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Chapter 9 Flow over Immersed Bodies  
 
Fluid flows are broadly categorized: 
 

1. Internal flows such as ducts/pipes, turbomachinery, open 
channel/river, which are bounded by walls or fluid interfaces: 
Chapter 8. 
 

2. External flows such as flow around vehicles and structures, 
which are characterized by unbounded or partially bounded 
domains and flow field decomposition into viscous and 
inviscid regions: Chapter 9. 
 

a. Boundary layer flow: high Reynolds number flow 
around streamlines bodies without flow separation. 

 
 

b. Bluff body flow: flow around bluff bodies with flow 
separation. 
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3. Free Shear flows such as jets, wakes, and mixing layers, 

which are also characterized by absence of walls and 
development and spreading in an unbounded or partially 
bounded ambient domain: advanced topic, which also uses 
boundary layer theory. 

   
 
Basic Considerations 
 
Drag is decomposed into form and skin-friction 
contributions: 
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t  << 1 Cf > > CDp    streamlined body 

 

c
t  ∼ 1 CDp  > > Cf  bluff body 

 
Streamlining: One way to reduce the drag 
 
  reduce the flow separationreduce the pressure drag 
  increase the surface area  increase the friction drag 
 
 Trade-off relationship between pressure drag and friction drag 
 

 
Trade-off relationship between pressure drag and friction drag 

 
 
Benefit of streamlining: reducing vibration and noise 
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Qualitative Description of the Boundary Layer  
 
Flow-field regions for high Re flow about slender bodies: 
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τw = shear stress 
 
τw ∝ rate of strain (velocity gradient) 
 

 =
0yy

u

=∂
∂

µ  

 
    
    large near the surface where  

fluid undergoes large changes to 
satisfy the no-slip condition 
 

Boundary layer theory and equations are a simplified form 
of the complete NS equations and provides τw as well as a 
means of estimating Cform.  Formally, boundary-layer 
theory represents the asymptotic form of the Navier-Stokes 
equations for high Re flow about slender bodies. The NS 
equations are 2nd order nonlinear PDE and their solutions 
represent a formidable challenge.  Thus, simplified forms 
have proven to be very useful. 
 
Near the turn of the last century (1904), Prandtl put forth 
boundary-layer theory, which resolved D’Alembert’s 
paradox: for inviscid flow drag is zero.  The theory is 
restricted to unseparated flow.  The boundary-layer 
equations are singular at separation, and thus, provide no 
information at or beyond separation.  However, the 
requirements of the theory are met in many practical 
situations and the theory has many times over proven to be 
invaluable to modern engineering. 
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The assumptions of the theory are as follows:  
 
  Variable     order of magnitude   
 u    U   O(1) 
 v    δ<<L  O(ε)  ε = δ/L 

      
x∂
∂     1/L   O(1) 

      
y∂
∂     1/δ   O(ε-1) 

 ν    δ2   ε2  
 
The theory assumes that viscous effects are confined to a 
thin layer close to the surface within which there is a 
dominant flow direction (x) such that u ∼ U and v << u.  
However, gradients across δ are very large in order to 

satisfy the no slip condition; thus, 
y∂
∂ >>

x∂
∂ . 

 
Next, we apply the above order of magnitude estimates to 
the NS equations. 
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Retaining terms of O(1) only results in the celebrated 
boundary-layer equations 
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parabolic 
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Some important aspects of the boundary-layer equations: 

1) the y-momentum equation reduces to 

0
y
p
=

∂
∂  

 i.e.,  p = pe = constant across the boundary layer 
 

from the Bernoulli equation:    

=ρ+ 2
ee U

2
1p constant 

i.e.,  
x

UU
x
p e

e
e

∂
∂

ρ−=
∂
∂  

Thus, the boundary-layer equations are solved subject to 
a specified inviscid pressure distribution 

 
2) continuity equation is unaffected 
 
3) Although NS equations are fully elliptic, the 

boundary-layer equations are parabolic and can be 
solved using marching techniques 

 
4) Boundary conditions   

 
u = v = 0  y = 0 
 
u = Ue  y = δ 
 

+ appropriate initial conditions @ xi 
 

edge value, i.e., 
inviscid flow value! 
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There are quite a few analytic solutions to the boundary-
layer equations.  Also numerical techniques are available 
for arbitrary geometries, including both two- and three-
dimensional flows.  Here, as an example, we consider the 
simple, but extremely important case of the boundary layer 
development over a flat plate. 
 
Quantitative Relations for the Laminar Boundary 
Layer 
 
Laminar boundary-layer over a flat plate:  Blasius solution 
(1908)  student of Prandtl 
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  u = v = 0 @ y = 0  u = U∞ @ y = δ 
 
 
We now introduce a dimensionless transverse coordinate 
and a stream function, i.e., 
 

  
δ

∝
ν

=η ∞ y
x

Uy  

 
  ( )ην=ψ ∞ fxU  

Note: 
x
p
∂

∂
 = 0 

for a flat plate 
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Substitution into the boundary-layer equations yields 
 
   0f2ff =′′′+′′   Blasius Equation 
 0ff =′=    @ η = 0  1f =′    @ η = 1 
 
The Blasius equation is a 3rd order ODE which can be 
solved by standard methods (Runge-Kutta).  Also, series 
solutions are possible.  Interestingly, although simple in 
appearance no analytic solution has yet been found.  
Finally, it should be recognized that the Blasius solution is 
a similarity solution, i.e., the non-dimensional velocity 
profile f′ vs. η is independent of x.  That is, by suitably 
scaling all the velocity profiles have neatly collapsed onto a 
single curve. 
 
Now, lets consider the characteristics of the Blasius 
solution: 
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Wall shear stress: 3 20.332w U
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measure of displacement of inviscid flow due to 
boundary layer 
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measure of loss of momentum due to boundary layer 

H = shape parameter = 
θ
δ*

=2.5916 
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For flat plate or δ for general case 

Quantitative Relations for the Turbulent 
Boundary Layer 
 
2-D Boundary-layer Form of RANS equations 
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      requires modeling 
 
Momentum Integral Analysis 
 
Historically similarity and AFD methods used for idealized 
flows and momentum integral methods for practical 
applications, including pressure gradients.  Modern 
approach: CFD. 
 
To obtain general momentum integral relation which is 
valid for both laminar and turbulent flow 
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  displacement thickness 

 
Can also be derived by CV analysis as shown next for flat 
plate boundary layer. 
 
Momentum Equation Applied to the Boundary Layer 
 
Consider flow of a viscous fluid at high Re past a flat plate, i.e., 
flat palte fixed in a uniform stream of velocity ˆUi .   
 
 
 
 
 
 
 
 
 
 
Boundary-layer thickness arbitrarily defined by y = %99δ (where, 

%99δ is the value of y at u = 0.99U). Streamlines outside %99δ  will 
deflect an amount *δ (the displacement thickness). Thus the 
streamlines move outward from Hy =  at 0=x  to 

*δδ +=== HYy at 1xx = . 
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Conservation of mass: 

CS

V ndAρ •∫ =0= 0 0

H H
Udy udy

δ
ρ ρ

∗+
− +∫ ∫  

Assume incompressible flow (constant density): 

( ) ( )∫ ∫ ∫ −+=−+==
Y Y Y

dyUuUYdyUuUudyUH
0 0 0  

Substituting *δ+= HY defines displacement thickness:     

                                     dy
U
uY

∫ 





 −= 0

* 1δ  

*δ is an important measure of effect of BL on external flow. 
Consider alternate derivation based on equivalent flow rate: 

 

∫∫ =
δδ

δ 0*

udyUdy
 

 
 

Flowrate between *δ and δ of inviscid flow=actual flowrate, i.e., inviscid flow rate 
about displacement body = viscous flow rate about actual body 

∫∫∫∫ 





 −=⇒=−

δδδδ

δ
0

*

000

1
*

dy
U
uudyUdyUdy    

w/o BL - displacement effect=actual discharge 
 

For 3D flow, in addition it must also be explicitly required that *δ
is a stream surface of the inviscid flow continued from outside of 
the BL. 

δ* Lam=δ/3 

δ 

δ* Turb=δ/8 

Inviscid flow about δ* body 
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Conservation of x-momentum: 
( ) ( )

0 0

H Y

x
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F D uV ndA U Udy u udyρ ρ ρ= − = • = − +∑ ∫ ∫ ∫  

dyuHUDDrag Y
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22 ρρ  
= Fluid force on plate = - Plate force on CV (fluid) 
 
Again assuming constant density and using continuity: 
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where, θ  is the momentum thickness (a function of x only), an 
important measure of the drag. 
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Per unit span 

Special case 2D 
momentum integral 
equation for px = 0 
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Simple velocity profile approximations: 
 

)//2( 22 δδ yyUu −=  
 
u(0) = 0              no slip 
u(δ) = U             matching with outer flow 
uy(δ)=0  
 
Use velocity profile to get Cf(δ) and θ(δ) and then integrate 
momentum integral equation to get δ(Rex) 
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10% error, cf. Blasius 
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Approximate solution Turbulent Boundary-Layer 
 
  Ret = 5×105∼ 3×106 for a flat plate boundary layer 
        Recrit ∼ 100,000 

  
dx
d

2
cf θ

=      

 
as was done for the approximate laminar flat plate 
boundary-layer analysis, solve by expressing cf = cf (δ) and 
θ = θ(δ) and integrate, i.e. assume log-law valid across 
entire turbulent boundary-layer 
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neglect laminar sub layer and 
velocity defect region 

cf (δ) 



57:020 Mechanics of Fluids and Transport Processes                                                                 Chapter 9 
Professor Fred Stern   Fall 2010  20 

Next, evaluate 

  ∫ 





 −=

θ δ

0
dy

U
u1

U
u

dx
d

dx
d  

 
can use log-law or more simply a power law fit 
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1/7

0.027
Ref

x
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( )1/7

0.031 7
Re 6f f

L

C c L= =  

 
These formulas are valid for a fully turbulent flow over a 
smooth flat plate from the leading edge.  Assuming the 
transition from laminar to turbulent occurs at Re larger than 
105, those formulas in general give better results for 
sufficiently large Reynolds number ReL > 107. 
 
 

Note: cannot be used to 
obtain  cf (δ) since τw → ∞ 

i.e., much faster 
growth rate than 
laminar 
boundary layer  
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Alternate forms by using the same velocity profile u/U = 
(y/δ)1/7 assumption but using an experimentally determined 
shear stress  formula τw = 0.0225ρU2(ν/Uδ)1/4 are: 
 

         1/50.37 Rexx
δ −=      1/5

0.058
Ref

x

c =        1/5

0.074
Ref

L

C =       

shear stress:    
2

1/5

0.029
Rew

x

Uρτ =   

 
These formulas are valid only in the range of the 
experimental data, which covers ReL = 5 × 105 ∼ 107 for 
smooth flat plates. 
                                        
Other empirical formulas for smooth flat plates are as 
follows: 
 
   𝐶𝑓 = 0.455

(log10 𝑅𝑒𝐿)2.58     
 

   ( )732.Relog98.c
L Lf −=
δ  

 
   ( ) 3.2

xf 65.Relog2c −−=  
 
For the experimental/empirical formulas, the boundary 
layer is usually “tripped” by some roughness or leading 
edge disturbance, to make the boundary layer turbulent 
from the leading edge. 
 

Total 
shear-stress 
coefficient 

Local  
shear-stress 
coefficient 
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Finally, composite formulas that take into account both the 
initial laminar boundary layer and subsequent turbulent 
boundary layer, i.e. in the transition region (5 × 105 < ReL < 
8 × 107) where the laminar drag at the leading edge is an 
appreciable fraction of the total drag:  
 

𝐶𝑓 =
0.031

𝑅𝑒𝐿
1
7
−

1440
𝑅𝑒𝐿

 

 
𝐶𝑓 =

0.074

𝑅𝑒𝐿
1
5
−

1700
𝑅𝑒𝐿

 

or 

𝐶𝑓 =
0.455

(log10 𝑅𝑒𝐿)2.58 −
1700
𝑅𝑒𝐿

 

 
with transitions at Ret = 5 × 105 for all cases.  
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Bluff Body Drag 
 
Drag of 2-D Bodies 
First consider a flat plate 
both parallel and normal to 
the flow 
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AV

2
1

1C
S2

Dp =∫ ⋅−
ρ

= ∞  

 

∫ ⋅τ
ρ

=
S

w
2

f dAît
AV

2
1

1C  

 

     =  2/1
LRe
33.1   laminar flow 

 

     =  5/1
LRe

074.   turbulent flow 

 

 
 
where Cp based on experimental data 
 
 

vortex wake 
typical of bluff body flow 

flow pattern 
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ρ
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AV
2
1

1C  

 = ∫
S

pdAC
A
1  

 = 2    using numerical integration of experimental data 
Cf  = 0 
 
For bluff body flow experimental data used for CD. 
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In general, Drag = f(V, L, ρ, µ, c, t, ε, T, etc.) 
from dimensional analysis 
      c/L 
 



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
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= .etc,T,
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,
L
t,ArRe,f
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2
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     scale factor 
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Potential Flow Solution:  θ
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Flow Separation 
 
Flow separation:  
The fluid stream detaches itself from the surface of the body at 
    sufficiently high velocities. Only appeared in viscous flow!! 
 
Flow separation forms the region called ‘separated region’ 
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Inside the separation region: 
low-pressure, existence of recirculating/backflows 
viscous and rotational effects are the most significant! 
 
Important physics related to flow separation: 
’Stall’ for airplane (Recall the movie you saw at CFD-PreLab2!) 
Vortex shedding  
(Recall your work at CFD-Lab2, AOA=16°! What did you see in 
your velocity-vector plot at the trailing edge of the air foil?) 
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Terminal Velocity 
 
Terminal velocity is the maximum velocity attained by a 
falling body when the drag reaches a magnitude such that 
the sum of all external forces on the body is zero. Consider 
a sphere using Newton’ Second law: 
                      d b gF F F F ma= + − =∑  
 
when terminal velocity is attained 

0F a= =∑ : 

                       d b gF F F+ =  
or                     
                 ( )2

0
1
2 D p Sphere fluidV C A Vρ γ γ= − Sphere                                          

 
For the sphere 
               2

4pA dπ
=  and  V 3

6
Sphere dπ

=  
 
The terminal velocity is: 

                 
( )( )

1 2

0

4 3sphere fluid

D fluid

d
V

C
γ γ

ρ

 −
=  
  

 

 
 
Magnus effect: Lift generation by spinning 
 
Breaking the symmetry causes the lift!  

Z 
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Effect of the rate of rotation on the lift and drag coefficients of a 
smooth sphere: 

 
Lift acting on the airfoil 
 
Lift force: the component of the net force (viscous+pressure) that 
is perpendicular to the flow direction 
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Variation of the lift-to-drag ratio with angle of attack: 

 
The minimum flight velocity: 
Total weight W of the aircraft be equal to the lift 
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< 0.3 flow is incompressible, 
                  i.e., ρ ∼ constant 

Effect of Compressibility on Drag: CD = CD(Re, 
Ma) 
 

a
UMa ∞=  

   speed of sound = rate at which infinitesimal 
disturbances are propagated from their 
source into undisturbed medium 

 
Ma < 1  subsonic    
Ma ∼ 1  transonic  (=1 sonic flow)  
Ma > 1  supersonic 
Ma >> 1  hypersonic 
 
CD increases for Ma ∼ 1 due to shock waves and wave drag 
 

Macritical(sphere) ∼ .6 
 
Macritical(slender bodies) ∼ 1 
 
For U > a:   upstream flow is not warned of approaching  

disturbance which results in the formation of 
shock waves across which flow properties 
and streamlines change discontinuously 
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