
Calculation of drag force on the airfoil using integral analysis 
 
Consider an experiment in which the drag on an airfoil immersed in a steady 
incompressible flow can be determined from measurement of the velocity 
distributions far upstream and downstream of the body (figure below).  
1. Velocity far upstream is the uniform flow U∞, 
2. Velocity in the wake of the body is measured by Hotwire/Pitot probe to be 
    u(y), which is less than U∞ due to the drag of the airfoil.  
3. Objective: Find the drag force D per unit length of the airfoil.  
 
Method 1: Choose control volume that follows streamline 
 

 
 
 
Solution:  
Find relation between H and b using Mass conservation 
Since we choose the streamline as the control volume, there is no mass flow 
across it. n is the unit normal vector. 
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Momentum balance 
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The pressure is uniform and so there is no net pressure force. The flow is 
assumed to be incompressible and steady, so the momentum conservation 
equation without any unsteady terms applies only across section 1 and 3. 
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Where, b is the width of the airfoil span and c is the chord length. 
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Substitute H from mass balance equation 



Example 
 
U∞ = 7.04m/s, b = 0.762m, c = 0.3048m, ρ = 1.21 kg/m3  

Hotwire velocity profile in the airfoil wake

u(y) = (y+9.15)/1.36

u(y) =(y+0.26)/0.37

u(y) = (0.094-y)/0.023

u(y) =(9.32-y)/1.40
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Hotwire velocity profile in the wake for AOA = 4 
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Note: The velocity profile in the wake is not symmetrical due to airfoil shape 
and angle of attack. Each of the four equations has different y limits. 
 



Cd versus angle of attack
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Comparison of drag data with benchmark 
 

Method 2: Rectangular control volume  
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Drag from integral 
method = 0.028 



Solution:  
Use Mass conservation 
There is outflow of mass and x-momentum through sections 2 and 4 as well. 
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where, 
•
2m  and 

•
4m are the mass fluxes through sections 2 and 4 

respectively and  
•
2m ≠ 

•
4m . 

 
Momentum balance 
Note: It is assumed that the x-directional velocity at surfaces 2 and 4 are 
nearly U∞. This means that the momentum fluxes through sections 2 and 4 in 

the x-direction are equal to U∞

•
2m and U∞

•
4m  respectively. Multiplying both 

sides of the mass conservation equation by U∞ we get; (Mf is the momentum 
flux) 

 
 
 
 

We already know that; 
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The momentum equation can be expressed as 
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Note: Even if the mass fluxes 
through sections 2 and 4 are not 
symmetrical this method is still 
applicable and gives the same 
result as the streamline control 
volume approach.


