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57:020 Fluids Mechanics Fall2016

System vs. Control volume

e System: A collection of real matter of fixed identity.

e Control volume (CV): A geometric or an imaginary volume in space
through which fluid may flow. A CV may move or deform.
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Laws of Mechanics for a System

Laws of mechanics are written for a system, i.e., for a fixed amount of matter

* Conservation of mass
Dmgys

Dt 0
e Conservation of momentum
D(mz)sys .
Dt —
e Conservation of energybE
svs s :
Dty =e-W

Governing Differential Eq. (GDE):

y D V,E) = RHS
i (mmV,E) =

system extensive
properties, Bgys




Reynolds Transport Theorem (RTT)

* In fluid mechanics, we are usually interested in a region of space, i.e.,
CV and not particular systems. Therefore, we need to transform GDE’s
from a system to a CV, which is accomplished through the use of RTT

D Bgys D
~oc| ppav+ [ ppv-da
Dt Dt CV(x,t) CcS(x,t)
time rate of change , . ;
f B for a svstem time rate of change net flux of B
0 d of Bin CV across CS
where ﬁ:d—B: (1 vV e)forB = (m,mV, E)
’ dm VA ) v,
e Fixed CV,
DBsys 0
Dt =a 'de¥+ 'szdé Note:
cv cS Bey = fc pam= | poa

BCS =J. 'Bdmz
S

[ pov-aa
C S

C
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Continuity Equation

RTTwithB=mandf =1,

0 -
| o [ pvean=o
0t Jey cs \\J =
Steady flow, \/ Fied T~
/ control \
V . dA — 0 { volume |
fcsp_ - '%H ,

Simplified form, " om?ﬁx_i\\
' t

Zmout - Zmin =0

Note: m = pQ = pVA

Conduit flow with one inlet (1) and one outlet (2):

p2V2A; — p1V14; =0 m—1

|
V| | - /.,
If p = COﬂStant, A‘-: p = constant :

V1A1 = V2A2 N

ViAI=VLA;

5
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Momentum Equation

e RTTwithB=mVandp =V,

0
| voav+ [ vov-an=3r
0t Jey cs

e Simplified form:
»(my), . —X(my), =3%F
or in component forms,

Z(mu)out —yx(mu)y, = 2Fx
Z(mv)out _ Z(mv)in ZFy
Z(mw)out - Z(mw)in = 2K

- — Out
. - \ ,
my, ~Jn 7 — M3

|
AN
§‘ Fixed N
/ control \l
In volume y
o PN
M.V, N _
A oul / Oul\\S 2F

MeV; .

Note: If V = ui + vj + wk
is normal to CS, m = pVA4,
where V = |K|

6
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Momentum Equation — Contd.

(P!'e.*&.*&u.re
P gage2 2 force)
e External forces: 1] H __________ U_} 1],CS

XE = ZEbody + X Fsurface T 2Eother

W (Weight)

0] ZEbody = ZEgravity TF (Reaction force)
R caction rorce

ZEgravity: gravity force (i.e., WEIght) An 180° elbow supported by the ground

In most flow systems, the force F

consists of weights, pressure forces,

0 ZESurface — ZEpressure + ZEfriction and reaction forces. Gage pressures
are used here since atmospheric

pressure cancels out on all sides

* ZEpressure: pressure forces normal to CS of the control surface.
* Y Ffriction: Viscous friction forces tangent to CS

O Y. F,iher: anchoring forces or reaction forces

Note: Shearing forces can be avoided by carefully selecting
the CV such that CS’s are parallel with the flow direction.




57:020 Fluids Mechanics Fall2016

Example (Bend)

5.34 A converging elbow (see Fig. P5.34)
turns water through an angle of 135° in a vertical
plane. The flow cross section diameter is 400 mm
at the elbow inlet, section (1), and 200 mm at the
elbow outlet, section (2). The elbow flow passage
volume is 0.2 m® between sections (1) and (2).
The water volume flowrate is 0.4 m*/s and the
elbow inlet and outlet pressures are 150 kPa and
90 kPa. The elbow mass is 12 kg. Calculate the
horizontal (x direction) and vertical (z direction)
anchoring forces required to hold the elbow in
place.

1 .
- z

Section |
| _
(1)\| Dl =400 mm 135°

Section (2)

8

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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Example (Bend) — Contd.

1 ;
) : z
Section | Q — 0.4 m3/s
> ~ D;=04m
v " D,=02m
Q9 _ @ _ o4  _
= A, wD?/4 m(04)2/4 3.18 m/s
D, = _Q_ @ _ 04 _
200 mm Section (2) V2= o = wpZja =~ m02ia 12.73 m/s

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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Example (Bend) — Contd.

X-momentum:

Section :
N F, . .
y : > Fe = (i) oue — Gy
P11
Thus,
—Fy, + 0141 + p2 A, cos 45°
D, - = (pQ)(=V; cos45°) — (pQ) (V1)
200 mm - Section (2) or
Fye = p1A; + pyA, cos45° + (pQ)(Vy + V, cos 45°)
V, »2/9
2 7(0.4)2 7(0.2)2
= (150,000) 2 + (50,000) 2 cos 45°

+(999)(4)(3.18 + 12.73 cos 45°)

« Fy, = 25,700 N

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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Example (Bend) — Contd.

I
Section |
V (1) “‘\._l {)l =400 mm 135°
1 | s
= - [

>}//,

D, =
200 mm

¥
2 D

Z-momentum:

z E, = (Thw)out - (mw)in

Thus,
—Fy, + pA,sin45° — W, — W,
= (pQ)(—V; sin45%) — (pQ)(0)
or
Fy, = pA; cos45° —y¥, — W, + (pQ)(V, sin 45°)

w(0.2)%
= (50,000) —,——sin45° — (9800)(0.2) ~ (12)(9.81)
+(999)(4)(12.73 sin45°)

~F, =8920N

11

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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Typical Example (1): Vane

Energy eq.:

L LR
P1 +§PV1 t+ 21 = D2 +§PV2 + 2z, + hy

withp; =p, =0,z = z,,and h;, = 0,

V=V, = V]
Continuity:

X-momentum:

E, = m(-V, cos8) —m(V;)
out in

y-momentum:
Fy — Whyia — Wyane = Tfl(—V% sin @) —m(0)

out 1n

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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Typical Example (2): Nozzle

13

Continuity:
V]_Al - V2A2

m = pViA; = pVr4;

Energy eq. withp, = 0 and z; = z,:

1 2_1
D1 +EPV1 =EPV2 +hy

X-momentum:

Ry + p14A; = m(V;) — m(Vy)
out in

y-momentum:

Ry — Whid — Whozzte = m(0) —m(0)
out in

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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Typical Example (3): Bend

14

Continuity:
Vid; = VL4,
m = pViA; = pVr4;
Energy eq.:
1 2 1 2
P1 +EPV1 +2z,=p; +EPV2 +2z;+hy

X-momentum:
R, + p;A; —p,A, cos8 = m(V, cos8) —m(V;)

| S—
out 1n

y-momentum:
Ry + pZAZ sin @ — Wfluid — Wbend = m(—VZ Sin 9) - m(O)

out 1n

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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Typical Example (4): Sluice gate

Continuity:
e Vi(y1b) = V5 (y,b)

13 IR O DU, W W

ﬁ . L m = pVi(y1b) = pV,(y2b)
. i’f;f‘% Energy (Bernoulli) eq. with p; = p; and h; = O:
Pow T RN TR

1 2 1 2
Ele + 1 =§sz + 7

X-momentum:
Faw +v (% ) 0nb) - 16 ) 2b) = 1iVy) = 1)

out 1n

P14, D24z

y-momentum:
0 = m(0) — m(0)

out in

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Energy Equation

RTTwithB =FE and f = e,

0 L
— epd¥+j epV -dA=Q—-W

at Jey cs

Simplified form:

Pn, Vi Pout
y h2g 1%

2
Vo ut

+Zil‘l+hp =—+aout2—g+zout+ht+hL

V in energy equation refers to average velocity V

« : kinetic energy correction factor =

1 for uniform flow across CS
2 for laminar pipe flow
~ 1 for turbulent pipe flow



Energy Equation - Contd.

Uniform flow across CS’s:

P1 V12 P2 V22
7+2—g+Zl+hp=7+2—g+Zl+ht+hL

W, 1% 1% . .
e Pump head h, = m’; = prg = yg = W, = mgh, = pgQh, = yQh,
e Turbinehead h; = n% = pLth = % = W, = mgh, = pgQh; = yQh,

* Head loss h; =loss/g = (i, —0,)/g— Q/mg >0
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Example (Pump)

Energy equation:

P1 V1 P2 Vz
— 4=tz th,=—+-=+z,+h +h
y  2g y = 2g o

W|thp1:p2—0 Vl V2~0 ht—O andhL—23m

hp:(Zz_Zl)+hL:45+23:68m

______ | Pump power,

: (68)(9790)(0.03)
W, =vQh, = 716 = 80 hp

Control
surface

(Note: 1 hp = 746 N-m/s = 550 ft:Ibf/s)

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



@

100 m3/s
h; =35m

Turbine

Generator

Thurbine—gen = 80%
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Example (Turbine)

Energy equation:

P1 V1 P2 Vz
— 4=tz +h,=—+>+z,+h +h
y 29 y 29 co

Wlthp1=p2—0 Vl V2~0h _OandhL—35m

120 m

h, = (2, —2;) —h, =120 — 35 =85m

Pump power,

W, = h,yQ = (85)(9790)(100) = 83.2 MW

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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Differential Analysis

- Fluid Element Kinematics

Element at 7, Element at 7, + &t
,/”/1/////
r [
r
\ ! r’ | | i | ="\ .
j ' /’__/
f f | | R \\ / /
1 ) N |, ) \ N / /
- | ' | \ \ / /
L——" [ || | \ /
J B e =]
General Translation Linear Rotation Angular
motion deformation deformation
e Linear deformation(dilatation): V - V
= if the fluid is incompressible V- V=20
e Rotation(vorticity): { = 2w =V XV
= if the fluid is irrotational VXV =0

* Angular deformation is related to shearing stress
(e.g., T;j = 2ug;; for Newtonian fluids )

20



Differential Analysis
- Mass Conservation

For a fluid particle,

. dp
lim j —d¥+j pV -dA

. dp
_C1¢@0LV[E+V-(pK)]du_ 0

ap B
woo V- (pV) =0

For an incompressible flow: V -V =0



Differential Analysis
- Momentum Conservation

V"OUCV pd¥+ VpV dA] EF

or
| oV
lim [ p(=+V- V"V d¥=Z£
CV-0 Jey at — —
aV :
“Pl o +V-vv)= ) f (f = F per unit volume)
)4 _
= p —t+K-\7£ = —pgk —Vp + V-1
’ body force dueto  Pressure  yiscous shear
:%:a gravity force force force
t =

surface force



Navier-Stokes Equations

For incompressible, Newtonian fluids,
e Continuity:

6u+6v+aw_
dx dy 0z

e Momentum:

6u+ 6u+ 6u+ ou 6p+ N 62u+62u+62u
P “ v v ax | PBx T 5x2 dy?  0z2

dt 0x dy 0z
<6v ov  Ov 6v> op %v  9%v 6217)
p

E-Fua'i'va'i'W& —@+pgy+u<ax2+ay2+azz

(aw ow  ow 6W> op 0*w 0w 62W>
p

ot " Yox Yoy Tz =_£+pgz+“<ax2 57 T oz



1)

2)

3)

4)
5)

6)

Solving the NS Egns

Set up the problem and geometry (e.g., sketches), identifying all relevant
dimensions and parameters.

List all appropriate assumptions, approximations, simplifications, and
boundary conditions.

Simplify the differential equations of motion (continuity and Navier-
Stokes) as much as possible.

Integrate the equations, leading to one or more constants of integration
Apply boundary conditions to solve for the constants of integration.

Verify your results.



Exact Solutions of NS Eqgns.

The flow of interest is assumed additionally (than incompressible & Newtonian), for
example,

1) Steady (i.e., d/0t = 0 for any variable)

2) Parallel such that the y-component of velocity is zero (i.e., v = 0)

3) Purely two dimensional (i.e., w = 0 and d/9z = 0 for any velocity component)

e.g.)

1) continui continujty 3)
9) N 9] )8 + N 02 azu 02
P Vot Y ox Pbx T K x2 ay z?




57:020 Fluids Mechanics Fall2016 26

Boundary Conditions

Common BC’s:
e No-slip condition (Vuiqg = Viwan; for a stationary wall Vg = 0)
* Interface boundary condition (V4 = Vg and 75 4 = 75 )
* Free-surface boundary condition (pjiquia = Pgas and T liquia = 0)
e Symmetry boundary condition

Other BC'’s:
e Inlet/outlet boundary condition
e |nitial condition (for unsteady flow problem)

Fluid B—air
Ui P = continuous
Fluid B Ty TR ]
Po————
Magnifying = : _ : __g_mnigt__l_::ﬁg_n
Piston lass i . Vi 5B I Yy p
y g N L X v
: - _ - :_'T:',_." —:"T:rr' Fluid A—water
' B Va L___1 x
FIGURE 9-51 Fiuid A
A piston moving at speed V, in a FIGURE 9-53 FIGURE 9-54
cylinder. A thin film of oil is sheared FIGURE 9-52 Along a horizontal free surface of Boundary conditions along a plane of
between the piston and the cylinder; a - ) water and air, the water and air svmmetry are defined So as to ensure
magnified view of the oil film is At an interface between two fluids, the  velocities must be equal and the shear yh h :]T‘] fiold de of th
shown. The no-slip boundary velocity of the two fluids must be stresses must match. However, since that the Tlow field on one side of the
condition requires that the velocity of ~equal. In addition, the shear stress [y << [Lyyer A g0od approximation ~ SYmmetry plane is a mirror image of
fluid adjacent to a wall equal that of ~ parallel to the interface must be the is that the shear stress at the water that on the other side, as shown here

the wall.

same in both fluids. surface is negligibly small. for a horizontal symmetry plane.
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Example: No pressure gradient

U
# .
y — 7 Moving
I g plate
u
ey
b
l y
| { Fixed
plate

d*u
Integrate twice,
u(y) = C1y + G,

0

B.C.,

u(0) = (C)0)+C, =0 = C,=0
U
u) =)D +C,=U = (= -

U
suy) =2y
Analysis:

27

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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Example: with Pressure Gradient

Fixed plate
! {
y 2]
] -~ max 7‘7
Fixed plate

d*u _dp
'udy2 dx
Integrate twice,

1dp ,
u@y) =5--y°+ Gy + G,

2u dx
B.C.,
u(0) = id_p 02+ (O +C, =0 = C,=0
~\2udx 1 2 = 2 =
u(b) = (id_p b2+ (B +C,=0=> €, = —id—pb
- \2udx 1 2T L7 2udx
_ 1 (dp )
= u(y) _Z<E> (y* = by)
Analysis:

_fhd_ b3 ap
1= _huy— 12u \ ox

du) b <6p>
w=po—] =-5|5
dy =0 2 \0x

28

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Note:
8= 8xi+8yJ

where,
g, = gsinf
gy = —gcost
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Example: Inclined wall

d?u
“d_yz = —P8x
Integrate twice,
_ pgx 2
u(y) = —ﬂy +Cy +C;

u(0) = (— p%) 0)2+(CHO)+C, =0 = C,=0

du
_) :(_@)@m:o S ¢ =By
y=h % %

P ) R
uly) == (h;v )

2

Analysis:
q= fhudy = &h—g
0 uo3

du pg
Ty = ud—> = (W <—x h) = pgxh
Y/ u

29

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Buckingham Pi Theorem

e For any physically meaningful equation involving n variables, such as

U, = f(u2'u3r ”"un)

with minimum number of m reference dimensions, the equation can be
rearranged into product of r dimensionless pi terms.

Hl = ¢(H2' H3r Y H‘r)

where,
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Repeating Variable Method

Example: The pressure drop per unit length Ap, in a pipe flow is a function of
the pipe diameter D and the fluid density p, viscosity u, and velocity V.

(1) (2)
T p. 1t
V
li) #
- ¢ -

Apg — (pl _pz)/€

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Repeating Variable Method — Contd.

Step 1: List all variables that are involved in the problem

Apf = f(D;,U;,U; V)

Step 2: Express each of the variables in terms of basic dimensions (either MLT or
FLT system)

N
ML2T2Y | MUY | MLty ry

Step 3: Determine the required number of pi terms
r=n—-m=5—-3=2
Step 4: Select m = 3 repeating variables

D (for L), V (forT),and p (for M)

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Repeating Variable Method — Contd.

Step 5: Form a pi term for one of the non-repeating variables

[, = DVPpCAp, = (L)*(LT VP (ML3)¢(ML™?>T~?) = M°LOT°
ApgD

. — N-1ly-2 ,—1 —
~ Iy =D""V~™p Ap"‘pvz

Step 6: Repeat step 5 for each of the remaining non-repeating variables

M, = DWPpu = (L*UT HPML3) (ML IT™1) = MOLOTO

U
~ I, = D—lv—l -1, —
2 p U DVp

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Repeating Variable Method — Contd.

Step 7: Check all the resulting pi terms to make sure they are
dimensionless and independent

Ap,D U
I, = = FOLOTO; I, = —— = FOL0T0
L™ pp2 27 DVp

Step 8: Express the final form as a relationship among the pi terms

[1; = ¢(113)
or
Ap,D pVD
pvz T\ u

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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Common Dimensionless Parameters
for Fluid Flow Problems

Dimensionless Symbol Definition Interpretation
Groups
VL

Reynolds number Re

Froude number Fr

Weber number We

p

=

inertia force  pV?/L
viscous force  uV /L2

inertia force  pV?/L

gravity force ¥

inertia force _pVZ/L

surface tension force  o/L?

indertia force
compressibility force

pressure force  Ap/L
inertia force ~ pV2/L

35



Similarity and Model Testing

If all relevant dimensionless parameters have the same corresponding
values for model and prototype, flow conditions for a model test are
completely similar to those for prototype.

For,
Hl = ¢(H2) ey Hn)

Similarity requirements:

I3 model = 1_[2,prototype

[y model = 1_[n,prototype

Prediction equation:
11, model = 1_[1,prototype
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Example (Model Testing)

Model Prototype
A
Py My
P Ap,D pVD Vp
Vm — —_ D #
Dy e sz < U ) g
Apy,, Y
A
Pep
If,
V..D VD
PmImZm _ Pp'p~p (similarity requirement)
Um Hp
Then,

(Prediction equation)

37

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Example —

Model (in water)
e D,=01m
* pm =998 kg/m3
* Uy, =1.12x%x103N-s/m?
e V,=7?
* App, =27.6Pa/m

Similarity requirement:

57:020 Fluids Mechanics Fall2016

Contd.

Prototype (in air)

* Dp=1m

* p, =1.23kg/m?

* 1, =179 x 105 N-s/m?
 V,=10m/s

* Apy, =7

()R- (R

Prediction equation:

1.79 x 107>

0.1

1.12x 1073 1
>< >(10) =7.71 m/s

o =(52) (2) ) v = ()

10 \* )
)( > (27.6) =5.72x 1073 Pa/m

7.71

38

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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