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CHAPTER 2 BACKGROUND THEORY 

2.1 Overview of Maneuvering Simulations 

The Maneuvering Committee (MC) of the 24
th

 International Towing Tank Confe-

rence (ITTC) reviewed state-of-the-art progress in maneuvering predictions, and catego-

rized typical maneuvering prediction methods into three groups: No Simulation, System 

Based Simulation, and CFD Based Simulation methods.   

 

 

Figure 2-1 Overview of Maneuvering prediction methods (Proceedings of 25
th

 ITTC, 
Vol. I, pp. 145). 

The No Simulation method needs no mathematical model and thus no hydrody-

namic derivative or maneuvering coefficient.  Maneuvering parameters such as ship ad-

vance, transfer, overshoot, and etc. are directly measured from the full-scale trial or mod-
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el-scale free-model test by measuring the ship trajectories or by using a database of exist-

ing full- and/or model-scale data.   

The System Based Simulation method, by contrast, simulates the ship trajectories 

by solving the motion equations using appropriate mathematical modeling along with hy-

drodynamic derivatives (or maneuvering coefficients).  This method includes 1) database, 

2) model testing, and 3) system identification methods.  First, the database method estab-

lishes an empirical formula or regression equations from databases of full- and/or model-

scale test results to obtain hydrodynamic derivatives (Oltmann 1992, Wagner-Smitt 1971, 

Norrbin 1971, Inoue et al. 1981, Clarke et al. 1983, Kijima et al. 1990 and 1993).  The 

database can be also combined with theoretical models such as the Japanese Mathemati-

cal Model Group (MMG) model (Kijima et al. 1993) or the cross-flow drag model 

(Hooft, 1994).  These methods are simple and quick to use, but the prediction accuracy 

and/or reliability can be limited when the ship dimensions are outside the database.  Next, 

the model test method includes free- and captive-model tests.  For free model tests (Mar-

tinussen et al. 1987), a self-propelled scale model ship is remotely controlled performing 

definitive maneuvers such as turning circle, zig-zag, and reverse spiral to evaluate turning 

performance and course keeping stability. This method is direct and effective since the 

maneuvering parameters are directly obtained without simulation, but with issues about 

viscous scale effects (Burcher 1975).  On the other hand, the captive model tests are 

based on mathematical modeling of motion equations.  For the tests, a model-scale ship is 

forced to move in prescribed motions over a range of parameters such as drift angle, 

sway/yaw motion amplitude and frequency, rudder angle, etc. to obtain the relevant hy-

drodynamic derivatives.  Details of the captive model tests are provided in the following 

Section 2.3.  Lastly, the system identification method (Artyszuk 2003, Hess and Faller 

2000, Moreira and Soares 2003, Oltmann 2003, Viviani et al. 2003, Depascale et al. 

2002, Yoon et al. 2003) obtains hydrodynamic derivatives from full-scale sea trial or 

free-model test results using measured ship motion and rudder angle as input parameters. 
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CFD Based Simulation method also simulates the ship trajectory to predict the ma-

neuvering parameters similarly as the System Based Simulation method but by using nu-

merical schemes to evaluated the hydrodynamic derivatives of the mathematic models 

used or to solve the motion equations directly.   

2.2 Mathematic Modeling and Hydrodynamic Derivatives 

The generalized motion equations for a rigid vessel in a ship-fixed, non-inertial 

frame of reference 𝑥𝑦𝑧 that is moving relative to an Earth-fixed, inertial reference frame 

𝑥𝐸𝑦𝐸𝑧𝐸  (Fig. 2-2) can be derived as (Fossen 1994): 

 

𝑚 𝑢 − 𝑟𝑣 + 𝑤𝑞 − 𝑥𝐺 𝑞
2 + 𝑟2 + 𝑦𝐺 𝑝𝑞 − 𝑟  + 𝑧𝐺 𝑝𝑟 + 𝑞   = 𝑋  (2.1a)  

𝑚 𝑣 − 𝑤𝑝 + 𝑢𝑟 − 𝑦𝐺 𝑟
2 + 𝑝2 + 𝑧𝐺 𝑞𝑟 − 𝑝  + 𝑥𝐺 𝑞𝑝 + 𝑟   = 𝑌  (2.1b)  

𝑚 𝑤 − 𝑢𝑞 + 𝑣𝑝 − 𝑧𝐺 𝑝
2 + 𝑞2 + 𝑥𝐺 𝑟𝑝 − 𝑞  + 𝑦𝐺 𝑟𝑞 + 𝑝   = 𝑍  (2.1c)  

𝐼𝑥𝑝 +  𝐼𝑧 − 𝐼𝑦 𝑞𝑟 + 𝑚 𝑦𝐺 𝑤 − 𝑢𝑞 + 𝑣𝑝 − 𝑧𝐺 𝑣 − 𝑤𝑝 + 𝑢𝑟  = 𝐾  (2.1d)  

𝐼𝑦𝑞 +  𝐼𝑥 − 𝐼𝑧 𝑟𝑝 + 𝑚 𝑧𝐺 𝑢 − 𝑣𝑟 + 𝑤𝑞 − 𝑥𝐺 𝑤 − 𝑢𝑞 + 𝑣𝑝  = 𝑀  (2.1e) 

𝐼𝑧𝑟 +  𝐼𝑦 − 𝐼𝑥 𝑝𝑞 + 𝑚 𝑥𝐺 𝑣 − 𝑤𝑝 + 𝑢𝑟 − 𝑦𝐺 𝑢 − 𝑣𝑟 + 𝑤𝑞  = 𝑁  (2.1f) 

The origin of the ship-fixed reference frame is located at the mid-ship position.  The 𝑥, 𝑦, 

and 𝑧 axes correspond to the longitudinal, lateral, and vertical direction of the vessel, re-

spectively, so that the products of moment of inertia such as 𝐼𝑥𝑦 , 𝐼𝑥𝑧 , or 𝐼𝑦𝑧  vanish from 

the motion equations.  In the equations, 𝑋, 𝑌, 𝑍 are the external forces acting on the ves-

sel in surge, 𝑥, sway, 𝑦, and heave, 𝑧 directions, respectively.  𝐾, 𝑀, 𝑁 are the external 

angular moments in roll, 𝜙, pitch, 𝜃, and yaw, 𝜓, directions, respectively.  𝑚 is the mass 

of the vessel and 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧  are the moments of inertia of the vessel with respect to each 

axis.  𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺  are the location of the center of gravity of the vessel.  𝑢, 𝑣, 𝑤 are surge, 

sway, and heave velocities, 𝑥 , 𝑦 , 𝑧 , respectively, and 𝑢 , 𝑣 , 𝑟  are surge, sway, and heave 
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accelerations, 𝑥 , 𝑦 , 𝑧 , respectively.  𝑝, 𝑞, 𝑟 are roll, pitch, yaw rates, 𝜙 , 𝜃 , 𝜓 , respective-

ly, and 𝑝 , 𝑞 , 𝑟  are roll, pitch, yaw accelerations, 𝜙 , 𝜃 , 𝜓 , respectively. 

 

    

Figure 2-2 Earth- and ship-fixed coordinate systems. 

For maneuvering applications of the equations (2.1) for surface ships moving on 

unbounded, calm, and deep water, it is typically assumed that the heave, roll, and pitch 

motions can be neglected such that 𝑤 = 𝑝 = 𝑞 = 𝑤  = 𝑝  = 𝑞  = 0 and that the vessel geome-

try has the 𝑥𝑧-plane symmetry, i.e. 𝑦𝐺  = 0.  Then, the equations reduce to the following 

equations: 

 

𝑚 𝑢 − 𝑟𝑣 − 𝑥𝐺𝑟
2 = 𝑋       (2.2a)  

𝑚 𝑣 + 𝑢𝑟 − 𝑥𝐺𝑟  = 𝑌       (2.2b)  

𝐼𝑧𝑟 + 𝑚𝑥𝐺 𝑣 + 𝑢𝑟 = 𝑁       (2.2c) 

for surge, sway, and yaw, respectively.  In general the external forces and moment 𝑋, 𝑌, 

𝑁 at the right hand sides of the equations (2.2) include hydrodynamic forces due to the 



11 
 

 

1
1
 

surrounding fluid, control surface forces such as rudder forces, and propulsion forces 

such as propeller forces, which need to be described in proper mathematical forms for the 

motion equations to be solved.  One of the common mathematic modeling of those forces 

is by assuming that the forces are functions of ship motion parameters 𝑢, 𝑣, 𝑟, 𝑢 , 𝑣 , 𝑟  and 

rudder deflection angle 𝛿 (Abkowitz, 1964) based on the „quasi-steady state‟ assumption 

which states that the value of the forces at any instant depends on the motion parameters 

defining the instantaneous motion of the vessel. 

 

 
𝑋
𝑌
𝑁
 = 𝑓 𝑢, 𝑣, 𝑟, 𝑢 , 𝑣 , 𝑟 , 𝛿        (2.3) 

Abkowitz (1964) also proposed to use a 3
rd

-order Taylor Series expansion of the equation 

(2.3) with following additional assumptions: 

a) Forces and moments have appropriate port and starboard symmetry except for 

a constant force and moment caused by the propeller, and 

b) There are no second- or higher-order acceleration terms, and that cross-

coupling between acceleration and velocity parameters is negligible, 

as per re-stated by Strom-Tejsen and Chislett (1966).  Then, for small disturbances of the 

ship motions from a reference state, i.e. steady straight advancing with a constant speed 

𝑈, the equation (2.3) are written as following (Strom-Tejsen and Chislett 1966): 

 

𝑋 = 𝑋∗ + 𝑋𝑢 𝑢 + 𝑋𝑢Δ𝑢 + 𝑋𝑢𝑢Δ𝑢
2 + 𝑋𝑢𝑢𝑢 Δ𝑢3 +  

 𝑋𝑣𝑣𝑣
2 + 𝑋𝑟𝑟𝑟

2 + 𝑋𝛿𝛿𝛿
2 + 𝑋𝑣𝑣𝑢𝑣

2Δ𝑢 + 𝑋𝑟𝑟𝑢 𝑟
2Δ𝑢 + 𝑋𝛿𝛿𝑢 𝛿2Δ𝑢 +  

 𝑋𝑣𝑟𝑣𝑟 + 𝑋𝑣𝛿𝑣𝛿 + 𝑋𝑟𝛿 𝑟𝛿 + 𝑋𝑣𝑟𝑢𝑣𝑟Δ𝑢 + 𝑋𝑣𝛿𝑢𝑣𝛿Δ𝑢 + 𝑋𝑟𝛿𝑢 𝑟𝛿Δ𝑢 (2.4a)  

𝑌 = 𝑌∗ + 𝑌𝑢Δ𝑢 + 𝑌𝑢𝑢Δ𝑢
2 + 𝑌𝑢𝑢𝑢Δ𝑢

3 +  

 𝑌𝑣 𝑣 + 𝑌𝑣𝑣 + 𝑌𝑣𝑣𝑣𝑣
3 + 𝑌𝑣𝑟𝑟𝑣𝑟

2 + 𝑌𝑣𝛿𝛿 𝑣𝛿
2 + 𝑌𝑣𝑢𝑣Δ𝑢 + 𝑌𝑣𝑢𝑢 𝑣Δ𝑢

2 +  

 𝑌𝑟 𝑟 + 𝑌𝑟𝑟 + 𝑌𝑟𝑟𝑟 𝑟
3 + 𝑌𝑟𝑣𝑣𝑟𝑣

2 + 𝑌𝑟𝛿𝛿 𝑟𝛿
2 + 𝑌𝑟𝑢𝑟Δ𝑢 + 𝑌𝑟𝑢𝑢 𝑟Δ𝑢2 +  
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 𝑌𝛿𝛿 + 𝑌𝛿𝛿𝛿 𝛿
3 + 𝑌𝛿𝑣𝑣𝛿𝑣

2 + 𝑌𝛿𝑟𝑟 𝛿𝑟
2 + 𝑌𝛿𝑢𝛿Δ𝑢 + 𝑌𝛿𝑢𝑢 𝛿Δ𝑢2 + 

 𝑌𝛿𝛿𝛿𝑢 𝛿3Δ𝑢 + 𝑌𝑣𝑟𝛿𝑣𝑟𝛿       (2.4b)  

𝑁 = 𝑁∗ + 𝑁𝑢Δ𝑢 + 𝑁𝑢𝑢Δ𝑢
2 + 𝑁𝑢𝑢𝑢 Δ𝑢3 +  

 𝑁𝑣 𝑣 + 𝑁𝑣𝑣 + 𝑁𝑣𝑣𝑣𝑣
3 + 𝑁𝑣𝑟𝑟𝑣𝑟

2 + 𝑁𝑣𝛿𝛿𝑣𝛿
2 + 𝑁𝑣𝑢𝑣Δ𝑢 + 𝑁𝑣𝑢𝑢𝑣Δ𝑢

2 + 

 𝑁𝑟 𝑟 + 𝑁𝑟𝑟 + 𝑁𝑟𝑟𝑟 𝑟
3 + 𝑁𝑟𝑣𝑣𝑟𝑣

2 + 𝑁𝑟𝛿𝛿 𝑟𝛿
2 + 𝑁𝑟𝑢𝑟Δ𝑢 + 𝑁𝑟𝑢𝑢 𝑟Δ𝑢2 +  

 𝑁𝛿𝛿 + 𝑁𝛿𝛿𝛿 𝛿
3 + 𝑁𝛿𝑣𝑣𝛿𝑣

2 + 𝑁𝛿𝑟𝑟 𝛿𝑟
2 + 𝑁𝛿𝑢𝛿Δ𝑢 + 𝑁𝛿𝑢𝑢 𝛿Δ𝑢2 + 

 𝑁𝛿𝛿𝛿𝑢 𝛿3Δ𝑢 + 𝑁𝑣𝑟𝛿𝑣𝑟𝛿       (2.4c) 

where Δ𝑢 ≡ 𝑢 − 𝑈 is the disturbance in surge velocity.  The terms 𝑋∗, 𝑌∗, 𝑁∗ are the ref-

erence steady state values of 𝑋, 𝑌, 𝑁, respectively.  Typically, 𝑋∗ is zero for ships ad-

vancing straight with a constant speed as the ship total resistance 𝑅𝑇  is balanced by the 

propeller thrust 𝑇, however, 𝑌∗ and 𝑁∗ may have non-zero values when the ship has a sin-

gle propeller or multiple propellers rotating in the same direction.  The coefficients of 

Taylor Series terms at the right hand sides of (2.4) with subscripts of motion parameters, 

such as 𝑋𝑢   𝜕𝑋 𝜕𝑢   or 𝑋𝑣𝑣 ≡
1

2
𝜕2𝑋 𝜕𝑣2 , are the reduced expressions of the Taylor Se-

ries expansion following the simplified derivative notation of SNAME (Nomenclature, 

1952), so-called „hydrodynamic derivatives‟ or „maneuvering coefficients‟, evaluated at 

the reference steady state.  Note that, although the Taylor Series were assumed as 3
rd

-

order expansions, Strom-Tejsen and Chislett (1966) also used fourth-order as well for the 

rudder force terms such as 𝑌𝛿𝛿𝛿𝑢 𝛿3Δ𝑢 and 𝑁𝛿𝛿𝛿𝑢 𝛿3Δ𝑢 to obtain sufficient flexibility in 

expressing the influence of surge velocity on the rudder action.  Note also that the surge 

velocity expansion terms for 𝑌 and 𝑁 such as 𝑌𝑢Δ𝑢, 𝑌𝑢𝑢Δ𝑢
2, 𝑌𝑢𝑢𝑢 Δ𝑢3 and 𝑁𝑢Δ𝑢, 

𝑁𝑢𝑢Δ𝑢
2, 𝑁𝑢𝑢𝑢 Δ𝑢3 in (2.4) replaced the terms 𝑌∗𝑢Δ𝑢, 𝑌∗𝑢𝑢Δ𝑢

2 and 𝑁∗𝑢Δ𝑢, 𝑁∗𝑢𝑢Δ𝑢
2, re-

spectively, in Strom-Tejsen and Chislett (1966) as the former expressions are considered 

to be more consistent with the mathematical definitions of Taylor Series expansion in that 

the reference state values 𝑌∗ or 𝑁∗ are not expanded.   
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2.3 PMM Tests 

General descriptions and procedures of PMM tests including the static drift, pure 

sway, pure yaw, and yaw and drift tests and determination of hydrodynamic derivatives 

are provided.  The procedures for rudder related tests such as static rudder, static drift and 

rudder, and yaw and rudder tests are not provided herein as the present research objective 

is focused on the PMM applications for a bare hull form, i.e. without rudders, propellers, 

and appendages except for bilge keels. 

 

 

Figure 2-3 General PMM test coordinate system and motion parameters. 

2.3.1 Definitions of Motions 

Two coordinate systems are shown in Fig. 2-3: the Earth-fixed 𝑥𝐸𝑦𝐸-coordinate 

system (dashed arrows) and the ship-fixed 𝑥𝑦-coordinate system (dash-dot arrows).  The 

Earth-fixed coordinates are fixed at the towing tank with 𝑥𝐸  and 𝑦𝐸  coordinates aligned 

with the longitudinal and lateral directions of towing tank, respectively.  The ship-fixed 

coordinates are moving with the model with 𝑥 and 𝑦 coordinates aligned with the longi-

tudinal and lateral directions of the model, respectively.  For convenience, in the figure 

the Earth-fixed coordinate system is shown overlaid on the ship-fixed coordinate system 
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at a certain instant.  Vectors 𝑢𝐸  and 𝑣𝐸  are the velocities and 𝑢 𝐸  are 𝑣 𝐸  are the accelera-

tions of the model in the 𝑥𝐸  and 𝑦𝐸  directions of the Earth-fixed coordinate system, re-

spectively; and 𝑢 and 𝑣 are the velocities and 𝑢  and 𝑣  are the accelerations of model in 

the 𝑥 and 𝑦 directions of the ship-fixed coordinate system, respectively.  The advance 

speed 𝑈 is the resultant of 𝑢𝐸  and 𝑣𝐸  or the resultant of 𝑢 and 𝑣 such that 

 

𝑈 =  𝑢𝐸
2 + 𝑣𝐸

2 =  𝑢2 + 𝑣2        (2.5) 

always tangent to the model path line (dotted line) that is the trajectory of the mid-ship 

point.  Drift angle, 𝛽, is defined as the model orientation with respect to 𝑈, i.e., the actual 

direction of model with respect to its heading, which can be written as 

 

𝛽 = − arctan 𝑣 𝑢           (2.6) 

Heading (or yaw angle) 𝜓 is defined as the model orientation with respect to a reference 

direction, 𝑥𝐸 .  Note that yaw rate 𝜓  and acceleration 𝜓  are identical in both the Earth-

fixed and the ship-fixed coordinate systems, i.e. 𝑟𝐸 = 𝑟 = 𝜓  and 𝑟 𝐸 = 𝑟 = 𝜓 .  Lastly, the 

vector transformations between the Earth- and ship-fixed coordinate systems are given as 

following: 

 

𝑢 = 𝑢𝐸 cos 𝜓 + 𝑣𝐸 sin 𝜓        (2.7a) 

𝑣 = −𝑢𝐸 sin 𝜓 + 𝑣𝐸 cos 𝜓        (2.7b) 

𝑟 = 𝑟𝐸            (2.7c) 

𝑢 = 𝑢 𝐸 cos 𝜓 + 𝑣 𝐸 sin 𝜓 + 𝑟𝐸 −𝑢𝐸 sin 𝜓 + 𝑣𝐸 cos 𝜓     (2.7d) 

𝑣 = −𝑢 𝐸 sin 𝜓 + 𝑣 𝐸 cos 𝜓 − 𝑟𝐸 𝑢𝐸 cos 𝜓 + 𝑣𝐸 sin 𝜓     (2.7e) 

𝑟 = 𝑟 𝐸            (2.7f) 
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2.3.2 PMM Motions 

PMM motions are the forced model trajectories comprised of three basic motions 

𝑥𝐸 , 𝑦𝐸 , and 𝜓 described in the 𝑥𝐸𝑦𝐸-coordinate system:    

 

𝑥𝐸 = 𝑈𝐶𝑡          (2.8) 

𝑦𝐸 = −𝑦𝑚𝑎𝑥 sin 𝜔𝑡         (2.9) 

𝜓 = − arctan 𝜀 cos 𝜔𝑡 + 𝛽       (2.10)  

where 𝑈𝐶  is the towing speed, 𝑦𝑚𝑎𝑥  is the sway amplitude, and 𝜀 is the maximum tangent 

of model trajectory defined as 

 

𝜀 =  
𝑑𝑦𝐸

𝑑𝑥𝐸
 
𝑚𝑎𝑥

=  
𝑑𝑦𝐸 𝑑𝑡 

𝑑𝑥𝐸 𝑑𝑡 
 
𝑚𝑎𝑥

=
𝑦𝑚𝑎𝑥 𝜔

𝑈𝐶
      (2.11) 

The 𝑥𝐸  in (2.8) corresponds to straight advancing motion with speed 𝑈𝐶  along the towing 

tank longitudinal direction.  The 𝑦𝐸  in (2.9) is a sinusoidal lateral motion with an ampli-

tude 𝑦𝑚𝑎𝑥  and frequency 𝜔.  The 𝜓 in (2.10) is a combination of a sinusoidal yaw motion 

and any drift angle 𝛽.  For static drift test, 𝑦𝑚𝑎𝑥  = 𝜀 = 𝜔 = 0 in (2.9) and (2.10) and 𝛽 is a 

fixed value in time, which corresponds to an oblique towing motion as shown in Fig. 2-4 

(a) and (e).  For pure sway test, 𝑦𝑚𝑎𝑥  and 𝜔 are non-zero values in (2.9) thus a sinusoidal 

lateral motion but the model heading is kept in straight, i.e 𝜓 = 0 in (2.10), as illustrated 

in Fig. 2-4 (b), which makes a continuously changing drift angle 𝛽 = arctan 𝜀 cos 𝜔𝑡  

from (2.10) as shown in Fig. 2-4 (f).  For pure yaw test, 𝑦𝑚𝑎𝑥  and 𝜔 are non-zero in (2.9) 

and (2.10) similarly as pure sway test but 𝛽 = 0 in (2.10), then the model is always tan-

gent to its path-line as shown Fig. 2-4 (c) and (g).  For yaw and drift test, 𝑦𝑚𝑎𝑥  and 𝜔 are 

the same as for pure yaw test but 𝛽 is set to a non-zero constant value in (2.10), which 

makes an asymmetric yaw motion as shown in Fig. 2-4 (d) and (h).  For all tests, 𝑈𝐶  in 

(2.8) is constant in time.  From those model trajectories, the model velocities and accele-
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rations in the Earth-fixed coordinates, i.e. 𝑢𝐸 = 𝑥 𝐸 , 𝑣𝐸 = 𝑦 𝐸 , 𝑟𝐸 = 𝜓 𝐸 , 𝑢 𝐸 = 𝑥 𝐸 , 𝑣 𝐸 =

𝑦 𝐸 , and 𝑟 𝐸 = 𝜓 𝐸 , and in the ship-fixed coordinates 𝑢, 𝑣, 𝑟, 𝑢 , 𝑣 , and 𝑟  as per the relation-

ships (2.7) are summarized in Tables 2-1 and 2-2, respectively. 

 

 

 

 

    
(e) (f) (g) (h) 

Figure 2-4 Illustrations of typical PMM motions for (a) static drift, (b) pure sway, (c) 
pure yaw, and (d) yaw and drift tests, and definitions of PMM motion parame-
ters in the PMM coordinate systems for (e) static drift, (f) pure sway, (g) pure 
yaw, and (h) yaw and drift tests. 
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Table 2-1 PMM Motions in the Earth-fixed Coordinates. 

Motion Static drift Pure sway Pure yaw Yaw and drift 

𝑢𝐸  𝑈𝐶  𝑈𝐶  𝑈𝐶  𝑈𝐶  

𝑢 𝐸  0 0 0 0 

𝑣𝐸  0 −𝑦𝑚𝑎𝑥 𝜔 cos 𝜔𝑡 −𝑦𝑚𝑎𝑥 𝜔 cos 𝜔𝑡 −𝑦𝑚𝑎𝑥 𝜔 cos 𝜔𝑡 

𝑣 𝐸  0 𝑦𝑚𝑎𝑥 𝜔2 sin 𝜔𝑡 𝑦𝑚𝑎𝑥 𝜔2 sin 𝜔𝑡 𝑦𝑚𝑎𝑥 𝜔2 sin 𝜔𝑡 

𝑟𝐸  0 0 𝜀𝜔 sin 𝜔𝑡
1

1 + 𝜀2 cos2 𝜔𝑡
 𝜀𝜔 sin 𝜔𝑡

1

1 + 𝜀2 cos2 𝜔𝑡
 

𝑟 𝐸  0 0 𝜀𝜔2 cos 𝜔𝑡
1 + 𝜀2 1 + sin2 𝜔𝑡 

 1 + 𝜀2 cos2 𝜔𝑡 2  𝜀𝜔2 cos 𝜔𝑡
1 + 𝜀2 1 + sin2 𝜔𝑡 

 1 + 𝜀2 cos2 𝜔𝑡 2  

 

Table 2-2 PMM Motions in the Ship-fixed Coordinates. 

Motion Static drift Pure sway Pure yaw Yaw and drift 

𝑢 𝑈𝐶 cos 𝛽 𝑈𝐶  𝑈𝐶 1 + 𝜀2 cos2 𝜔𝑡 = 𝑢1 𝑢1 cos 𝛽 

𝑢  0 0 −𝑈𝐶𝜔 ⋅
𝜀2 sin 2𝜔𝑡

2 1 + 𝜀2 cos2 𝜔𝑡
= 𝑢 1 𝑢 1 cos 𝛽 

𝑣 −𝑈𝐶 sin 𝛽 −𝑦𝑚𝑎𝑥 𝜔 cos 𝜔𝑡 0 −𝑢1 sin 𝛽 

𝑣  0 𝑦𝑚𝑎𝑥 𝜔2 sin 𝜔𝑡 0 −𝑣 1 sin 𝛽 

𝑟 0 0 𝜀𝜔 sin 𝜔𝑡 ⋅
1

1 + 𝜀2 cos2 𝜔𝑡
= 𝑟1 𝑟1 

𝑟  0 0 𝜀𝜔2 cos 𝜔𝑡 ⋅
1 + 𝜀2 1 + sin2 𝜔𝑡 

 1 + 𝜀2 cos2 𝜔𝑡 2 = 𝑟 1 𝑟 1 

 

 

The PMM motions, however, may violate the steady advance speed 𝑈 condition 

for the Taylor-series expansions of hydrodynamic forces and moment shown in (2.4).  If 

the surge 𝑢𝐸 = 𝑥 𝐸  and sway 𝑣𝐸 = 𝑦 𝐸  velocities from (2.8) and (2.9), respectively, are 

used in (2.5), then 𝑈 becomes time-dependent (except for static drift case where 𝑈 = 𝑈𝐶) 

and suggests PMM motions should be small such that 

  

𝑈 = 𝑈𝐶 1 + 𝜀2 cos2 𝜔𝑡 = 𝑈𝐶 + 𝑂 𝜀2 ≈ 𝑈𝐶     for  𝜀 ≪ 1   (2.12) 

Then, the PMM motions summarized in Table 2-1 can be simplified as follows.   



18 
 

 

1
8
 

Static drift: 

𝑣 = −𝑈𝐶 sin 𝛽            (2.13)   

Pure sway: 

𝑦 = −𝑦𝑚𝑎𝑥 sin 𝜔𝑡            (2.14a) 

𝑣 = −𝑣𝑚𝑎𝑥 cos 𝜔𝑡;  𝑣𝑚𝑎𝑥 = 𝑦𝑚𝑎𝑥 𝜔     (2.14b) 

𝑣 = 𝑣 𝑚𝑎𝑥 sin 𝜔𝑡;   𝑣 𝑚𝑎𝑥 = 𝑦𝑚𝑎𝑥 𝜔2     (2.14c) 

Then, drift angle 𝛽 is from (6) as 

 

𝛽 𝑡 = 𝛽𝑚𝑎𝑥 cos 𝜔𝑡;  𝛽𝑚𝑎𝑥 =
𝑦𝑚𝑎𝑥 𝜔

𝑈𝐶
     (2.15) 

Pure yaw: 

𝜓 = −𝜓𝑚𝑎𝑥 cos 𝜔𝑡;  𝜓𝑚𝑎𝑥 =
𝑦𝑚𝑎𝑥 𝜔

𝑈𝐶
     (2.16a) 

𝑟 = 𝑟𝑚𝑎𝑥 sin 𝜔𝑡;  𝑟𝑚𝑎𝑥 = 𝜓𝑚𝑎𝑥 𝜔    (2.16b) 

𝑟 = 𝑟 𝑚𝑎𝑥 cos 𝜔𝑡;  𝑟 𝑚𝑎𝑥 = 𝜓𝑚𝑎𝑥 𝜔2     (2.16c) 

Yaw and drift: 

𝜓 = −𝜓𝑚𝑎𝑥 cos 𝜔𝑡 + 𝛽; 𝜓𝑚𝑎𝑥 =
𝑦𝑚𝑎𝑥 𝜔

𝑈𝐶
     (2.17a) 

𝑣 = −𝑈𝐶 sin 𝛽         (2.17b) 

where 𝑟 and 𝑟  for yaw and drift test are same as (2.16b) and (2.16c) for pure yaw test.  

For such small motions, i.e. 𝜀 ≪ 1, and additionally for small 𝛽 for static drift and yaw 

and drift tests, surge velocity 𝑢 ≈ 𝑈𝐶  and thus Δ𝑢 = 𝑢 − 𝑈 = 0 for all tests.   
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2.3.3 Simplified Mathematic Models for PMM  

For a bare model without propellers or rudders, the Abkowitz‟s mathematic mod-

els for hydrodynamic forces and moment shown in (2.4) can be reduced by dropping the 

terms related to rudder angle 𝛿 as: 

 

𝑋 = 𝑋∗ + 𝑋𝑣𝑣𝑣
2 + 𝑋𝑟𝑟𝑟

2 + 𝑋𝑣𝑟𝑣𝑟  

     +𝑋𝑢Δ𝑢 + 𝑋𝑢𝑢Δ𝑢
2 + 𝑋𝑢𝑢𝑢 Δ𝑢3 + 𝑋𝑣𝑣𝑢𝑣

2Δ𝑢 + 𝑋𝑟𝑟𝑢 𝑟
2Δ𝑢 + 𝑋𝑣𝑟𝑢𝑣𝑟Δ𝑢 (2.18a) 

𝑌 = 𝑌𝑣 𝑣 + 𝑌𝑣𝑣 + 𝑌𝑣𝑣𝑣𝑣
3 + 𝑌𝑟 𝑟 + 𝑌𝑟𝑟 + 𝑌𝑟𝑟𝑟 𝑟

3 + 𝑌𝑣𝑟𝑟𝑣𝑟
2 + 𝑌𝑟𝑣𝑣𝑟𝑣

2  

     +𝑌𝑣𝑢𝑣Δ𝑢 + 𝑌𝑣𝑢𝑢𝑣Δ𝑢
2 + 𝑌𝑟𝑢𝑟Δ𝑢 + 𝑌𝑟𝑢𝑢 𝑟Δ𝑢2    (2.18b) 

𝑁 = 𝑁𝑣 𝑣 + 𝑁𝑣𝑣 + 𝑁𝑣𝑣𝑣𝑣
3 + 𝑁𝑟 𝑟 + 𝑁𝑟𝑟 + 𝑁𝑟𝑟𝑟 𝑟

3 + 𝑁𝑣𝑟𝑟𝑣𝑟
2 + 𝑁𝑟𝑣𝑣𝑟𝑣

2  

     +𝑁𝑣𝑢𝑣Δ𝑢 + 𝑁𝑣𝑢𝑢𝑣Δ𝑢
2 + 𝑁𝑟𝑢𝑟Δ𝑢 + 𝑁𝑟𝑢𝑢 𝑟Δ𝑢2    (2.18c) 

The math-models (18) are further simplified by using the simplified motions (2.13) – 

(2.17) to leave terms for the variables of interest and to determine the hydrodynamic de-

rivatives.   

 

Static drift: 

𝑋 = 𝑋∗ + 𝑋𝑣𝑣𝑣
2         (2.19a) 

𝑌 = 𝑌𝑣𝑣 + 𝑌𝑣𝑣𝑣𝑣
3         (2.19b) 

𝑁 = 𝑁𝑣𝑣 + 𝑁𝑣𝑣𝑣𝑣
3         (2.19c) 

Pure sway: 

𝑋 = 𝑋∗ + 𝑋𝑣𝑣𝑣
2         (2.20a) 

𝑌 = 𝑌𝑣 𝑣 + 𝑌𝑣𝑣 + 𝑌𝑣𝑣𝑣𝑣
3        (2.20b) 

𝑁 = 𝑁𝑣 𝑣 + 𝑁𝑣𝑣 + 𝑁𝑣𝑣𝑣𝑣
3        (2.20c) 

or in harmonic forms by substituting (2.14b) and (2.14c) into (2.20), 
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𝑋 = 𝑋0 + 𝑋𝐶2 cos 2𝜔𝑡       (2.21a) 

𝑌 = 𝑌𝑆1 sin 𝜔𝑡 + 𝑌𝐶1 cos 𝜔𝑡 + 𝑌𝐶3 cos 3𝜔𝑡      (2.21b)  

𝑁 = 𝑁𝑆1 sin 𝜔𝑡 + 𝑁𝐶1 cos 𝜔𝑡 + 𝑁𝐶3 cos 3𝜔𝑡    (2.21c) 

Pure yaw: 

𝑋 = 𝑋∗ + 𝑋𝑟𝑟𝑟
2         (2.22a)  

𝑌 = 𝑌𝑟 𝑟 + 𝑌𝑟𝑟 + 𝑌𝑟𝑟𝑟 𝑟
3        (2.22b) 

𝑁 = 𝑁𝑟 𝑟 + 𝑁𝑟𝑟 + 𝑁𝑟𝑟𝑟 𝑣
3        (2.22c)  

or in harmonic forms by substituting (2.16b) and (2.16c) into (2.22),  

 

𝑋 = 𝑋0 + 𝑋𝐶2 cos 2𝜔𝑡        (2.23a) 

𝑌 = 𝑌𝐶1 cos 𝜔𝑡 + 𝑌𝑆1 sin 𝜔𝑡 + 𝑌𝑆3 sin 3𝜔𝑡      (2.23b) 

𝑁 = 𝑁𝐶1 cos 𝜔𝑡 + 𝑁𝑆1 sin 𝜔𝑡 + 𝑁𝑆3 sin 3𝜔𝑡     (2.23c) 

Yaw and drift: 

𝑋 = 𝑋∗ + 𝑋𝑣𝑣𝑣
2 + 𝑋𝑟𝑟𝑟

2 + 𝑋𝑣𝑟𝑣𝑟       (2.24a) 

𝑌 = 𝑌𝑣𝑣 + 𝑌𝑣𝑣𝑣𝑣
3 + 𝑌𝑟 𝑟 + 𝑌𝑟𝑟 + 𝑌𝑟𝑟𝑟 𝑟

3 + 𝑌𝑣𝑟𝑟𝑣𝑟
2 + 𝑌𝑟𝑣𝑣𝑟𝑣

2   (2.24b) 

𝑁 = 𝑁𝑣𝑣 + 𝑁𝑣𝑣𝑣𝑣
3 + 𝑁𝑟 𝑟 + 𝑁𝑟𝑟 + 𝑁𝑟𝑟𝑟 𝑣

3 + 𝑁𝑣𝑟𝑟𝑣𝑟
2 + 𝑁𝑟𝑣𝑣𝑟𝑣

2  (2.24c) 

or in harmonic forms by substituting (2.16b), (2.16c), and (2.17b) into (2.24),  

 

𝑋 = 𝑋0 + 𝑋𝑆1 sin 𝜔𝑡 + 𝑋𝐶2 cos 2𝜔𝑡      (2.25a) 

𝑌 = 𝑌0 + 𝑌𝐶1 cos 𝜔𝑡 + 𝑌𝑆1 sin 𝜔𝑡 + 𝑌𝐶2 cos 2𝜔𝑡 + 𝑌𝑆3 cos 3𝜔𝑡  (2.25b)  

𝑁 = 𝑁0 + 𝑁𝐶1 cos 𝜔𝑡 + 𝑁𝑆1 sin 𝜔𝑡 + 𝑁𝐶2 cos 2𝜔𝑡 + 𝑁𝑆3 cos 3𝜔𝑡  (2.25c) 

The expressions for the harmonics 𝑋0, 𝑋𝑆𝑛 , 𝑋𝐶𝑛 , 𝑌0, 𝑌𝑆𝑛 , 𝑌𝐶𝑛 , 𝑁0, 𝑁𝑆𝑛 , and 𝑁𝐶𝑛  for 𝑛 = 1, 

2, or 3 in (2.21), (2.23), and (2.25) are summarized in Table 2-3. 
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Table 2-3. Mathematic Models in Harmonics Forms. 

Pure sway models: 

𝑋 = 𝑋0 + 𝑋𝐶2 cos 2𝜔𝑡  

𝑌 = 𝑌𝐶1 cos 𝜔𝑡 + 𝑌𝑆1 sin 𝜔𝑡 + 𝑌𝐶3 cos 3𝜔𝑡  

𝑁 = 𝑁𝐶1 cos 𝜔𝑡 + 𝑁𝑆1 sin 𝜔𝑡 + 𝑁𝐶3 cos 3𝜔𝑡  

 

𝑋 model 𝑌 model 𝑁 model 

𝑋0 = 𝑋∗ +
1

2
𝑋𝑣𝑣𝑣𝑚𝑎𝑥

2   𝑌𝐶1 = − 𝑌𝑣𝑣𝑚𝑎𝑥 +
3

4
𝑌𝑣𝑣𝑣𝑣𝑚𝑎𝑥

3    𝑁𝐶1 = − 𝑁𝑣𝑣𝑚𝑎𝑥 +
3

4
𝑁𝑣𝑣𝑣𝑣𝑚𝑎𝑥

3    

𝑋𝐶2 =
1

2
𝑋𝑣𝑣𝑣𝑚𝑎𝑥

2   𝑌𝑆1 = 𝑌𝑣 𝑣 𝑚𝑎𝑥   𝑁𝑆1 = 𝑁𝑣 𝑣 𝑚𝑎𝑥   

 𝑌𝐶3 = −
1

4
𝑌𝑣𝑣𝑣𝑣𝑚𝑎𝑥

3   𝑁𝐶3 = −
1

4
𝑁𝑣𝑣𝑣𝑣𝑚𝑎𝑥

3   

Pure yaw models: 

𝑋 = 𝑋0 + 𝑋𝐶2 cos 2𝜔𝑡  

𝑌 = 𝑌𝑆1 sin 𝜔𝑡 + 𝑌𝐶1 cos 𝜔𝑡 + 𝑌𝑆3 sin 3𝜔𝑡  

𝑁 = 𝑁𝑆1 sin 𝜔𝑡 + 𝑁𝐶1 cos 𝜔𝑡 + 𝑁𝑆3 sin 3𝜔𝑡  

 

𝑋 model 𝑌 model 𝑁 model 

𝑋0 = 𝑋∗ +
1

2
𝑋𝑟𝑟 𝑟𝑚𝑎𝑥

2   𝑌𝑆1 = 𝑌𝑟𝑟𝑚𝑎𝑥 +
3

4
𝑌𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3   𝑁𝑆1 = 𝑁𝑟𝑟𝑚𝑎𝑥 +
3

4
𝑁𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3   

𝑋𝐶2 = −
1

2
𝑋𝑟𝑟 𝑟𝑚𝑎𝑥

2   𝑌𝐶1 = 𝑌𝑟 𝑟 𝑚𝑎𝑥   𝑁𝐶1 = 𝑁𝑟 𝑟 𝑚𝑎𝑥   

 𝑌𝑆3 = −
1

4
𝑌𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3   𝑁𝑆3 = −
1

4
𝑁𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3   

Yaw and drift models: 

𝑋 = 𝑋0 + 𝑋𝑆1 sin 𝜔𝑡 + 𝑋𝐶2 cos 2𝜔𝑡  

𝑌 = 𝑌0 + 𝑌𝑆1 sin 𝜔𝑡 + 𝑌𝐶1 cos 𝜔𝑡 + 𝑌𝐶2 cos 2𝜔𝑡 + 𝑌𝑆3 sin 3𝜔𝑡  

𝑁 = 𝑁0 + 𝑁𝑆1 sin 𝜔𝑡 + 𝑁𝐶1 cos 𝜔𝑡 + 𝑁𝐶2 cos 2𝜔𝑡 + 𝑁𝑆3 sin 3𝜔𝑡  

 

𝑋 model 𝑌 model 𝑁 model 

𝑋0 = 𝑋∗ + 𝑋𝑣𝑣𝑣
2 +

1

2
𝑋𝑟𝑟 𝑟𝑚𝑎𝑥

2   𝑌0 = 𝑌𝑣𝑣 + 𝑌𝑣𝑣𝑣𝑣
3 +

1

2
𝑌𝑣𝑟𝑟𝑣𝑟𝑚𝑎𝑥

2   𝑁0 = 𝑁𝑣𝑣 + 𝑁𝑣𝑣𝑣𝑣
3 +

1

2
𝑁𝑣𝑟𝑟𝑣𝑟𝑚𝑎𝑥

2   

𝑋𝑆1 = 𝑋𝑣𝑟𝑣𝑟𝑚𝑎𝑥   𝑌𝑆1 = 𝑌𝑟𝑟𝑚𝑎𝑥 +
3

4
𝑌𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3 + 𝑌𝑟𝑣𝑣𝑟𝑚𝑎𝑥 𝑣2  𝑁𝑆1 = 𝑁𝑟𝑟𝑚𝑎𝑥 +
3

4
𝑁𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3 + 𝑁𝑟𝑣𝑣𝑟𝑚𝑎𝑥 𝑣2  

𝑋𝐶2 = −
1

2
𝑋𝑟𝑟 𝑟𝑚𝑎𝑥

2   𝑌𝐶1 = 𝑌𝑟 𝑟 𝑚𝑎𝑥   𝑁𝐶1 = 𝑁𝑟 𝑟 𝑚𝑎𝑥   

 𝑌𝐶2 = −
1

2
𝑌𝑣𝑟𝑟 𝑣𝑟𝑚𝑎𝑥

2   𝑁𝐶2 = −
1

2
𝑁𝑣𝑟𝑟 𝑣𝑟𝑚𝑎𝑥

2   

 𝑌𝑆3 = −
1

4
𝑌𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3   𝑁𝑆3 = −
1

4
𝑁𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3   
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2.3.4 Non-dimensionalization  

Non-dimensionlization follows the Prime-system of SNAME (Nomenclature, 

1952) for which 𝐿, 𝐿 𝑈 , and ½𝜌𝐿2𝑇 are used as the characteristic scales for length, time, 

and mass, respectively, where 𝐿 is the ship length, 𝑈 is the ship advance speed, 𝜌 is the 

water density, and 𝑇 is the draft of the ship.  Some of the non-dimensional variables are 

shown below: 

 

𝑦 =
𝑦

𝐿
;  𝑦𝑚𝑎𝑥

′ =
𝑦𝑚𝑎𝑥

𝐿
        (2.26a) 

𝜔′ =
𝜔𝐿

𝑈
≈

𝜔𝐿

𝑈𝐶
          (2.26b) 

Δ𝑢′ = 𝑢′ − 1 =
𝑢

𝑈
− 1       (2.26c) 

𝑢 ′ =
𝑢 𝐿

𝑈2         (2.26d) 

𝑣 ′ =
𝑣

𝑈
;  𝑣𝑚𝑎𝑥

′ =
𝑣𝑚𝑎𝑥

𝑈
≈  

𝑦𝑚𝑎𝑥

𝐿
  

𝜔𝐿

𝑈𝐶
      (2.26e) 

𝑣 ′ =
𝑣 𝐿

𝑈2;  𝑣 𝑚𝑎𝑥
′ =

𝑣 𝑚𝑎𝑥 𝐿

𝑈2 ≈  
𝑦𝑚𝑎𝑥

𝐿
  

𝜔𝐿

𝑈𝐶
 

2

    (2.26f) 

𝑟′ =
𝑟𝐿

𝑈
;  𝑟𝑚𝑎𝑥

′ =
𝑟𝑚𝑎𝑥 𝐿

𝑈
≈ 𝜓𝑚𝑎𝑥  

𝜔𝐿

𝑈𝐶
      (2.26g) 

𝑟 ′ =
𝑟 𝐿2

𝑈2 ;  𝑟 𝑚𝑎𝑥
′ =

𝑟 𝑚𝑎𝑥 𝐿2

𝑈2 ≈ 𝜓𝑚𝑎𝑥  
𝜔𝐿

𝑈𝐶
 

2

     (2.26h) 

𝑋′ =
𝑋

1 2 𝜌𝑈2𝐿𝑇
         (2.26i) 

𝑌′ =
𝑌

1 2 𝜌𝑈2𝐿𝑇
         (2.26j) 

𝑁′ =
𝑁

1 2 𝜌𝑈2𝐿2𝑇
        (2.26k) 

Note that in the remainder of the thesis the prime symbol is omitted for simplicity.   
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2.3.5 Determination of hydrodynamic derivatives 

Hydrodynamic derivatives (simply „derivatives‟) in the mathematic models (2.18) 

are determined from the static drift, pure sway, pure yaw, and yaw and drift data.  Sway-

velocity derivatives 𝑋∗, 𝑋𝑣𝑣, 𝑌𝑣, 𝑌𝑣𝑣𝑣 , 𝑁𝑣, and 𝑁𝑣𝑣𝑣  are determined from the static drift 

data and sway-acceleration derivatives 𝑌𝑣  and 𝑁𝑣  are from the pure sway data.  Sway-

velocity derivatives can be determined as well from the pure sway data, however, deriva-

tives determined from the static drift data are preferred in general as the derivatives from 

dynamic-test data are known as often frequency-dependent (van Leeuwen 1964).  As the 

dynamic-motion frequency 𝜔 becomes large, the „quasi-steady‟ or the „slow-motion‟ as-

sumptions for the math-models can fail and the hydrodynamic forces and moment during 

the PMM tests become dependent not only on the instantaneous motions but partly also 

on the previous motions (Bishop et al. 1970, 1972, 1973), known as the „memory effect‟.  

The yaw-rate derivatives 𝑋𝑟𝑟 , 𝑌𝑟 , 𝑌𝑟𝑟𝑟 , 𝑁𝑟 , and 𝑁𝑟𝑟𝑟  and the yaw-acceleration derivatives 

𝑌𝑟  and 𝑁𝑟  are determined from the pure yaw test.  The cross-coupled derivatives between 

sway and yaw such as 𝑋𝑣𝑟 , 𝑌𝑣𝑟𝑟 , 𝑌𝑟𝑣𝑣 , 𝑁𝑣𝑟𝑟 , and  𝑁𝑟𝑣𝑣   are determined from the yaw and 

drift test that is a combination of pure yaw and static drift tests.  The surge-coupled de-

rivatives such as 𝑋𝑢 , 𝑋𝑢𝑢 , 𝑋𝑢𝑢𝑢 , 𝑋𝑣𝑣𝑢 , 𝑌𝑣𝑢 , 𝑌𝑣𝑢𝑢 , 𝑁𝑣𝑢 , and 𝑁𝑣𝑢𝑢  are determined by repeat-

ing the static drift (or pure sway) test and 𝑋𝑟𝑟𝑢 , 𝑌𝑟𝑢 , 𝑌𝑟𝑢𝑢 , 𝑁𝑟𝑢 , 𝑁𝑟𝑢𝑢  are by repeating the 

pure yaw test over a range of towing speed, respectively.  The sway-yaw-surge-coupled 

derivative 𝑋𝑣𝑟𝑢  can be determined by repeating the yaw and drift test, but typically of 

negligible value.   

The derivatives are evaluated by curve-fitting the data for static drift test and by 

using either the „Multiple-run (MR)‟ or „Single-run (SR)‟ methods for dynamic tests as 

per introduced below:  
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2.3.5.1 Static drift test 

Data are measured over a range of drift angle 𝛽 and curve-fitted to polynomial 

functions as per the mathematic model (2.19): 

 

𝑦 = 𝐴 + 𝐵𝑥2;  𝑦 = 𝑋;  𝑥 = 𝑣       (2.27a) 

𝑦 = 𝐴𝑥 + 𝐵𝑥3;  𝑦 = 𝑌, 𝑁;  𝑥 = 𝑣       (2.27b) 

Then, 

 

𝑋∗, 𝑌𝑣 , 𝑁𝑣 = 𝐴          (2.28a) 

𝑋𝑣𝑣 ,𝑌𝑣𝑣𝑣 , 𝑁𝑣𝑣𝑣 = 𝐵        (2.28b) 

respectively.  

2.3.5.2 Dynamic tests 

Derivatives can be determined from the math-models (2.20), (2.22), and (2.24) 

with expressed in harmonics form, summarized in Table 2-3.  Then, the derivatives5 are 

evaluated either by curve-fitting the harmonics data into those equations, named as the 

„Multiple-Run‟ method; or by solving the harmonics equations for the derivatives, named 

as the „Single-Run‟ method.  The harmonics data are determined experimentally by mea-

suring the 𝑋, 𝑌, and 𝑁 as time-histories from PMM tests as 

 

𝑋, 𝑌, 𝑁 = 𝑓 𝑡          (2.29) 

and using a Fourier-integral equation as:  

 

                                                 
5 Derivatives can be also determined by using a regression method, although not used herein.  By 
using the math-models (2.19) as the regression equations, the PMM test data can be curve-fitted 
using such as a Least-square-error method to evaluate the derivatives. 
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𝑋0,𝑌0, 𝑁0 =
1

𝑇
 𝑓 𝑡 𝑑𝑡

𝑇

0
        (2.30a) 

𝑋𝐶𝑛 , 𝑌𝐶𝑛 , 𝑁𝐶𝑛 =
2

𝑇
 𝑓 𝑡 cos 𝑛𝜔𝑡 𝑑𝑡

𝑇

0
      (2.30b) 

𝑋𝑆𝑛 , 𝑌𝑆𝑛 , 𝑁𝑆𝑛 =
2

𝑇
 𝑓 𝑡 sin 𝑛𝜔𝑡 𝑑𝑡

𝑇

0
       (2.30c) 

where 𝑇 = 2𝜋 𝜔 .   

 ‘Multiple-run’ (MR) method: Derivatives are determined by using data from a se-

ries of PMM tests.   For this, PMM tests are repeated over a range of input motions para-

meters such as 𝑣𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥 , or 𝛽, and then a set of harmonics data, evaluated from each 

test as per (2.30), is fitted into polynomial functions as 

 

 
𝑋0,𝑌0, 𝑁0

𝑋𝑆𝑛 , 𝑌𝑆𝑛 , 𝑁𝑆𝑛

𝑋𝐶𝑛 , 𝑌𝐶𝑛 , 𝑁𝐶𝑛

 = 𝑦 𝑥 ;  𝑥 = 𝑣𝑚𝑎𝑥 , 𝑣 𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥 , 𝑟 𝑚𝑎𝑥 , or 𝑣    (2.31)  

Polynomial functions 𝑦 𝑥  in (2.31) for each harmonic are summarized in Table 2-4 

where the resulting hydrodynamic derivatives are expressed with the polynomial coeffi-

cients.  From Table 2-4, the non-linear derivatives such as 𝑋𝑣𝑣, 𝑌𝑣𝑣𝑣 , 𝑁𝑣𝑣𝑣 , 𝑋𝑟𝑟 , 𝑌𝑟𝑟𝑟 , 

𝑁𝑟𝑟𝑟 , 𝑌𝑣𝑟𝑟 , and 𝑁𝑣𝑟𝑟  can be determined either from the 0
th

- or 1
st
-order (low-order) har-

monics such as 𝑋0, 𝑌0, 𝑌𝐶1, 𝑌𝑆1, 𝑁0, 𝑁𝑆1, and 𝑁𝑆1 or from the 2
nd

- or 3
rd

-order (high-

order) harmonics such as 𝑋𝐶2, 𝑌𝐶2, 𝑌𝐶3, 𝑌𝑆3, 𝑁𝐶2, 𝑁𝐶3, or 𝑁𝑆3, which are designated as the 

„MRL‟ and the „MRH‟ methods, respectively.   

‘Single-run’ (SR) method: Hydrodynamic derivatives are determined by using da-

ta from a single realization (carriage-run) of dynamic PMM test (or from a mean-data by 

repeating the tests at the same condition).  First, FS harmonics of the data are evaluated 

as per (2.30), and then the equations of harmonics amplitudes in Table 2-3 are solved for 

hydrodynamic derivatives such that 
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𝑋∗,𝑋𝑣𝑣 , 𝑋𝑟𝑟 ,𝑋𝑣𝑟 ;

𝑌𝑣 , 𝑌𝑣𝑣𝑣 , 𝑌𝑣 , 𝑌𝑟 , 𝑌𝑟𝑟𝑟 ,𝑌𝑟 , 𝑌𝑣𝑟𝑟 , 𝑌𝑟𝑣𝑣 ;
𝑁𝑣 , 𝑁𝑣𝑣𝑣 , 𝑁𝑣 , 𝑁𝑟 , 𝑁𝑟𝑟𝑟 ,𝑁𝑟 , 𝑁𝑣𝑟𝑟 , 𝑁𝑟𝑣𝑣

 = 𝑓  

𝑋0,𝑋𝑆𝑛 , or 𝑋𝐶𝑛 ;
𝑌0, 𝑌𝑆𝑛 , or 𝑌𝐶𝑛 ;
𝑁0, 𝑁𝑆𝑛 , or 𝑁𝐶𝑛

   (2.32) 

respectively, where 𝑛 = 1, 2, or 3.  The solutions are summarized in Table 2-5, where two 

derivatives, 𝑌𝑣𝑟𝑟  and 𝑁𝑣𝑟𝑟 , can be determined either from the 0
th

-order (low-order) har-

monics 𝑌0 and 𝑁0 or from the 2
nd

-order (high-order) harmonics 𝑌𝐶2 and 𝑁𝐶2, which are 

designated as the „SRL‟ and the „SRH‟ methods, respectively. 
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Table 2-4. „Multiple-Run‟ Method.  

Test Variable Polynomial equation  𝑦  𝑥  Derivatives 

Pure sway 𝑋  𝑦 = 𝐴 + 𝐵𝑥2  𝑋0  𝑣𝑚𝑎𝑥   𝑋∗ = 𝐴; 𝑋𝑣𝑣 = 2𝐵 

  𝑦 = 𝐶𝑥2  𝑋𝐶2  𝑣𝑚𝑎𝑥   𝑋𝑣𝑣 = 2𝐶  

 𝑌, 𝑁  𝑦 = 𝐴𝑥 + 𝐵𝑥3  𝑌𝐶1, 𝑁𝐶1  𝑣𝑚𝑎𝑥   𝑌𝑣 , 𝑁𝑣 = 𝐴; 𝑌𝑣𝑣𝑣 ,𝑁𝑣𝑣𝑣 =
4

3
𝐵 

  𝑦 = 𝐶𝑥  𝑌𝑆1, 𝑁𝑆1  𝑣 𝑚𝑎𝑥   𝑌𝑣 , 𝑁𝑣 = 𝐶  

`  𝑦 = 𝐷𝑥3  𝑌𝐶3, 𝑁𝐶3  𝑣𝑚𝑎𝑥   𝑌𝑣𝑣𝑣 ,𝑁𝑣𝑣𝑣 = −4𝐷  

Pure yaw 𝑋  𝑦 = 𝐴 + 𝐵𝑥2  𝑋0  𝑟𝑚𝑎𝑥   𝑋∗ = 𝐴; 𝑋𝑟𝑟 = 2𝐵 

  𝑦 = 𝐶𝑥2  𝑋𝐶2  𝑟𝑚𝑎𝑥   𝑋𝑟𝑟 = −2𝐶  

 𝑌, 𝑁  𝑦 = 𝐴𝑥 + 𝐵𝑥3  𝑌𝑆1, 𝑁𝑆1  𝑟𝑚𝑎𝑥   𝑌𝑟 ,𝑁𝑟 = 𝐴; 𝑌𝑟𝑟𝑟 ,𝑁𝑟𝑟𝑟 =
4

3
𝐵 

  𝑦 = 𝐶𝑥  𝑌𝐶1, 𝑁𝐶1  𝑟 𝑚𝑎𝑥   𝑌𝑟 ,𝑁𝑟 = 𝐶  

  𝑦 = 𝐷𝑥3  𝑌𝑆3, 𝑁𝑆3  𝑟𝑚𝑎𝑥   𝑌𝑟𝑟𝑟 ,𝑁𝑟𝑟𝑟 = 4𝐷  

Yaw and drift 𝑋  𝑦 = 𝐴𝑥  𝑋𝐶1  𝑣  𝑋𝑣𝑟 =
1

𝑟𝑚𝑎𝑥
𝐴  

 𝑌, 𝑁  𝑦 = 𝐴𝑥 + 𝐵𝑥3  𝑌0, 𝑁0  𝑣  𝑌𝑣𝑟𝑟 =
2

𝑟𝑚𝑎𝑥
2  𝐴 − 𝑌𝑣 ; 𝑁𝑣𝑟𝑟 =

2

𝑟𝑚𝑎𝑥
2  𝐴 − 𝑁𝑣  

  𝑦 = 𝐶 + 𝐷𝑥2  𝑌𝑆1, 𝑁𝑆1  𝑣  𝑌𝑟𝑣𝑣 ,𝑁𝑟𝑣𝑣 =
1

𝑟𝑚𝑎𝑥
𝐷  

  𝑦 = 𝐸𝑥  𝑌𝐶2, 𝑁𝐶2  𝑣  𝑌𝑣𝑟𝑟 ,𝑁𝑣𝑟𝑟 = −
2

𝑟𝑚𝑎𝑥
2 𝐸  

 

Table 2-5. „Single-Run‟ Method.  

Pure sway Pure yaw Yaw and drift 

𝑋∗ = 𝑋0 − 𝑋𝐶2    𝑋∗ = 𝑋0 + 𝑋𝐶2   

𝑌𝑣 = −
1

𝑣𝑚𝑎𝑥

 𝑌𝐶1 − 3𝑌𝐶3   𝑌𝑟 =
1

𝑟𝑚𝑎𝑥

 𝑌𝑆1 + 3𝑌𝑆3   
 

𝑁𝑣 = −
1

𝑣𝑚𝑎𝑥

 𝑁𝐶1 − 3𝑁𝐶3   𝑁𝑟 =
1

𝑟𝑚𝑎𝑥

 𝑁𝑆1 + 3𝑁𝑆3    

𝑋𝑣𝑣 =
2

𝑣𝑚𝑎𝑥
2 𝑋𝐶2  𝑋𝑟𝑟 = −

2

𝑟𝑚𝑎𝑥
2 𝑋𝐶2  𝑋𝑣𝑟 =

1

𝑣𝑟𝑚𝑎𝑥
𝑋𝑆1  

𝑌𝑣𝑣𝑣 = −
4

𝑣𝑚𝑎𝑥
3 𝑌𝐶3  𝑌𝑟𝑟𝑟 = −

4

𝑟𝑚𝑎𝑥
3 𝑌𝑆3  𝑌𝑣𝑟𝑟 =

2

𝑣𝑟𝑚𝑎𝑥
2  𝑌0 − 𝑌𝑣𝑣 − 𝑌𝑣𝑣𝑣𝑣

3   or −
2

𝑣𝑟𝑚𝑎𝑥
2 𝑌𝐶2 

𝑁𝑟𝑟𝑟 = −
4

𝑣𝑚𝑎𝑥
3 𝑁𝐶3  𝑁𝑟𝑟𝑟 = −

4

𝑟𝑚𝑎𝑥
3 𝑁𝑆3  𝑁𝑣𝑟𝑟 =

2

𝑣𝑟𝑚𝑎𝑥
2  𝑁0 − 𝑁𝑣𝑣 − 𝑁𝑣𝑣𝑣𝑣

3   or −
2

𝑣𝑟𝑚𝑎𝑥
2 𝑁𝐶2 

𝑌𝑣 =
1

𝑣 𝑚𝑎𝑥
𝑌𝑆1  𝑌𝑟 =

1

𝑟 𝑚𝑎𝑥
𝑌𝐶1  𝑌𝑟𝑣𝑣 =

1

𝑟𝑚𝑎𝑥 𝑣2  𝑌𝑆1 − 𝑌𝑟𝑟𝑚𝑎𝑥 −
3

4
𝑌𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3    

𝑁𝑣 =
1

𝑣 𝑚𝑎𝑥
𝑁𝑆1  𝑌𝑟 =

1

𝑟 𝑚𝑎𝑥
𝑁𝐶1  𝑁𝑟𝑣𝑣 =

1

𝑟𝑚𝑎𝑥 𝑣2  𝑁𝑆1 − 𝑁𝑟𝑟𝑚𝑎𝑥 −
3

4
𝑁𝑟𝑟𝑟 𝑟𝑚𝑎𝑥

3    
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2.3.5.3 Speed variation test 

Surge-derivatives such as 𝑋𝑢 , 𝑋𝑢𝑢 , and 𝑋𝑢𝑢𝑢  in (2.18) are determined by repeat-

ing the static drift test at the 𝛽 = 0 for a range of 𝑈 (i.e. 𝑈𝐶).  The static drift 𝑋 at 𝛽 = 0, 

the steady reference state value 𝑋∗, corresponds to the resistance of the model at the 

speed 𝑈 as no propeller is working.  If the model towing speed is changed, say 𝑈 + Δ𝑢, 

the 𝑋∗ value will change as the model resistance increase (or decrease) such that   

 

𝑋∗ 𝑈 + Δ𝑢 = 𝑋∗ 𝑈 + Δ𝑋         (2.33) 

The changes in resistance Δ𝑋 in (2.33) can be written using a Taylor series expansion as 

 

Δ𝑋 = 𝑓 𝑢 =
𝜕𝑋

𝜕𝑢
Δ𝑢 +

1

2

𝜕2𝑋

𝜕𝑢2 Δ𝑢2 +
1

6

𝜕3𝑋

𝜕𝑢3 Δ𝑢3 + ⋯    (2.34) 

where the differentiations of 𝑋 are evaluated at Δ𝑢 = 0 or 𝑢 = 𝑈, which are identical 

with the definitions of surge hydrodynamic derivatives.  When the test is repeated over a 

range of 𝑈, the measured 𝑋 values can be expressed as a polynomial function of Δ𝑢 =

𝑢 − 𝑈 as 

 

𝑓 𝑢 = 𝑎0 + 𝑎1Δ𝑢 + 𝑎2Δ𝑢
2 + 𝑎3Δ𝑢

3 + ⋯      (2.35) 

and hydrodynamic derivatives 𝑋𝑢 , 𝑋𝑢𝑢 , 𝑋𝑢𝑢𝑢  are determined as following: 

 

𝑋𝑢 =
𝜕𝑓

𝜕𝑢
= 𝑎1         (2.36a) 

𝑋𝑢𝑢 =
1

2

𝜕2𝑓

𝜕𝑢2
= 𝑎2         (2.36b) 

𝑋𝑢𝑢𝑢 =
1

6

𝜕3𝑓

𝜕𝑢3
= 𝑎3        (2.36c) 

Derivatives such as 𝑋𝑣𝑣, 𝑌𝑣, 𝑁𝑣, and 𝑋𝑟𝑟 , 𝑌𝑟 , 𝑁𝑟 , and 𝑋𝑣𝑟  evaluated at 𝑈 may also change 

with Δ𝑢 and can be expressed as appropriate polynomial functions 𝑓 𝑢  similarly as 
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(2.35) by repeating the static drift tests, pure yaw test, and yaw and drift test, respective-

ly.  Subsequently, the surge-coupled hydrodynamic derivatives such as 𝑋𝑣𝑣𝑢 , 𝑋𝑟𝑟𝑢 , 𝑋𝑣𝑟𝑢 , 

𝑌𝑣𝑢 , 𝑌𝑣𝑢𝑢 , 𝑁𝑣𝑢 , 𝑁𝑣𝑢𝑢  are determined as following:  

 

 
𝑋𝑣𝑣𝑢 , 𝑋𝑟𝑟𝑢 , 𝑋𝑣𝑟𝑢

𝑌𝑣𝑢 , 𝑌𝑟𝑢
𝑁𝑣𝑢 , 𝑁𝑟𝑢

 =
𝜕𝑓

𝜕𝑢
= 𝑎1        (2.37a) 

 𝑌𝑣𝑢𝑢 , 𝑌𝑟𝑢𝑢
𝑁𝑣𝑢𝑢 , 𝑁𝑟𝑢𝑢

 =
1

2

𝜕2𝑓

𝜕𝑢2 = 𝑎2         (2.37b) 

 


