Problem 1: Manometer and Shear Stress

Information and assumptions

- $\gamma_f = 80 \text{ lb/ft}^3$
- $\mu_f = 0.03 \text{ lb} \cdot \text{s/ft}^2$
- U = 0.02 ft/s
- b = 1 in.
- h = 0.1 in.
- γ = 100 lb/ft³
- $u(y) = \frac{Uy}{b} + \frac{1}{2\mu} \left(\frac{\Delta p}{L}\right) (by y^2)$

Find

- Pressure drop between the two points (1) and (2), $\Delta p = p_1 p_2$
- Shear stress on the fixed plate

Solution

(a) Manometer

$$p_1 - p_2 = (\gamma - \gamma_f) \Delta h$$
 (+4 points)

$$\Delta p = (100 - 80) \left(\frac{0.1}{12}\right) = 0.167 \,\text{lb/ft}^2 \qquad (+1 \,\text{points})$$

(b) Wall shear stress

$$\tau = \mu \frac{du}{dv}$$
 (+3 points)

$$\tau = \mu \frac{du}{dy} = \mu \left[\frac{U}{b} + \frac{1}{2\mu} \left(\frac{\Delta p}{L} \right) (b - 2y) \right]$$
 (+1 points)

Problem 2: Hydrostatic Pressure

Information and assumptions

- $\gamma = 64 \text{ lb/ft}^3$
- Gate width = 4 ft
- Seawater depth = 17 ft
- Gate length L = 12 ft
- Gate angle, $tan\theta = 7.2$ ft / 9.6 ft

Find

- Pressure force, F_R
- Pressure center, y_{cp}
- Force by the wall at point A, P

Solution

(a) Pressure force

$$F_R = \bar{p}A = \gamma h_{\rm cg}A$$
 (+4 points)

$$F_R = (64) \left(17 - \frac{7.2}{2}\right) (4 \times 12) = 41,165 \text{ lbf}$$
 (+1 points)

(b) Pressure center

$$y_{\rm cp} = \frac{I_x}{\bar{y}A} = \frac{I_x \sin \theta}{h_{\rm cg}A}$$
 (+2 points)

$$y_{\rm cp} = \frac{\left[\frac{(4)(12)^3}{12}\right]\left(\frac{7.2}{12}\right)}{\left(17 - \frac{7.2}{2}\right)(4 \times 12)} = \mathbf{0.537 ft}$$
 (+1 points)

(c) Force by the wall

$$\sum M_B = (P)(7.2) - (41,165)(12 - 6 - 0.537) = 0$$
 (+1 points)

$$\therefore P = \frac{(41,165)(5.463)}{7.2} = 31,234 \text{ lbf} \qquad (+1 \text{ points})$$

Problem 3: Bernoulli Equation

Information and assumptions

- $\gamma = 12 \text{ N/m}^3$
- $p_1 = -\gamma_W h$
- $\gamma_{\rm w} = 9.8 \times 10^3 \, {\rm N/m^3}$
- h = 0.3 m
- $D_1 = 25 \text{ mm}$
- $D_2 = 50 \text{ mm}$
- $P_2 = 0$ (gage)

Find

- Flow rate Q to draw water into the section (1).
- Neglect compressibility and viscous effects

Solution

Bernoulli equation,

$$\frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2$$
 (+3 points)

where, $z_1=z_2$ and p_2 = 0.

$$\frac{p_1}{\gamma} + \frac{V_1^2}{2g} = \frac{V_2^2}{2g}$$
 (+2 points)

From continuity equation $A_1V_1 = A_2V_2$, (+1 points)

$$V_1 = \left(\frac{D_2}{D_1}\right)^2 V_2 = \left(\frac{50}{25}\right)^2 V_2 = 4V_2$$
 (+1 points)

Thus,

$$\frac{p_1}{\gamma} = \frac{V_2^2}{2g} - \frac{V_1^2}{2g} = -\frac{15V_2^2}{2g}$$

Also, $p_1 = -\gamma_w h$ so that

$$\frac{p_1}{\gamma} = -\frac{\gamma_w h}{\gamma} = -\frac{(9.80 \times 10^3)(0.3)}{12} = -245 \text{ m} \text{ (+1 points)}$$

Thus,

$$-245 = -\frac{15V_2^2}{2(9.81)} \left(+1 \text{ points} \right)$$

or

$$V_2 = 17.9 \,\mathrm{m/s}$$

Finally,

$$Q = A_2 V_2 = \frac{\pi}{4} (0.05)^2 (17.9) = \mathbf{0.03551} \,\mathrm{m}^3/\mathrm{s}$$
 (+1 points)

Problem 4: Acceleration

Information and assumptions

- u = 3y and v = 2x
- Euler equation, $\nabla p = -\rho \mathbf{a}$
- ρ = 998 kg/m³

Find

- Acceleration components a_x and a_y at a point x = 1 m and $y = \sqrt{3/2}$ m
- Pressure gradient at a point x = 1 m and $y = \sqrt{3/2}$ m

Solution

(a) Acceleration

$$a_x = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}$$
 (+2 points)

$$a_x = 0 + (3y)(0) + (2x)(3) = 6x$$
 (+1 points)

$$a_y = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y}$$
 (+2 points)

$$a_y = 0 + (3y)(2) + (2x)(0) = 6y$$
 (+1 points)

At $(1, \sqrt{3/2})$,

$$a_x = (6)(1) = 6 \text{ m/s}^2 \text{ (+1 points)}$$

$$a_y = (6) \left(\sqrt{3/2} \right) = 7.348 \,\text{m/s}^2 \, \left(+1 \,\text{points} \right)$$

(b) Pressure gradient

$$\frac{\partial p}{\partial x} = -\rho a_x = -(998)(6) = -5,988 \,\text{Pa/m}$$
 (+1 points)

$$\frac{\partial p}{\partial y} = -\rho a_y = -(998)(7.348) = -7,333 \,\text{Pa/m}$$
 (+1 points)