − (𝑝 + 𝛿𝑝𝑠)𝛿𝑛𝛿𝑦 = −2𝛿𝑝𝑠𝛿𝑛𝛿𝑦 

            = −𝜕𝑝
𝜕𝑠
𝛿V 

Thus, 

 (𝜌𝛿V) ⋅ �𝑣𝑠
𝜕𝑣𝑠
𝜕𝑠
� = −𝜕𝑝

𝜕𝑠
𝛿V − 𝛾𝛿V sin𝜃 

𝛿𝑝𝑠 = 𝜕𝑝
𝜕𝑠

𝛿𝑠
2

  
1st order Taylor Series  
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 𝜌 �𝑣𝑠
𝜕𝑣𝑠
𝜕𝑠
� = −𝜕𝑝

𝜕𝑠
− 𝛾 sin𝜃 

         = − 𝜕
𝜕𝑠

(𝑝 + 𝛾𝑧)  

   → change in speed due to 𝜕𝑝
𝜕𝑠

 and 𝜕𝑧
𝜕𝑠

 (i.e. 𝒲 along 𝒔�) 

 

2) Normal to a streamline 

 𝛿𝑚 ⋅ 𝑎𝑛 = ∑𝛿𝐹𝑛 = 𝛿𝒲𝑛 + 𝛿𝐹𝑝𝑛 

where,  

  𝛿𝑚 ⋅ 𝑎𝑛 = (𝜌𝛿V) ⋅ �𝑣𝑠
2

ℜ� 

  𝛿𝒲𝑛 = −𝛾𝛿V cos𝜃  

  𝛿𝐹𝑝𝑛 = (𝑝 − 𝛿𝑝𝑛)𝛿𝑠𝛿𝑦 − (𝑝 + 𝛿𝑝𝑛)𝛿𝑠𝛿𝑦 = −2𝛿𝑝𝑛𝛿𝑠𝛿𝑦 

            = −𝜕𝑝
𝜕𝑛
𝛿V  

Thus, 

 (𝜌𝛿V) ⋅ �𝑣𝑠
2

ℜ� = − 𝜕𝑝
𝜕𝑛
𝛿V − 𝛾𝛿V cos𝜃  

 𝜌 𝑣𝑠
2

ℜ = −𝜕𝑝
𝜕𝑛
− 𝛾 cos𝜃 

          = − 𝜕
𝜕𝑛

(𝑝 + 𝛾𝑧)  

   → streamline curvature is due to 𝜕𝑝
𝜕𝑛

 and 𝜕𝑧
𝜕𝑛

 (i.e. 𝒲 along 𝒏�) 

 

 

𝛿𝑝𝑛 = 𝜕𝑝
𝜕𝑛

𝛿𝑛
2

  
1st order Taylor Series  

sin𝜃 =
𝑑𝑧
𝑑𝑠

 

cos𝜃 =
𝑑𝑧
𝑑𝑛
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In a vector form: 

  𝜌𝑎 = −∇(𝑝 + 𝛾𝑧)            (Euler equation) 

or   𝜌 �𝑣𝑠
𝜕𝑣𝑠
𝜕𝑠
𝒔� + 𝑣𝑠2

ℜ
𝒏�� = −� 𝜕

𝜕𝑠
𝒔� + 𝜕

𝜕𝑛
𝒏�� (𝑝 + 𝛾𝑧)  

Steady flow, 𝜌 = constant, 𝒔� equation 

  𝜌𝑣𝑠
𝜕𝑣𝑠
𝜕𝑠

= − 𝜕
𝜕𝑠

(𝑝 + 𝛾𝑧)  

  𝜕
𝜕𝑠
�𝑣𝑠

2

2
+ 𝑝

𝜌
+ 𝑔𝑧� = 0  

∴    
𝑣𝑠2

2
+
𝑝
𝜌

+ 𝑔𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
�����������������

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

 

Steady flow, 𝜌 = constant, 𝒏� equation 

  𝜌 𝑣𝑠2

ℜ
= − 𝜕

𝜕𝑛
(𝑝 + 𝛾𝑧)  

∴   �
𝑣𝑠2

ℜ
𝑑𝑛 +

𝑝
𝜌

+ 𝑔𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

For curved streamlines 𝑝 + 𝛾𝑧 (= constant for static fluid) decreases in the 𝑛� di-
rection, i.e. towards the local center of curvature. 

It should be emphasized that the Bernoulli equation is restricted to the fol-
lowing: 

• inviscid flow 
• steady flow 
• incompressible flow 
• flow along a streamline 

Note that if in addition to the flow being inviscid it is also irrotational, i.e. 
rotation of fluid = 𝜔 = vorticity = ∇ × V = 0, the Bernoulli constant is same for all 𝜓, 
as will be shown later. 
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3.4 Physical interpretation of Bernoulli equation 

Integration of the equation of motion to give the Bernoulli equation actual-
ly corresponds to the work-energy principle often used in the study of dynamics.  
This principle results from a general integration of the equations of motion for an 
object in a very similar to that done for the fluid particle.  With certain assump-
tions, a statement of the work-energy principle may be written as follows: 

The work done on a particle by all forces acting on the particle is equal to 
the change of the kinetic energy of the particle. 

The Bernoulli equation is a mathematical statement of this principle. 

In fact, an alternate method of deriving the Bernoulli equation is to use the 
first and second laws of thermodynamics (the energy and entropy equations), ra-
ther than Newton’s second law.  With the approach restrictions, the general en-
ergy equation reduces to the Bernoulli equation. 

An alternate but equivalent form of the Bernoulli equation is 

𝑝
𝛾

+
𝑉2

2𝑔
+ 𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

along a streamline. 

Pressure head: 
𝑝
𝛾

 

Velocity head: 
𝑉2

2𝑔
 

Elevation head: 𝑧 

The Bernoulli equation states that the sum of the pressure head, the velocity 
head, and the elevation head is constant along a streamline. 
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3.5 Static, Stagnation, Dynamic, and Total Pressure 

𝑝 +
1
2
𝜌𝑉2 + 𝛾𝑧 = 𝑝𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

along a streamline. 

Static pressure: 𝑝 

Dynamic pressure: 1
2
𝜌𝑉2 

Hydrostatic pressure: 𝛾𝑧 

 

Stagnation points on bodies in flowing fluids. 

Stagnation pressure: 𝑝 + 1
2
𝜌𝑉2 (assuming elevation effects are negligible) where 

𝑝 and 𝑉 are the pressure and velocity of the fluid upstream of stagnation 
point.  At stagnation point, fluid velocity 𝑉 becomes zero and all of the ki-
netic energy converts into a pressure rize. 

Total pressure: 𝑝𝑇 = 𝑝 + 1
2
𝜌𝑉2 + 𝛾𝑧 (along a streamline) 
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The Pitot-static tube (left) and typical Pitot-static tube designs (right). 

 

 

Typical pressure distribution along a Pitot-static tube. 
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3.6 Applications of Bernoulli Equation 

1) Stagnation Tube 

 

 

𝑝1 + 𝜌
𝑉12

2
= 𝑝2 + 𝜌

𝑉22

2
 

𝑉12 =
2
𝜌

(𝑝2 − 𝑝1) 

=
2
𝜌

(𝛾𝑙) 

𝑉1 = �2𝑔𝑙 

𝑧1 = 𝑧2 

𝑝1 = 𝛾𝑑,   𝑉2 = 0 

𝑝2 = 𝛾(𝑙 + 𝑑)  𝑔𝑎𝑔𝑒 

 

Limited by length of tube and need 
for free surface reference 
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2) Pitot Tube 

 

 

𝑝1
𝛾

+
𝑉12

2𝑔
+ 𝑧1 =

𝑝2
𝛾

+
𝑉22

2𝑔
+ 𝑧2 

 

𝑉2 = �2𝑔 ��
𝑝1
𝛾

+ 𝑧1�����
ℎ1

� − �
𝑝2
𝛾

+ 𝑧2�����
ℎ2

���

1
2

 

where, 𝑉1 = 0 and ℎ = piezometric head 

 

𝑉 = 𝑉2 = �2𝑔(ℎ1 − ℎ2) 

ℎ1 − ℎ2 from manometer or pressure gage 

 

For gas flows or when Δ𝑧 is small, i.e.,  Δ𝑝 𝛾⁄ ≫ Δ𝑧, 

𝑉 = �
2Δ𝑝
𝜌
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3) Free Jets 

 

Vertical flow from a tank 

Application of Bernoulli equation between points (1) and (2) on the streamline 
shown gives 

𝑝1 +
1
2
𝜌𝑉12 + 𝛾𝑧1 = 𝑝2 +

1
2
𝜌𝑉22 + 𝛾𝑧2 

Since 𝑧1 = ℎ, 𝑧2 = 0, 𝑉1 ≈ 0, 𝑝1 = 0, 𝑝2 = 0, we have 

𝛾ℎ =
1
2
𝜌𝑉22 

𝑉2 = �2
𝛾ℎ
𝜌

= �2𝑔ℎ 

Bernoulli equation between points (1) and (5) gives 

𝑉5 = �2𝑔(ℎ + 𝐻) 
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4) Simplified form of the continuity equation 

 

 

Steady flow into and out of a tank 

 

Obtained from the following intuitive arguments: 

Volume flow rate: 𝑄 = 𝑉𝐴 

Mass flow rate: 𝑚̇ = 𝜌𝑄 = 𝜌𝑉𝐴 

 

Conservation of mass requires 

𝜌1𝑉1𝐴1 = 𝜌2𝑉2𝐴2 

 

For incompressible flow 𝜌1 = 𝜌2, we have 

𝑉1𝐴1 = 𝑉2𝐴2 

or  

𝑄1 = 𝑄2 
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5) Volume Rate of Flow (flowrate, discharge) 

1. Cross-sectional area oriented normal to velocity vector  
    (simple case where 𝑉 ⊥ 𝐴) 

 

𝑈 = constant: 𝑄 = volume flux = 𝑈𝐴 [m/s × m2 = m3/s] 

𝑈 ≠ constant: 𝑄 = ∫ 𝑈𝑑𝐴𝐴  

Similarly the mass flux = 𝑚̇ = ∫ 𝜌𝑈𝑑𝐴𝐴  

2. General case 

 

 

 

 

 

𝑄 = � V ⋅ 𝒏𝑑𝐴
𝐶𝑆

 

= � �V� cos𝜃 𝑑𝐴
𝐶𝑆

 

𝑚̇ = � 𝜌�V ⋅ 𝒏�𝑑𝐴
𝐶𝑆

 

Average velocity: 

𝑉� =
𝑄
𝐴
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Example: 

At low velocities the flow through a long circular tube, i.e. pipe, has a para-
bolic velocity distribution (actually paraboloid of revolution). 

𝑢 = 𝑢𝑚𝑎𝑥 �1 − �
𝑟
𝑅
�
2
� 

where, 𝑢𝑚𝑎𝑥 = centerline velocity 

 

a) find 𝑄 and 𝑉�  

𝑄 = � V ⋅ 𝒏
𝐴

𝑑𝐴 = � 𝑢𝑑𝐴
𝐴

 

� 𝑢𝑑𝐴
𝐴

= � � 𝑢(𝑟)𝑟𝑑𝜃𝑑𝑟
𝑅

0

2𝜋

0
 

= 2𝜋� 𝑢(𝑟)𝑟𝑑𝑟
𝑅

0
 

where, 𝑑𝐴 = 2𝜋𝑟𝑑𝑟, 𝑢 = 𝑢(𝑟) and not 𝜃, ∴  ∫ 𝑑𝜃2𝜋
0 = 2𝜋 

𝑄 = 2𝜋� 𝑢𝑚𝑎𝑥 �1 − �
𝑟
𝑅
�
2
� 𝑟𝑑𝑟

𝑅

0
=

1
2
𝑢𝑚𝑎𝑥𝜋𝑅2 

𝑉� =
𝑄
𝐴

=
𝑢𝑚𝑎𝑥

2
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6) Flowrate measurement 

Various flow meters are governed by the Bernoulli and continuity equations. 

 

Typical devices for measuring flowrate in pipes. 

Three commonly used types of flow meters are illustrated: the orifice me-
ter, the nozzle meter, and the Venturi meter.  The operation of each is based on 
the same physical principles—an increase in velocity causes a decrease in pres-
sure.  The difference between them is a matter of cost, accuracy, and how closely 
their actual operation obeys the idealized flow assumptions. 

We assume the flow is horizontal (𝑧1 = 𝑧2), steady, inviscid, and incom-
pressible between points (1) and (2).  The Bernoulli equation becomes: 

𝑝1 +
1
2
𝜌𝑉12 = 𝑝2 +

1
2
𝜌𝑉22 
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If we assume the velocity profiles are uniform at sections (1) and (2), the continui-
ty equation can be written as: 

𝑄 = 𝑉1𝐴1 = 𝑉2𝐴2 

where 𝐴2 is the small (𝐴2 < 𝐴1) flow area at section (2).  Combination of these 
two equations results in the following theoretical flowrate 

𝑄 = 𝐴2�
2(𝑝1 − 𝑝2)

𝜌[1 − (𝐴2 𝐴1⁄ )2] 

assumed vena contracta = 0, i.e., no viscous effects. Otherwise, 

𝑄 = 𝐶𝐶𝐴𝐶�
2(𝑝1 − 𝑝2)

𝜌[1 − (𝐴2 𝐴1⁄ )2] 

where 𝐶𝐶  = contraction coefficient 

     
A smooth, well-contoured nozzle (left) and a sharp corner (right) 

The velocity profile of the left nozzle is not uniform due to differences in el-
evation, but in general 𝑑 ≪ ℎ and we can safely use the centerline velocity, 𝑉2, as 
a reasonable “average velocity.”   

For the right nozzle with a sharp corner, 𝑑𝑗 will be less than 𝑑ℎ.  This phe-
nomenon, called a vena contracta effect, is a result of the inability of the fluid to 
turn the sharp 90° corner. 
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Figure 3.14 Typical flow patterns and contraction coefficients 

The vena contracta effect is a function of the geometry of the outlet.  Some 
typical configurations are shown in Fig. 3.14 along with typical values of the ex-
perimentally obtained contraction coefficient, 𝐶𝐶 = 𝐴𝑗 𝐴ℎ⁄ , where 𝐴𝑗 and 𝐴ℎ are 
the areas of the jet a the vena contracta and the area of the hole, respectively. 
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∴   𝑉1 =
𝑧2
𝑧1
𝑉2 

1
2
𝜌 �𝑧2

𝑧1
𝑉2�

2
+ 𝛾𝑧1 = 1

2
𝜌𝑉22 + 𝛾𝑧2  

∴   𝑉2 = �2𝑔(𝑧1−𝑧2)
1−(𝑧2 𝑧1⁄ )2  

Other flow meters based on the Bernoulli equation are used to measure 
flowrates in open channels such as flumes and irrigation ditches.  Two of these 
devices, the sluice gate and the sharp-crested weir, are discussed below under 
the assumption of steady, inviscid, incompressible flow. 

 

Sluice gate geometry 

We apply the Bernoulli and continuity equations between points on the free sur-
faces at (1) and (2) to give: 

𝑝1 +
1
2
𝜌𝑉12 + 𝛾𝑧1 = 𝑝2 +

1
2
𝜌𝑉22 + 𝛾𝑧2 

and  

𝑄 = 𝑉1𝐴1 = 𝑏𝑉1𝑧1 = 𝑉2𝐴2 = 𝑏𝑉2𝑧2 

With the fact that 𝑝1 = 𝑝2 = 0: 

𝑄 = 𝐴2𝑉2 = 𝑧2𝑏�
2𝑔(𝑧1 − 𝑧2)
1 − (𝑧2 𝑧1⁄ )2 

In the limit of 𝑧1 ≫ 𝑧2, then 𝑉2 ≈ �2𝑔𝑧1: 

𝑄 = (𝑧2𝑏)𝑉2 = 𝑧2𝑏�2𝑔𝑧1 
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Rectangular, sharp-crested weir geometry 

For such devices the flowrate of liquid over the top of the weir plate is de-
pendent on the weir height, 𝑃𝑤, the width of the channel, 𝑏, and the head, 𝐻, of 
the water above the top of the weir.  Between points (1) and (2) the pressure and 
gravitational fields cause the fluid to accelerate from velocity 𝑉1 to velocity 𝑉2. At 
(1) the pressure is 𝑝1 = 𝛾ℎ, while at (2) the pressure is essentially atmospheric, 
𝑝2 = 0.  Across the curved streamlines directly above the top of the weir plate 
(section a–a), the pressure changes from atmospheric on the top surface to some 
maximum value within the fluid stream and then to atmospheric again at the bot-
tom surface. 

For now, we will take a very simple approach and assume that the weir flow 
is similar in many respects to an orifice-type flow with a free streamline. In this 
instance we would expect the average velocity across the top of the weir to be 
proportional to �2𝑔𝐻 and the flow area for this rectangular weir to be propor-
tional to 𝐻𝑏. Hence, it follows that 

𝑄 = 𝐶1𝐻𝑏�2𝑔𝐻 = 𝐶1𝑏�2𝑔𝐻
3
2 
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3.7 Energy grade line (EGL) and hydraulic grade line (HGL) 

This part will be covered later at Chapter 5. 

 

 

 

3.8 Limitations of Bernoulli Equation 

Assumptions used in the derivation Bernoulli Equation: 

(1) Inviscid  
(2) Incompressible  
(3) Steady  
(4) Conservative body force 

1) Compressibility Effects:  

The Bernoulli equation can be modified for compressible flows.  A simple, 
although specialized, case of compressible flow occurs when the temperature of a 
perfect gas remains constant along the streamline—isothermal flow.  Thus, we 
consider 𝑝 = 𝜌𝑅𝑇, where 𝑇 is constant (In general, 𝑝, 𝜌, and 𝑇 will vary).  An 
equation similar to the Bernoulli equation can be obtained for isentropic flow of a 
perfect gas.  For steady, inviscid, isothermal flow, Bernoulli equation becomes 

𝑅𝑇�
𝑑𝑝
𝑝

+
1
2
𝑉2 + 𝑔𝑧 = 𝑐𝑜𝑛𝑠𝑡 

The constant of integration is easily evaluated if 𝑧1, 𝑝1, and 𝑉1 are known at some 
location on the streamline.  The result is 

𝑉12

2𝑔
+ 𝑧1 +

𝑅𝑇
𝑔

ln �
𝑝1
𝑝2
� =

𝑉22

2𝑔
+ 𝑧2 
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2) Unsteady Effects:  

The Bernoulli equation can be modified for unsteady flows. With the inclu-
sion of the unsteady effect (𝜕𝑉 𝜕𝑡⁄ ≠ 0) the following is obtained: 

𝜌 𝜕𝑉
𝜕𝑡
𝑑𝑠 + 𝑑𝑝 + 1

2
𝜌𝑑(𝑉2) + 𝛾𝑑𝑧 = 0 (along a streamline) 

For incompressible flow this can be easily integrated between points (1) and (2) to 
give 

𝑝1 + 1
2
𝜌𝑉12 + 𝛾𝑧1 = 𝜌 ∫ 𝜕𝑉

𝜕𝑡 
𝑑𝑠𝑠2

𝑠1
+ 𝑝2 + 1

2
𝜌𝑉22 + 𝛾𝑧2 (along a streamline) 

3) Rotational Effects 

Care must be used in applying the Bernoulli equation across streamlines.  If 
the flow is “irrotational” (i.e., the fluid particles do not “spin” as they move), it is 
appropriate to use the Bernoulli equation across streamlines.  However, if the 
flow is “rotational” (fluid particles “spin”), use of the Bernoulli equation is re-
stricted to flow along a streamline. 

4) Other Restrictions 

Another restriction on the Bernoulli equation is that the flow is inviscid. The 
Bernoulli equation is actually a first integral of Newton's second law along a 
streamline.  This general integration was possible because, in the absence of vis-
cous effects, the fluid system considered was a conservative system. The total en-
ergy of the system remains constant.  If viscous effects are important the system 
is nonconservative and energy losses occur.  A more detailed analysis is needed 
for these cases. 

The Bernoulli equation is not valid for flows that involve pumps or turbines.  
The final basic restriction on use of the Bernoulli equation is that there are no 
mechanical devices (pumps or turbines) in the system between the two points 
along the streamline for which the equation is applied.  These devices represent 
sources or sinks of energy.  Since the Bernoulli equation is actually one form of 
the energy equation, it must be altered to include pumps or turbines, if these are 
present. 
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