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System vs. Control volume
• System: A collection of real matter of fixed identity.

• Control volume (CV): A geometric or an imaginary volume in space 
through which fluid may flow. A CV may move or deform.

57:020 Fluids Mechanics Fall2016 2



Laws of Mechanics for a System
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Laws of mechanics are written for a system, i.e., for a fixed amount of matter

• Conservation of mass
𝐷𝐷𝑚𝑚sys

𝐷𝐷𝐷𝐷
= 0

• Conservation of momentum
𝐷𝐷 𝑚𝑚𝑉𝑉 sys

𝐷𝐷𝐷𝐷 = 𝐹𝐹

• Conservation of energy
𝐷𝐷𝐸𝐸sys
𝐷𝐷𝐷𝐷 = 𝑄̇𝑄 − 𝑊̇𝑊

Governing Differential Eq. (GDE):

∴
𝐷𝐷
𝐷𝐷𝐷𝐷 𝑚𝑚,𝑚𝑚𝑉𝑉,𝐸𝐸

system extensive
properties, 𝐵𝐵sys

= RHS



Reynolds Transport Theorem (RTT)
• In fluid mechanics, we are usually interested in a region of space, i.e., 

CV and not particular systems. Therefore, we need to transform GDE’s 
from a system to a CV, which is accomplished through the use of RTT

𝐷𝐷𝐵𝐵sys
𝐷𝐷𝑡𝑡

time rate of change
of 𝐵𝐵 for a system

=
𝐷𝐷
𝐷𝐷𝑡𝑡

�
CV 𝑥𝑥,𝑡𝑡

𝛽𝛽𝛽𝛽𝛽𝛽𝑉𝑉

time rate of change
of 𝐵𝐵 in CV

+ �
CS 𝑥𝑥,𝑡𝑡

𝛽𝛽𝛽𝛽𝑉𝑉𝑅𝑅 ⋅ 𝑑𝑑𝐴𝐴

net flux of 𝐵𝐵
across CS

where, 𝛽𝛽 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1,𝑉𝑉, 𝑒𝑒 for 𝐵𝐵 = (𝑚𝑚,𝑚𝑚𝑉𝑉,𝐸𝐸)

• Fixed CV,

𝐷𝐷𝐵𝐵sys
𝐷𝐷𝐷𝐷 =

𝜕𝜕
𝜕𝜕𝑡𝑡 �CV

𝛽𝛽𝛽𝛽𝛽𝛽𝑉𝑉 + �
CS
𝛽𝛽𝛽𝛽𝑉𝑉 ⋅ 𝑑𝑑𝐴𝐴
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Note:

𝐵𝐵CV = �
CV
𝛽𝛽𝛽𝛽𝛽𝛽 = �

CV
𝛽𝛽𝛽𝛽𝛽𝛽𝑉𝑉

𝐵̇𝐵CS = �
CS
𝛽𝛽𝛽𝛽𝑚̇𝑚 = �

CS
𝛽𝛽𝜌𝜌𝑉𝑉 ⋅ 𝑑𝑑𝐴𝐴



Continuity Equation
• RTT with 𝐵𝐵 = 𝑚𝑚 and 𝛽𝛽 = 1,

𝜕𝜕
𝜕𝜕𝑡𝑡
�
CV
𝜌𝜌𝜌𝜌𝑉𝑉 + �

CS
𝜌𝜌𝑉𝑉 ⋅ 𝑑𝑑𝐴𝐴 = 0

• Steady flow,

�
CS
𝜌𝜌𝑉𝑉 ⋅ 𝑑𝑑𝐴𝐴 = 0

• Simplified form,

∑𝑚̇𝑚out − ∑𝑚̇𝑚in = 0

• Conduit flow with one inlet (1) and one outlet (2):

𝜌𝜌2𝑉𝑉2𝐴𝐴2 − 𝜌𝜌1𝑉𝑉1𝐴𝐴1 = 0

If 𝜌𝜌 = constant,
𝑉𝑉1𝐴𝐴1 = 𝑉𝑉2𝐴𝐴2
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Note: 𝑚̇𝑚 = 𝜌𝜌𝜌𝜌 = 𝜌𝜌𝜌𝜌𝜌𝜌



Momentum Equation
• RTT with 𝐵𝐵 = 𝑚𝑚𝑉𝑉 and 𝛽𝛽 = 𝑉𝑉,

𝜕𝜕
𝜕𝜕𝑡𝑡
�
CV
𝑉𝑉𝜌𝜌𝜌𝜌𝑉𝑉 + �

CS
𝑉𝑉𝜌𝜌𝑉𝑉 ⋅ 𝑑𝑑𝐴𝐴 = ∑𝐹𝐹

• Simplified form:

∑ 𝑚̇𝑚𝑉𝑉 out − ∑ 𝑚̇𝑚𝑉𝑉 in = ∑𝐹𝐹

or in component forms,

∑ 𝑚̇𝑚𝑢𝑢 out − ∑ 𝑚̇𝑚𝑢𝑢 in = ∑𝐹𝐹𝑥𝑥
∑ 𝑚̇𝑚𝑣𝑣 out − ∑ 𝑚̇𝑚𝑣𝑣 in = ∑𝐹𝐹𝑦𝑦
∑ 𝑚̇𝑚𝑤𝑤 out − ∑ 𝑚̇𝑚𝑤𝑤 in = ∑𝐹𝐹𝑧𝑧
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Note: If 𝑉𝑉 = 𝑢𝑢𝒊̂𝒊 + 𝑣𝑣𝒋̂𝒋 + 𝑤𝑤�𝒌𝒌
is normal to CS, 𝑚̇𝑚 = 𝜌𝜌𝜌𝜌𝜌𝜌, 
where 𝑉𝑉 = 𝑉𝑉 .



Momentum Equation – Contd.
• External forces:

∑𝐹𝐹 = ∑𝐹𝐹body + ∑𝐹𝐹surface + ∑𝐹𝐹other

o ∑𝐹𝐹body = ∑𝐹𝐹gravity

• ∑𝐹𝐹gravity: gravity force (i.e., weight)

o ∑𝐹𝐹Surface = ∑𝐹𝐹pressure + ∑𝐹𝐹friction

• ∑𝐹𝐹pressure: pressure forces normal to CS
• ∑𝐹𝐹friction: viscous friction forces tangent to CS

o ∑𝐹𝐹other: anchoring forces or reaction forces
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Note: Shearing forces can be avoided by carefully selecting 
the CV such that CS’s are parallel with the flow direction. 



Example (Bend)
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This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Example (Bend) – Contd.
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𝑄𝑄 = 0.4 ⁄m3 s
𝐷𝐷1 = 0.4 m
𝐷𝐷2 = 0.2 m

𝑉𝑉1 = 𝑄𝑄
𝐴𝐴1

= 𝑄𝑄
⁄𝜋𝜋𝐷𝐷12 4

= 0.4
⁄𝜋𝜋 0.4 2 4

= 3.18 ⁄m s

𝑉𝑉2 = 𝑄𝑄
𝐴𝐴2

= 𝑄𝑄
⁄𝜋𝜋𝐷𝐷22 4

= 0.4
⁄𝜋𝜋 0.2 2 4

= 12.73 ⁄m s

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Example (Bend) – Contd.
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𝑥𝑥-momentum:

�𝐹𝐹𝑥𝑥 = 𝑚̇𝑚𝑢𝑢 out − 𝑚̇𝑚𝑢𝑢 in

Thus,
−𝐹𝐹𝐴𝐴𝐴𝐴 + 𝑝𝑝1𝐴𝐴1 + 𝑝𝑝2𝐴𝐴2 cos 45∘
= 𝜌𝜌𝜌𝜌 −𝑉𝑉2 cos 45∘ − 𝜌𝜌𝜌𝜌 𝑉𝑉1

or
𝐹𝐹𝐴𝐴𝐴𝐴 = 𝑝𝑝1𝐴𝐴1 + 𝑝𝑝2𝐴𝐴2 cos 45∘ + 𝜌𝜌𝜌𝜌 𝑉𝑉1 + 𝑉𝑉2 cos 45∘

= 150,000
𝜋𝜋 0.4 2

4 + 50,000
𝜋𝜋 0.2 2

4 cos 45∘

+ 999 4 3.18 + 12.73 cos 45∘

∴ 𝐹𝐹𝐴𝐴𝐴𝐴 = 25,700 N

𝐹𝐹𝐴𝐴𝐴𝐴
𝑝𝑝1𝐴𝐴1

𝑝𝑝2𝐴𝐴2

𝑉𝑉1

𝑉𝑉2

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Example (Bend) – Contd.
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𝑧𝑧-momentum:

�𝐹𝐹𝑧𝑧 = 𝑚̇𝑚𝑤𝑤 out − 𝑚̇𝑚𝑤𝑤 in

Thus,
−𝐹𝐹𝐴𝐴𝐴𝐴 + 𝑝𝑝2𝐴𝐴2 sin 45∘ − 𝑊𝑊𝑤𝑤 −𝑊𝑊𝑒𝑒
= 𝜌𝜌𝜌𝜌 −𝑉𝑉2 sin 45∘ − 𝜌𝜌𝜌𝜌 0

or
𝐹𝐹𝐴𝐴𝐴𝐴 = 𝑝𝑝2𝐴𝐴2 cos 45∘ − 𝛾𝛾𝑉𝑉𝑤𝑤 −𝑊𝑊𝑒𝑒 + 𝜌𝜌𝜌𝜌 𝑉𝑉2 sin 45∘

= 50,000
𝜋𝜋 0.2 2

4 sin 45∘ − 9800 0.2 − 12 9.81
+ 999 4 12.73 sin 45∘

∴ 𝐹𝐹𝐴𝐴𝐴𝐴 = 8,920 N

𝐹𝐹𝐴𝐴𝐴𝐴

𝑝𝑝1𝐴𝐴1

𝑝𝑝2𝐴𝐴2

𝑉𝑉1

𝑉𝑉2

𝑊𝑊𝑤𝑤 = 𝛾𝛾𝑉𝑉𝑤𝑤

𝑊𝑊𝑒𝑒

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Typical Example (1): Vane
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Energy eq.:

𝑝𝑝1 +
1
2
𝜌𝜌𝑉𝑉12 + 𝑧𝑧1 = 𝑝𝑝2 +

1
2
𝜌𝜌𝑉𝑉22 + 𝑧𝑧2 + ℎ𝐿𝐿

with 𝑝𝑝1 = 𝑝𝑝2 = 0, 𝑧𝑧1 ≈ 𝑧𝑧2, and ℎ𝐿𝐿 ≈ 0,

∴ 𝑉𝑉1 = 𝑉𝑉2 = 𝑉𝑉𝑗𝑗
Continuity:

𝑉𝑉1𝐴𝐴1 = 𝑉𝑉2𝐴𝐴2 = 𝑉𝑉𝑗𝑗𝐴𝐴𝑗𝑗 ⇒ 𝑚̇𝑚 = 𝜌𝜌𝑉𝑉𝑗𝑗𝐴𝐴𝑗𝑗

𝑥𝑥-momentum:
𝐹𝐹𝑥𝑥 = 𝑚̇𝑚 −𝑉𝑉2 cos𝜃𝜃

out
− 𝑚̇𝑚 𝑉𝑉1

in

𝑦𝑦-momentum:
𝐹𝐹𝑦𝑦 −𝑊𝑊fluid −𝑊𝑊vane = 𝑚̇𝑚 −𝑉𝑉2 sin𝜃𝜃

out
− 𝑚̇𝑚 0

in

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Typical Example (2): Nozzle
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Continuity:
𝑉𝑉1𝐴𝐴1 = 𝑉𝑉2𝐴𝐴2

𝑚̇𝑚 = 𝜌𝜌𝑉𝑉1𝐴𝐴1 = 𝜌𝜌𝑉𝑉2𝐴𝐴2

Energy eq. with 𝑝𝑝2 = 0 and 𝑧𝑧1 = 𝑧𝑧2:

𝑝𝑝1 +
1
2𝜌𝜌𝑉𝑉1

2 =
1
2𝜌𝜌𝑉𝑉2

2 + ℎ𝐿𝐿

𝑥𝑥-momentum:
𝑅𝑅𝑥𝑥 + 𝑝𝑝1𝐴𝐴1 = 𝑚̇𝑚 𝑉𝑉2

out
− 𝑚̇𝑚 𝑉𝑉1

in

𝑦𝑦-momentum:
𝑅𝑅𝑦𝑦 −𝑊𝑊fluid −𝑊𝑊nozzle = 𝑚̇𝑚 0

out
− 𝑚̇𝑚 0

in

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Typical Example (3): Bend
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Continuity:
𝑉𝑉1𝐴𝐴1 = 𝑉𝑉2𝐴𝐴2

𝑚̇𝑚 = 𝜌𝜌𝑉𝑉1𝐴𝐴1 = 𝜌𝜌𝑉𝑉2𝐴𝐴2

Energy eq.:

𝑝𝑝1 +
1
2𝜌𝜌𝑉𝑉1

2 + 𝑧𝑧1 = 𝑝𝑝2 +
1
2𝜌𝜌𝑉𝑉2

2 + 𝑧𝑧2 + ℎ𝐿𝐿

𝑥𝑥-momentum:
𝑅𝑅𝑥𝑥 + 𝑝𝑝1𝐴𝐴1 − 𝑝𝑝2𝐴𝐴2 cos𝜃𝜃 = 𝑚̇𝑚 𝑉𝑉2 cos𝜃𝜃

out
− 𝑚̇𝑚 𝑉𝑉1

in

𝑦𝑦-momentum:
𝑅𝑅𝑦𝑦 + 𝑝𝑝2𝐴𝐴2 sin𝜃𝜃 −𝑊𝑊fluid −𝑊𝑊bend = 𝑚̇𝑚 −𝑉𝑉2 sin𝜃𝜃

out
− 𝑚̇𝑚 0

in

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Typical Example (4): Sluice gate
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Continuity:
𝑉𝑉1 𝑦𝑦1𝑏𝑏 = 𝑉𝑉2 𝑦𝑦2𝑏𝑏

𝑚̇𝑚 = 𝜌𝜌𝑉𝑉1 𝑦𝑦1𝑏𝑏 = 𝜌𝜌𝑉𝑉2 𝑦𝑦2𝑏𝑏

Energy (Bernoulli) eq. with 𝑝𝑝1 = 𝑝𝑝2 and ℎ𝐿𝐿 ≈ 0:

1
2 𝜌𝜌𝑉𝑉1

2 + 𝑦𝑦1 =
1
2𝜌𝜌𝑉𝑉2

2 + 𝑦𝑦2

𝑥𝑥-momentum:

𝐹𝐹𝐺𝐺𝐺𝐺 + 𝛾𝛾
𝑦𝑦1
2 𝑦𝑦1𝑏𝑏
𝑝̅𝑝1𝐴𝐴1

− 𝛾𝛾
𝑦𝑦2
2 𝑦𝑦2𝑏𝑏
𝑝̅𝑝2𝐴𝐴2

= 𝑚̇𝑚 𝑉𝑉2
out

− 𝑚̇𝑚 𝑉𝑉1
in

𝑦𝑦-momentum:
0 = 𝑚̇𝑚 0

out
− 𝑚̇𝑚 0

in

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Energy Equation
• RTT with 𝐵𝐵 = 𝐸𝐸 and 𝛽𝛽 = 𝑒𝑒,

𝜕𝜕
𝜕𝜕𝑡𝑡
�
CV
𝑒𝑒𝜌𝜌𝜌𝜌𝑉𝑉 + �

CS
𝑒𝑒𝜌𝜌𝑉𝑉 ⋅ 𝑑𝑑𝐴𝐴 = 𝑄̇𝑄 − 𝑊̇𝑊

• Simplified form:

𝑝𝑝in
𝛾𝛾 + 𝛼𝛼in

𝑉𝑉in2

2g + 𝑧𝑧in + ℎ𝑝𝑝 =
𝑝𝑝out
𝛾𝛾 + 𝛼𝛼out

𝑉𝑉out2

2g + 𝑧𝑧out + ℎ𝑡𝑡 + ℎ𝐿𝐿

• 𝑉𝑉 in energy equation refers to average velocity �𝑉𝑉

• 𝛼𝛼 : kinetic energy correction factor = �
1 for uniform flow across CS

2 for laminar pipe flow
≈ 1 for turbulent pipe flow

57:020 Fluids Mechanics Fall2016 16



Energy Equation - Contd.
Uniform flow across CS’s:

𝑝𝑝1
𝛾𝛾

+
𝑉𝑉12

2g
+ 𝑧𝑧1 + ℎ𝑝𝑝 =

𝑝𝑝2
𝛾𝛾

+
𝑉𝑉22

2g
+ 𝑧𝑧1 + ℎ𝑡𝑡 + ℎ𝐿𝐿

• Pump head ℎ𝑝𝑝 = 𝑊̇𝑊𝑝𝑝

𝑚̇𝑚g
= 𝑊̇𝑊𝑝𝑝

𝜌𝜌𝜌𝜌g
= 𝑊̇𝑊𝑝𝑝

𝛾𝛾𝛾𝛾
⇒ 𝑊̇𝑊𝑝𝑝 = 𝑚̇𝑚gℎ𝑝𝑝 = 𝜌𝜌g𝑄𝑄ℎ𝑝𝑝 = 𝛾𝛾𝛾𝛾𝛾𝑝𝑝

• Turbine head ℎ𝑡𝑡 = 𝑊̇𝑊𝑡𝑡
𝑚̇𝑚g

= 𝑊̇𝑊𝑡𝑡
𝜌𝜌𝜌𝜌g

= 𝑊̇𝑊𝑡𝑡
𝛾𝛾𝛾𝛾

⇒ 𝑊̇𝑊𝑡𝑡 = 𝑚̇𝑚gℎ𝑡𝑡 = 𝜌𝜌g𝑄𝑄ℎ𝑡𝑡 = 𝛾𝛾𝛾𝛾𝛾𝑡𝑡

• Head loss ℎ𝐿𝐿 = ⁄loss g = ⁄�𝑢𝑢2 − �𝑢𝑢1 g − ⁄𝑄̇𝑄 𝑚̇𝑚g > 0

57:020 Fluids Mechanics Fall2016 17



Example (Pump)
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Energy equation:

𝑝𝑝1
𝛾𝛾

+
𝑉𝑉12

2g
+ 𝑧𝑧1 + ℎ𝑝𝑝 =

𝑝𝑝2
𝛾𝛾

+
𝑉𝑉22

2g
+ 𝑧𝑧2 + ℎ𝑡𝑡 + ℎ𝐿𝐿

With 𝑝𝑝1 = 𝑝𝑝2 = 0, 𝑉𝑉1 = 𝑉𝑉2 ≈ 0, ℎ𝑡𝑡 = 0, and ℎ𝐿𝐿 = 23 m

ℎ𝑝𝑝 = 𝑧𝑧2 − 𝑧𝑧1 + ℎ𝐿𝐿 = 45 + 23 = 68 m

Pump power,

𝑊̇𝑊𝑝𝑝 = 𝛾𝛾𝛾𝛾ℎ𝑝𝑝 =
68 9790 0.03

746 = 80 hp

(Note: 1 hp = 746 N⋅m/s = 550 ft⋅lbf/s)

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Example (Turbine)
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Energy equation:

𝑝𝑝1
𝛾𝛾

+
𝑉𝑉12

2𝑔𝑔
+ 𝑧𝑧1 + ℎ𝑝𝑝 =

𝑝𝑝2
𝛾𝛾

+
𝑉𝑉22

2𝑔𝑔
+ 𝑧𝑧2 + ℎ𝑡𝑡 + ℎ𝐿𝐿

With 𝑝𝑝1 = 𝑝𝑝2 = 0, 𝑉𝑉1 = 𝑉𝑉2 ≈ 0, ℎ𝑝𝑝 = 0, and ℎ𝐿𝐿 = 35 m

ℎ𝑡𝑡 = 𝑧𝑧1 − 𝑧𝑧2 − ℎ𝐿𝐿 = 120 − 35 = 85 m

Pump power,

𝑊̇𝑊𝑡𝑡 = ℎ𝑡𝑡𝛾𝛾𝛾𝛾 = 85 9790 100 = 83.2 MW

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Differential Analysis
- Fluid Element Kinematics

• Linear deformation(dilatation): 𝛻𝛻 ⋅ 𝑉𝑉
⇒ if the fluid is incompressible 𝛁𝛁 ⋅ 𝑽𝑽 = 𝟎𝟎

• Rotation(vorticity): 𝜉𝜉 = 2𝜔𝜔 = 𝛻𝛻 × 𝑉𝑉
⇒ if the fluid is irrotational 𝛁𝛁 × 𝑽𝑽 = 𝟎𝟎

• Angular deformation is related to shearing stress
( e.g., 𝜏𝜏𝑖𝑖𝑖𝑖 = 2𝜇𝜇𝜀𝜀𝑖𝑖𝑖𝑖 for Newtonian fluids )
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Differential Analysis
- Mass Conservation

For a fluid particle,

lim
CV→0

�
CV

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕
𝑑𝑑𝑉𝑉 + �

𝐶𝐶𝐶𝐶
𝜌𝜌𝑉𝑉 ⋅ 𝑑𝑑𝐴𝐴

= lim
CV→0

�
CV

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝛻𝛻 ⋅ 𝜌𝜌𝑉𝑉 𝑑𝑑𝑉𝑉 = 0

∴
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝛻𝛻 ⋅ 𝜌𝜌𝑉𝑉 = 0

For an incompressible flow: 𝛻𝛻 ⋅ 𝑉𝑉 = 0
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Differential Analysis
- Momentum Conservation

⇒ 𝜌𝜌
𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕 + 𝑉𝑉 ⋅ 𝛻𝛻𝑉𝑉

=
𝐷𝐷𝑉𝑉
𝐷𝐷𝐷𝐷=𝑎𝑎

= −𝜌𝜌𝜌𝜌�𝑘𝑘
body force due to
gravity force

�−𝛻𝛻𝑝𝑝
pressure
force

+ 𝛻𝛻 ⋅ 𝜏𝜏𝑖𝑖𝑖𝑖
viscous shear

force
surface force

lim
CV→0

�
CV

𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

𝜌𝜌𝑑𝑑𝑉𝑉 + �
CS
𝑉𝑉𝜌𝜌𝑉𝑉 ⋅ 𝑑𝑑𝑑𝑑 = �𝐹𝐹

or

lim
CV→0

�
CV
𝜌𝜌

𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

+ 𝑉𝑉 ⋅ 𝛻𝛻𝑉𝑉 𝑑𝑑𝑉𝑉 = �𝐹𝐹

∴ 𝜌𝜌
𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕 + 𝑉𝑉 ⋅ 𝛻𝛻𝑉𝑉 = �𝑓𝑓 (𝑓𝑓 = 𝐹𝐹 per unit volume)
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Navier-Stokes Equations
For incompressible, Newtonian fluids,

• Continuity:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

• Momentum:

𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌g𝑥𝑥 + 𝜇𝜇
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

+
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑧𝑧2

𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌g𝑦𝑦 + 𝜇𝜇
𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑣𝑣
𝜕𝜕𝑦𝑦2

+
𝜕𝜕2𝑣𝑣
𝜕𝜕𝑧𝑧2

𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌g𝑧𝑧 + 𝜇𝜇
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2

+
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑧𝑧2
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Solving the NS Eqns

1) Set up the problem and geometry (e.g., sketches), identifying all relevant 
dimensions and parameters.

2) List all appropriate assumptions, approximations, simplifications, and 
boundary conditions.

3) Simplify the differential equations of motion (continuity and Navier-
Stokes) as much as possible.

4) Integrate the equations, leading to one or more constants of integration

5) Apply boundary conditions to solve for the constants of integration.

6) Verify your results.
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Exact Solutions of NS Eqns.
The flow of interest is assumed additionally (than incompressible & Newtonian), for 
example,

1) Steady (i.e., ⁄𝝏𝝏 𝝏𝝏𝝏𝝏 = 𝟎𝟎 for any variable)
2) Parallel such that the 𝑦𝑦-component of velocity is zero (i.e., 𝒗𝒗 = 𝟎𝟎)
3) Purely two dimensional (i.e., 𝒘𝒘 = 𝟎𝟎 and ⁄𝝏𝝏 𝝏𝝏𝝏𝝏 = 𝟎𝟎 for any velocity component)

e.g.)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

2)

+
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

3)

= 0

𝜌𝜌
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

1)

+ 𝑢𝑢
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

continuity

+ ⏞𝑣𝑣
2)𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

�
𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

3)

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜌𝜌g𝑥𝑥 + 𝜇𝜇

�𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

continuity

+
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2 +

�𝜕𝜕2𝑢𝑢
𝜕𝜕𝑧𝑧2

3)

or

∴ 𝜇𝜇
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑦𝑦2 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 − 𝜌𝜌g𝑥𝑥
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Boundary Conditions
Common BC’s:

• No-slip condition (𝑉𝑉fluid = 𝑉𝑉wall; for a stationary wall 𝑉𝑉fluid = 0)
• Interface boundary condition (𝑉𝑉𝐴𝐴 = 𝑉𝑉𝐵𝐵 and 𝜏𝜏𝑠𝑠,𝐴𝐴 = 𝜏𝜏𝑠𝑠,𝐵𝐵)
• Free-surface boundary condition (𝑝𝑝liquid = 𝑝𝑝gas and 𝜏𝜏𝑠𝑠,liquid = 0)
• Symmetry boundary condition

Other BC’s:
• Inlet/outlet boundary condition
• Initial condition (for unsteady flow problem)

57:020 Fluids Mechanics Fall2016 26



Example: No pressure gradient
57:020 Fluids Mechanics Fall2016 27

𝜇𝜇
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑦𝑦2

= 0

Integrate twice,
𝑢𝑢 𝑦𝑦 = 𝐶𝐶1𝑦𝑦 + 𝐶𝐶2

B.C.,
𝑢𝑢 0 = (𝐶𝐶1) 0 + 𝐶𝐶2 = 0 ⇒ 𝐶𝐶2 = 0

𝑢𝑢 𝑏𝑏 = 𝐶𝐶1 𝑏𝑏 + 𝐶𝐶2 = 𝑈𝑈 ⇒ 𝐶𝐶1 =
𝑈𝑈
𝑏𝑏

∴ 𝑢𝑢 𝑦𝑦 =
𝑈𝑈
𝑏𝑏 𝑦𝑦

Analysis:

𝜏𝜏𝑤𝑤 = 𝜇𝜇 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑦𝑦=0

= 𝜇𝜇
𝑈𝑈
𝑏𝑏 =

𝜇𝜇𝜇𝜇
𝑏𝑏

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Example: with Pressure Gradient
𝜇𝜇
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑦𝑦2

=
𝑑𝑑𝑝𝑝
𝑑𝑑𝑥𝑥

Integrate twice,

𝑢𝑢 𝑦𝑦 =
1
2𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑦𝑦2 + 𝐶𝐶1𝑦𝑦 + 𝐶𝐶2
B.C.,

𝑢𝑢 0 =
1
2𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

0 2 + 𝐶𝐶1 0 + 𝐶𝐶2 = 0 ⇒ 𝐶𝐶2 = 0

𝑢𝑢 𝑏𝑏 =
1
2𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑏𝑏 2 + 𝐶𝐶1 𝑏𝑏 + 𝐶𝐶2 = 0 ⇒ 𝐶𝐶1 = −
1
2𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑏𝑏

∴ 𝑢𝑢 𝑦𝑦 =
1
2𝜇𝜇

𝑑𝑑𝑝𝑝
𝑑𝑑𝑥𝑥

𝑦𝑦2 − 𝑏𝑏𝑏𝑏

Analysis:

𝑞𝑞 = �
−ℎ

ℎ
𝑢𝑢𝑢𝑢𝑢𝑢 = −

𝑏𝑏3

12𝜇𝜇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜏𝜏𝑤𝑤 = 𝜇𝜇 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑦𝑦=0

= −
𝑏𝑏
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

57:020 Fluids Mechanics Fall2016 28

Fixed plate
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Example: Inclined wall
𝜇𝜇
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑦𝑦2

= −𝜌𝜌g𝑥𝑥
Integrate twice,

𝑢𝑢 𝑦𝑦 = −
𝜌𝜌g𝑥𝑥
2𝜇𝜇

𝑦𝑦2 + 𝐶𝐶1𝑦𝑦 + 𝐶𝐶2
B.C.,

𝑢𝑢 0 = −
𝜌𝜌g𝑥𝑥
𝜇𝜇

0 2 + 𝐶𝐶1 0 + 𝐶𝐶2 = 0 ⇒ 𝐶𝐶2 = 0

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑦𝑦=ℎ

= −
𝜌𝜌g𝑥𝑥
𝜇𝜇

ℎ + 𝐶𝐶1 = 0 ⇒ 𝐶𝐶1 =
𝜌𝜌g𝑥𝑥
𝜇𝜇

ℎ

∴ 𝑢𝑢 𝑦𝑦 =
𝜌𝜌g𝑥𝑥
𝜇𝜇

ℎ𝑦𝑦 −
𝑦𝑦2

2
Analysis:

𝑞𝑞 = �
0

ℎ
𝑢𝑢𝑢𝑢𝑢𝑢 =

𝜌𝜌g𝑥𝑥
𝜇𝜇

ℎ3

3

𝜏𝜏𝑤𝑤 = 𝜇𝜇 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑦𝑦=0

= 𝜇𝜇
𝜌𝜌g𝑥𝑥
𝜇𝜇

ℎ = 𝜌𝜌g𝑥𝑥ℎ
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Note:
g = g𝑥𝑥𝚤̂𝚤 + g𝑦𝑦 ̂𝚥𝚥

where,
g𝑥𝑥 = g sin𝜃𝜃

g𝑦𝑦 = −g cos𝜃𝜃

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Buckingham Pi Theorem

• For any physically meaningful equation involving 𝒏𝒏 variables, such as

𝑢𝑢1 = 𝑓𝑓 𝑢𝑢2,𝑢𝑢3,⋯ , 𝑢𝑢𝑛𝑛

with minimum number of 𝒎𝒎 reference dimensions, the equation can be 
rearranged into product of 𝒓𝒓 dimensionless pi terms.

Π1 = 𝜙𝜙 Π2,Π3,⋯ ,Π𝑟𝑟

where,
𝒓𝒓 = 𝒏𝒏 −𝒎𝒎
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Repeating Variable Method
Example: The pressure drop per unit length Δ𝑝𝑝ℓ in a pipe flow is a function of 
the pipe diameter 𝐷𝐷 and the fluid density 𝜌𝜌, viscosity 𝜇𝜇, and velocity 𝑉𝑉.
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Repeating Variable Method – Contd.

Step 1: List all variables that are involved in the problem

Δ𝑝𝑝ℓ = 𝑓𝑓 𝐷𝐷,𝜌𝜌, 𝜇𝜇,𝑉𝑉

Step 2: Express each of the variables in terms of basic dimensions (either MLT or 
FLT system)

Step 3: Determine the required number of pi terms

𝑟𝑟 = 𝑛𝑛 − 𝑚𝑚 = 5 − 3 = 2

Step 4: Select 𝑚𝑚 = 3 repeating variables

𝐷𝐷 (for 𝐿𝐿),     𝑉𝑉 (for 𝑇𝑇), and     𝜌𝜌 (for 𝑀𝑀)
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Δ𝑝𝑝ℓ 𝐷𝐷 𝜌𝜌 𝜇𝜇 𝑉𝑉
𝑀𝑀𝐿𝐿−2𝑇𝑇−2 𝐿𝐿 𝑀𝑀𝑀𝑀−3 𝑀𝑀𝐿𝐿−1𝑇𝑇−1 𝐿𝐿𝑇𝑇−1

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Repeating Variable Method – Contd.
Step 5: Form a pi term for one of the non-repeating variables

Π1 = 𝐷𝐷𝑎𝑎𝑉𝑉𝑏𝑏𝜌𝜌𝑐𝑐Δ𝑝𝑝ℓ =̇ 𝐿𝐿 𝑎𝑎 𝐿𝐿𝑇𝑇−1 𝑏𝑏 𝑀𝑀𝐿𝐿−3 𝑐𝑐 𝑀𝑀𝐿𝐿−2𝑇𝑇−2 =̇ 𝑀𝑀0𝐿𝐿0𝑇𝑇0

∴ Π1 = 𝐷𝐷−1𝑉𝑉−2𝜌𝜌−1Δ𝑝𝑝ℓ =
Δ𝑝𝑝ℓ𝐷𝐷
𝜌𝜌𝑉𝑉2

Step 6: Repeat step 5 for each of the remaining non-repeating variables

Π2 = 𝐷𝐷𝑎𝑎𝑉𝑉𝑏𝑏𝜌𝜌𝑐𝑐𝜇𝜇 =̇ 𝐿𝐿 𝑎𝑎 𝐿𝐿𝑇𝑇−1 𝑏𝑏 𝑀𝑀𝐿𝐿−3 𝑐𝑐 𝑀𝑀𝐿𝐿−1𝑇𝑇−1 =̇ 𝑀𝑀0𝐿𝐿0𝑇𝑇0

∴ Π2 = 𝐷𝐷−1𝑉𝑉−1𝜌𝜌−1𝜇𝜇 =
𝜇𝜇

𝐷𝐷𝐷𝐷𝐷𝐷
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Repeating Variable Method – Contd.

Step 7: Check all the resulting pi terms to make sure they are 
dimensionless and independent

Π1 =
Δ𝑝𝑝ℓ𝐷𝐷
𝜌𝜌𝑉𝑉2

=̇ 𝐹𝐹0𝐿𝐿0𝑇𝑇0; Π2 =
𝜇𝜇

𝐷𝐷𝐷𝐷𝐷𝐷
=̇ 𝐹𝐹0𝐿𝐿0𝑇𝑇0

Step 8: Express the final form as a relationship among the pi terms

Π1 = 𝜙𝜙 Π2
or

Δ𝑝𝑝ℓ𝐷𝐷
𝜌𝜌𝑉𝑉2 = 𝜙𝜙

𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇
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Common Dimensionless Parameters 
for Fluid Flow Problems

57:020 Fluids Mechanics Fall2016 35

Dimensionless 
Groups

Symbol Definition Interpretation

Reynolds number Re 𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇

inertia force
viscous force

=
⁄𝜌𝜌𝑉𝑉2 𝐿𝐿
⁄𝜇𝜇𝜇𝜇 𝐿𝐿2

Froude number Fr
𝑉𝑉
𝑔𝑔𝑔𝑔

inertia force
gravity force

=
⁄𝜌𝜌𝑉𝑉2 𝐿𝐿
𝛾𝛾

Weber number We 𝜌𝜌𝑉𝑉2𝐿𝐿
𝜎𝜎

inertia force
surface tension force

=
⁄𝜌𝜌𝑉𝑉2 𝐿𝐿

⁄𝜎𝜎 𝐿𝐿2

Mach number Ma
𝑉𝑉
⁄𝐾𝐾 𝜌𝜌

=
𝑉𝑉
𝑎𝑎

indertia force
compressibility force

Euler number Cp
Δ𝑝𝑝
𝜌𝜌𝑉𝑉2

pressure force
inertia force

=
⁄Δ𝑝𝑝 𝐿𝐿
⁄𝜌𝜌𝑉𝑉2 𝐿𝐿



Similarity and Model Testing
If all relevant dimensionless parameters have the same corresponding 
values for model and prototype, flow conditions for a model test are 
completely similar to those for prototype.

For,
Π1 = 𝜙𝜙 Π2, … ,Π𝑛𝑛

Similarity requirements:
Π2,model = Π2,prototype

⋮
Π𝑛𝑛,model = Π𝑛𝑛,prototype

Prediction equation:
Π1,model = Π1,prototype

57:020 Fluids Mechanics Fall2016 36



Example (Model Testing)

Δ𝑝𝑝ℓ𝐷𝐷
𝜌𝜌𝑉𝑉2 = 𝜙𝜙

𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇
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Model Prototype

If,
𝜌𝜌𝑚𝑚𝑉𝑉𝑚𝑚𝐷𝐷𝑚𝑚
𝜇𝜇𝑚𝑚

=
𝜌𝜌𝑝𝑝𝑉𝑉𝑝𝑝𝐷𝐷𝑝𝑝
𝜇𝜇𝑝𝑝

similarity requirement

Then,
Δ𝑝𝑝ℓ𝑚𝑚𝐷𝐷𝑚𝑚
𝜌𝜌𝑚𝑚𝑉𝑉𝑚𝑚2

=
Δ𝑝𝑝ℓ𝑝𝑝𝐷𝐷𝑝𝑝
𝜌𝜌𝑝𝑝𝑉𝑉𝑝𝑝2

(Prediction equation)

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Example – Contd.
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Model (in water)
• 𝐷𝐷𝑚𝑚 = 0.1 m
• 𝜌𝜌𝑚𝑚 = 998 kg/m3

• 𝜇𝜇𝑚𝑚 = 1.12 × 10-3 N⋅s/m2

• 𝑉𝑉𝑚𝑚 = ?
• Δ𝑝𝑝ℓ𝑚𝑚 = 27.6 Pa/m

Prototype (in air)
• 𝐷𝐷𝑝𝑝 = 1 m
• 𝜌𝜌𝑝𝑝 = 1.23 kg/m3

• 𝜇𝜇𝑝𝑝 = 1.79 × 10-5 N⋅s/m2

• 𝑉𝑉𝑝𝑝 = 10 m/s
• Δ𝑝𝑝ℓ𝑚𝑚 = ?

Similarity requirement:

𝑉𝑉𝑚𝑚 =
𝜌𝜌𝑝𝑝
𝜌𝜌𝑚𝑚

𝜇𝜇𝑚𝑚
𝜇𝜇𝑝𝑝

𝐷𝐷𝑝𝑝
𝐷𝐷𝑚𝑚

𝑉𝑉𝑝𝑝 =
1.23
998

1.12 × 10−3

1.79 × 10−5
1

0.1 10 = 𝟕𝟕.𝟕𝟕𝟕𝟕 ⁄𝐦𝐦 𝐬𝐬

Prediction equation:

Δ𝑝𝑝ℓ𝑝𝑝 =
𝐷𝐷𝑚𝑚
𝐷𝐷𝑝𝑝

𝜌𝜌𝑝𝑝
𝜌𝜌𝑚𝑚

𝑉𝑉𝑝𝑝
𝑉𝑉𝑚𝑚

2

Δ𝑝𝑝ℓ𝑚𝑚 =
0.1
1

1.23
998

10
7.71

2

27.6 = 𝟓𝟓.𝟕𝟕𝟕𝟕 × 𝟏𝟏𝟏𝟏−𝟑𝟑 ⁄𝐏𝐏𝐏𝐏 𝐦𝐦

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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