57:020 Mechanics of Fluids and Transport Processes Chapter 9
Professor Fred Stern  Fall 2009 1

Chapter 9 Flow over Immersed Bodies

Fluid flows are broadly categorized:

1. Internal flows such as ducts/pipes, turbomachinery, open
channel/river, which are bounded by walls or fluid interfaces:
Chapter 8.

2. External flows such as flow around vehicles and structures,
which are characterized by unbounded or partially bounded
domains and flow field decomposition into viscous and
inviscid regions: Chapter 9.

a. Boundary layer flow: high Reynolds number flow
around streamlines bodies without flow separation.
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b. Bluff body flow: flow around bluff bodies with flow
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3. Free Shear flows such as jets, wakes, and mixing layers,
which are also characterized by absence of walls and
development and spreading in an unbounded or partially
bounded ambient domain: advanced topic, which also uses

boundary layer theory.
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FIGURE 4-19
Flow in the wake of a body immersed in a stream. Figure 20.16  Plane laminar jet into an infinite medium.

Basic Consider ations

Drag is decomposed into form and skin-friction
contributions:
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C=7——1/(P—p..)n-jdA
“pVZA S
2
L 1 Ce>>Cp, streamlined body
C
t_ 1 Cpp > > Cy bluff body
C

Streamlining: One way to reduce the drag

—> reduce the flow separation—>reduce the pressure drag
—> increase the surface area = increase the friction drag

—> Trade-off relationship between pressure drag and friction drag

— -

Ch=——
B 1pViLD
0.12
L =length
0.10
0.08
0.06
Friction
0.04| drag
0.02
Pressure drag
0 \
0 0.1 0.2 0.3 0.4

D/L
Trade-off relationship between pressure drag and friction drag

Benefit of streamlining: reducing vibration and noise
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Qualitative Description of the Boundary L ayer

Flow-field regions for high Re flow about slender bodies:

FIGURE 9.4

Development of
boundary layer and
distribution of shear
stress along a thin,
flat plate. (a) Flow
pattern in boundary
layers above and below
the plate.

(b) Shear-stress
distribution on either
side of the plate.
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T = Shear stress

Tw o< rate of strain (velocity gradient)

e
Y1,

\ large near the surface where

fluid undergoes large changes to
satisfy the no-slip condition

Boundary layer theory and equations are a simplified form
of the complete NS equations and provides T, as well as a
means of estimating Cg,,. Formally, boundary-layer
theory represents the asymptotic form of the Navier-Stokes
equations for high Re flow about slender bodies. The NS
equations are 2™ order nonlinear PDE and their solutions
represent a formidable challenge. Thus, simplified forms
have proven to be very useful.

Near the turn of the last century (1904), Prandtl put forth
boundary-layer theory, which resolved D’Alembert’s
paradox: for inviscid flow drag is zero. The theory is
restricted to unseparated flow.  The boundary-layer
equations are singular at separation, and thus, provide no
information at or beyond separation. However, the
requirements of the theory are met in many practical
situations and the theory has many times over proven to be
invaluable to modern engineering.
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The assumptions of the theory are as follows:

Variable order of magnitude
u U O(1)
\% O<<L O(e) e =0/L
9 1/L O(1)
0x
%) .
— 1/ O(g")
dy
v & e

The theory assumes that viscous effects are confined to a
thin layer close to the surface within which there is a
dominant flow direction (x) such that u ~ U and v << u.
However, gradients across & are very large in order to

0

satisfy the no slip condition; thus, —>>—.
dy 0x

Next, we apply the above order of magnitude estimates to
the NS equations.
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Retaining terms of O(1) only results in the celebrated
boundary-layer equations

dy } parabolic
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Some important aspects of the boundary-layer equations:
1) the y-momentum equation reduces to

1.e., P = p. = constant across the boundary layer

edge value, i.e.,

from the Bernoulli equation: VoY v
inviscid flow value!

Pe +%pU§ =constant

ouU
ape — _pUe €
0x ox
Thus, the boundary-layer equations are solved subject to
a specified inviscid pressure distribution

1.€.,

2) continuity equation is unaffected
3) Although NS equations are fully elliptic, the
boundary-layer equations are parabolic and can be

solved using marching techniques

4) Boundary conditions

u="U, y=09

+ appropriate initial conditions @ x;
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There are quite a few analytic solutions to the boundary-
layer equations. Also numerical techniques are available
for arbitrary geometries, including both two- and three-
dimensional flows. Here, as an example, we consider the
simple, but extremely important case of the boundary layer
development over a flat plate.

Quantitative Relationsfor the Laminar Boundary
Layer

Laminar boundary-layer over a flat plate: Blasius solution

(1908) student of Prandtl
3
ox ay TS;*MWM-—F X
dp
Note: — =0 au Ju 9%u
aX — 4V =V —

for a flat plate aX 8y dy 2

u=v=0@y=0 u=U. @y=9

We now introduce a dimensionless transverse coordinate
and a stream function, 1.e.,

U

[e o]

_y | P Y
T]yvx )

v =4vxU_f(n)
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VWM f'=u/U,_
dy ondy

ox 2\ x

y=- WL WUe ey

Substitution into the boundary-layer equations yields

ff”+2f” =0 Blasius Equation
f=f"=0 @n=0 f'=1 @n=1

The Blasius equation is a 3" order ODE which can be
solved by standard methods (Runge-Kutta). Also, series
solutions are possible. Interestingly, although simple in
appearance no analytic solution has yet been found.
Finally, it should be recognized that the Blasius solution is
a similarity solution, i.e., the non-dimensional velocity
profile f* vs. 1 is independent of x. That is, by suitably
scaling all the velocity profiles have neatly collapsed onto a
single curve.

Now, lets consider the characteristics of the Blasius
solution:



57:020 Mechanics of Fluids and Transport Processes Chapter 9
Professor Fred Stern Fall 2009 11
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FIGURE 9.5

Velocity distribution in
laminar boundary layer.
[After Blasius (3)].

TABLE 9.1 RESULTS—& AND 7, FOR DIFFERENT VALUES OF x

x=01ft x=10ft x=2ft x=4ft x=6h

x'? 0.316 1.00 1.414 2.00 2.45
7o, psf 0.552 0.174 0.123 0.087 0.071
8, ft 0.005 0.016 0.022 0.031 0.039
8, in. 0.060 0.189 0.270 0.380 0.466
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uu_£7(0)
- 2vx/U_
: 2 :
ie., cp = = 0064 _9 « e below

pU2  JRe, x

L
Lo
_1.328 UL

(o]

4/R€L<—/ \Y%

Wall shear stress: 7w = 0-332Ui/2w/% or 7, =0332u(U_/X)Re,

Other:

, 8
o =] (1 - Uljdy =1.7208—— displacement thickness
0

JRe,

measure of displacement of inviscid flow due to
boundary layer

[e o]

5
0= (1 — ledy =0.664—— momentum thickness
0

U, U, JRe,

measure of loss of momentum due to boundary layer

%

H = shape parameter = %22.5916



57:020 Mechanics of Fluids and Transport Processes

Professor Fred Stern Fall 2009

Chapter 9

13

TABLE 4-1
Numerical solution of the Blasius flat-plate
relation, Eq. (4-45)

n fln) Jiin) fta)
0.0 0.0 0.0 0.46960
0.1 0.00235 0.04696 0.46956
0.2 0.00939 0.09391 0.46931
0.3 0.02113 0.14081 0.46861
0.4 0.03755 0.18761 0.46725
05 0.05864 0.23423 0.46503
0.5 0.08439 0.28058 0.46173
0.7 0.11474 0.32653 0.45718
03 0.14967 037196 0.45119
09 0.18911 0.41672 0.44363 .
1.0 0.23299 0.46063 0.43438
L1 0.28121 0.50354 0.42337
12 0.33366 0.54525 0.41057
13 0.39021 0.58550 0.39598
14 0.45072 0.62439 0.37969
15 0.51503 0.66147 0.36180
1.6 0.58296 0.69670 0.34249
1.7 0.65430 0.72993 0.32195
1R 0.72887 0.76106 0.30045
19 0.80644 0.79000 0.27825
20 (.88680 0.81669 0.25567
22 1.05495 0.86330 0.21058
24 1.23153 0.90107 0.16756
26 1.41482 0.93060 0.12861
28 1.60328 0.95288 0.09511
30 1.79557 0.96905 0.06771
32 1.99058 0.98037 0.04637
34 218747 0.98797 0.03054
16 238559 0.99289 0.01933
38 2.58450 0.99594 0.01176
4D 2.78388 0.99777 0.00687
42 2.98355 0.99882 0.00386
44 3.18338 0.99940 0.00208
46 3.38329 0.99970 000108
48 158325 0.99986 0.00054
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FIGURE 4.6

The Blasius solution for the flat-plate boundary layer: (z) numerical solution of Eq. (4-45% (h)
comparison of f = u/U with experiments by Liepmann (1943

Drag coefficient, Cp
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Quantitative Relationsfor the Turbulent
Boundary L ayer

2-D Boundary-layer Form of RANS equations

du ov
ML N oo
ox dy
au au a Pe 8211 a 77
u—+v—=——-| =% +V———(uv)
ox dy  ox{p dy* dy

requires modeling

Momentum Integral Analysis

Historically similarity and AFD methods used for idealized
flows and momentum integral methods for practical
applications, including pressure gradients. Modern
approach: CFD.

To obtain general momentum integral relation which is
valid for both laminar and turbulent flow

oo For flat plate or d for general case

[ (momentum equation +(u — v) continuity )Jdy
y=0

Tw —lcf:@+(2+H)gd—U _dp_ pdV

pU2_2 dx U dx dx P d—x

— J

~—

flat plate equation du =0
dx
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u u :
0=[—|1-— |dy momentum thickness
oU U
8*
H= r shape parameter
* S u . .
O =] (1 — doy displacement thickness
0

Can also be derived by CV analysis as shown next for flat
plate boundary layer.

Momentum Equation Applied to the Boundary Layer

Consider flow of a viscous fluid at high Re past a flat plate, i.e.,
flat palte fixed in a uniform stream of velocity Ui .

Constant 6(331
edl =~
pressure \ae one_~ i

amiiné
=H Sf.e.-- = Control

-
volume 8%

p———/ 17 ()

I
|
|
|
|
|
n_y Drag force D I
U [ — . == No-slip Flat

e

plate

Boundary-layer thickness arbitrarily defined by y = J,, (Where,
Oqqs, is the value of y at u = 0.99U). Streamlines outside Oy, Will

deflect an amountd” (the displacement thickness). Thus the
streamlines move outward fromy=H at x=0 to

y=Y=0=H+5 at x=X,.
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Conservation of mass:

H H+6"
T T

(03]
Assume incompressible flow (constant density):

UH ='fOYudy=jOY(U +u—U)dy=UY+J'OY(u—U)dy

*
Substituting Y = H + O defines displacement thickness:
* Y u
o =, (1 - —jdy
U

5 is an important measure of effect of BL on external flow.

Consider alternate derivation based on equivalent flow rate:
A

d

&* Lam=0/3

0* Turb=04/8

) o
jUdy = j udy
: 0
S
Inviscid flow about * body

%
Flowrate between O and O of inviscid flow=actual flowrate, i.e., inviscid flow rate
about displacement body = viscous flow rate about actual body

) s s 5 u
IUdy—jUdy= judy:> o = j(l——jdy
0 0 0 0 U
w/o BL - displacement effect=actual discharge

For 3D flow, in addition it must also be explicitly required that

o * 1s a stream surface of the inviscid flow continued from outside
of the BL.



57:020 Mechanics of Fluids and Transport Processes
Professor Fred Stern Fall 2009

Chapter 9
17
Conservation of x-momentum:

D> F,=-D= j pu\ionA:—jOH pU (Udy)+JOYpu(udy)
Drag = D = pU“H —j(\)(pu2dy
= Fluid force on plate = - Plate force on CV (fluid)

Again assuming constant density and using continuity:

H =J;Y5dy

D :pUZ.[:u/Udy—p].uzdy: joxrwdx
0
D

Y U u
w0 h

where, 6 is the momentum thickness (a function of x only), an
important measure of the drag.

2D 260 1;
CD:pUZX: y =;_([0de Per unit span

) d dé
Cf _ 1 W :)Cf :d—(XCD) 2d_
—pU? X X Special case 2D
2 momentum integral
d@ C; , dé equation for p, =0
ad _ S TW = IOU T
v dx
14 ___5-#___ S;ed_%_:a'
= e
-
% Coordm::;:mal to the wall ”
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Simple velocity profile approximations:

u=UQy/s-y*/8°%)

u(0)=20 no slip
ud)=U matching with outer flow
uy(6)=0

Use velocity profile to get C{0) and 6(0) and then integrate
momentum integral equation to get d(Re,)

o0* =9/3
0=26/15
H=6*/6=5/2

T, =240 /6
c, =M:2%:2£(25/15)
1/2pU dx  dx

- S48 = M

_ 30udx
PU
O0/x=55/Re?

Re, =UX/v;
5"/ x=1.83/Re!? S~ 10% error, cf. Blasius
0/x=0.73/Re}’

C,=1.46/Re>=2C, (L)

52
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Approximate solution Turbulent Boundary-Laver

Re, = 5x10°~ 3x10°for a flat plate boundary layer
Regi ~ 100,000

as was done for the approximate laminar flat plate
boundary-layer analysis, solve by expressing c;= ¢(0) and
0 = 0(0) and integrate, i.e.

assume log-law valid across entire turbulent boundary-layer

sk

i* _ lln& 4B neglect laminar sub lay.er
u K Vv and velocity defect region
aty=90,u=U

E* = lmSL B

u

7 172 o )2 \
or (—j :2.44ln{R65(2f) }+5
C
' > ct(9)
/

c; =.02Res '° power-law fit
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Next, evaluate

dd d?ou u
== My
dx dX()U U

can use log-law or more simply a power law fit

1/7

u_ (zj Note: can not be

U o \ used to obtain c; (J)
since T, —> o

7
0=—0=0(0
To=e)
| R ,d0 7 _,dod
= T, =C,—pU " =pU"—=—pU”"—
vIOPE TP R T2«
Res " '®=9. 7290
dx
or 9_ 0.16Re;"’ i.e., much faster
X growth rate than
O o< 6/7 almost linear laminar
boundary layer
0.027
Cy = Re!
eX
0.031 7
(T Ra7 gC (L)

If the boundary layer is “tripped” by some roughness or
leading edge disturbance, the boundary layer is turbulent
from the beginning:

o _1/s 0.058 0.074
;2037R6X f :FL/S Cf :FIL/S (RCXS107)
0.029pU°

hear stress: 7w =
shear stress w Re5

X
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Alternate forms depending on experimental information
and power-law fit used, etc. (i.e., dependent on Re range.)

Some additional relations for larger Re are as follows:

C. — 455 1700 :
f 258 Re > 10
sheZﬁ?éess (loglo Re, ) Re,
coefficient 5
o (.98logRe,; —.732)
Local s
shear-stress Cr = (2log Re, - .65)
coefficient

Finally, a composite formula that takes into account both
the initial laminar boundary-layer (with translation at
Recg = 500,000) and subsequent turbulent boundary layer

is C; =1'{Oe711 —1R7:O 10°<Re < 10’
L L -

0.0070
0.0060

0.0050 Average shear stress coefficient for
/complete!y turbulent boundary layer

Laminar boundary layer
- 0455 — 1700
0.0030 / Cp=-——""""10 .

0.0040

0.0025
T~ Combination of laminar and
wrbulem boundary layer

C, = 0074 _ 1700

1~ Re /S Reg

0.0020+

T

0.0015

0.0010 2o gl b i a1l + gl P e
105 106 107 108 109
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Drag of 2-D Bodies

First consider a flat plate both parallel and normal to the

flow _
— EE
-
¢ Tw
1 .
Cop =7 [(p=p.)n-i=0
—pV?2AS
2
1 ~
“pVAS
) p
= % laminar flow
Re;
= 07;15 turbulent flow
Re;
flow pattern
Y
S 2

vortex wake
typical of bluff body flow

where C, based on experimental data
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Positive - Negative
relative pressure | — | relative pressure
s N
Yo
HGURE 11.3 S -
Flow past a flat plate. ‘
FIGURE 11.4 Pressure distribution Pressure distribution
L , on front side of plate on rear side of plate
Pressure distribution on
a plate normal to the \ —
approach flow for B
Re > 10",
- Plate
v,
_—Q.» b
— B
- 1 ] _Y
+1.0 +0.5 0 -0.5 -1.0 -1.5
Cp _ P-Po
prai2

- Lic,da
As

=2 using numerical integration of experimental data

For bluff body flow experimental data used for Cp.
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In general, Drag=f(V, L, p, 1, c, t, &, T, etc.)
from dimensional analysis

c/L

C =%=f Re, Ar,i,E,T, etc.
Pl o L’ L
2pV A

- J
Y

scale factor

DRAG ON IMMERSED BODIES

B S\t
Vo—e A % c
J— v %&uﬁ—
’ | [
. ] c
8o, xd l /—" )
R R, 60° 90° 120° A 180°
al-tn 30° \\\ ] [ - Supercritical flow U‘TM
" N e LT R,, =6.7% 105 :
< -1 \ o TT inviscid flowT ¢y * —
o
\\\ 1] == Subcritical flow /¢ |*
-2 VS Ry = 19 X 105
{ ~ob E E ,'P r»r..:t—..\
-3 4
Figure 10.23 Pressure distributions around a cylinder for suberidcal, supercritical, and inviscid
flows.

Streamlines converge,
high-velocity region

Singularity
at the origin

Fig. E4.7
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.
Potential Flow Solution: y=-U_ {r — —) sin O
r
1 | 1oy
p+-pV =p.+-pU, u =-2Y
2 2 " rao
2 2
C :p poozl_ur-l_ue a\"[
Pl oo U2 Ug ==~
szoo e ar

o\ 2
C,(r=a)=1-4sin" 0 surface pressure

Flow Separation

Flow separation:
—>The fluid stream detaches itself from the surface of the body at
sufficiently high velocities. Only appeared in viscous flow!!

Flow separation forms the region called ‘separated region’

Separation point Reattachment point

=
A\
\

Separated flow region
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Inside the separation region:
—>low-pressure, existence of recirculating/backflows
—>viscous and rotational effects are the most significant!

Important physics related to flow separation:

—>’Stall’ for airplane (Recall the movie you saw at CFD-PreLab2!)
- Vortex shedding

(Recall your work at CFD-Lab2, AOA=16°! What did you see in
your velocity-vector plot at the trailing edge of the air foil?)

(a) 5° (b) 15° (c) 30°
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1 l
’ | ! |
| ‘ l ’
4 L . :
i i l 1 Cylmd;r
E Transition to turbulent ! length effect
! boundary layer \\f (10* <Re < 10%)
- ; i | 1 .
’ ! ‘ Lid S
' | - % 1.20
I ; | 40 0.98
%, i x 20 091
w 10 0.82
5 74
Cylinder (two dxmcnsxonal) ' 3 8,7:
1 ' /——\ / 2 0.68
‘ , 1 0.64
\ Sphere ' \/E" ﬁ_
0 : i Lo 2
10 10* 105 106 107 K 3
Re, _._pUd
u
(@
1.5

1.0

€07 - 0.007 | \
05t oo0e — . \\/\/ ]
- 0.002 / -
03 0.0005 | Smooth
104 10% 106
Rey
)

Fig. 5.3 The proof of practical dimensional analysis: drag coefficients of a cylinder and
sphere: (a) drag coefficient of a smooth cylinder and sphere (data from many sources);
(b) increased roughness causes earlier transition to a turbulent boundary layer.

Fi1o. 34.—Flow round sphere below critical point. (Wieselsberger.) Fia. 35.—Owing to a thin wire ring round the sphere, the faw becomes of the
other type with turbulent boundary layer. (Wiesclsberger.)
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426 XV. Non-steady boundary layers

Fig. 15.5a to {. Formation of vortices in flow pastﬁ circular cylinder after acceleration from rest
(L. Prandtl)

S = point of separation

Fig. 2.12. Diagrammatic represen-
tation of flow in the boundary
layer near a point of separation
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alternate formation and shedding of vortices also creates a regular change in
pressure with consequent periodicity in side thrust on the cylinder. Vortex shed-
ding was the primary cause of failure of the Tacoma Narrows suspension bridge
in the state of Washington in 1940. Another, more commonplace, effect of vor.
tex shedding is the “singing” of wires in the wind.

If the frequency of the vortex shedding is in resonance with the natural fre--
quency of the member that produces it, large amplitudes of vibration with con.
sequent large stresses can develop. Experiments show that the frequency of
shedding is given in terms of the Strouhal number S, and this in turn is a func-
tion of the Reynolds number. Here the Strouhal number is defined as

d ' -
s=2 | 11-
where 7 is the frequency of shedding of vortices from one side of cylinder, in

Hz, d is the diameter of cylinder, and V, is the free-stream velocity. :
The relationship between the Strouhal number and the Reynolds numbcr for.

vortex shedding from a cxrcular cylinder is given in Fig. 11-10.

0.40
'gf;’ i ’
o T - 3.
‘.3 0.30 Spread of data}
T y
g L / %
e 0_207(7 —— .
0.10 .
102 10 104 10 106 107
Re = Yo! |
»

FIGURE 11-10  Strouhal number versus Reynolds number for flow past a circular cylin-.
der. [After Jones (14) and Roshko (23)] :

Other cylindrical and two-dimensional bodies also shed vortices. Coflse-'
quently, the engineer should always be alert to vibration problems when design-
ing structures that are exposed to wind or water flow.

Exmrus 11-2  For the ¢ylinder and conditions of Example 11-1, at what fl'c'
quency will the vortices be shed?
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Py
Seagull \< geon
Vuiture

0.1+ Smooth /
flat plate Sailplane\/

parallel Airfoil
to stream \, J" ol
0.01- - -
Transition
0.001 | I I Il L 1 L
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Fig. 7.16 Drag versus Reynolds number for nearly two-dimensional bodies.

Table 7.2
DRAG OF TWO-DIMENSIONAL BODIES AT Re = 10°

Shape Cp based on frontal area Shape Cp based on frontal area
Plate: Half-cylinder:
_— I 20 — C] 12
Square cylinder:

e 21 _ D L7
Equilateral triangle: .
- <> 16 D —— Q 1.6
Half tube: '

e e — D>
——’D 23

Elliptical cylinder: Laminar Turbulent

1.2 0.3

21 O 0.6 02
| S—

1] ——

0.35 0.15

4:1

81 —

0.25 0.1
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Figure 10.24 ljrag coefficients for a family of struts. (S. Goldstein,
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Fluid Dynamics,”” Dover Publications. New York, 1965.)
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1IGURE 11-11  Coefficiem of drag versus Reynqlds number for axisymmetric

sodies. [Data sources: Abbott (1), Breevoort (4), Fr§eman (9). and Rouse (24).]
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Table 73

DRAG OF THREE-DIMENSIONAL BODIES AT Re = 10°

Body Ratio Cp based on frontal area
Cube:
— 1.07
— <> 031
60° cone: :
- <) 05
Disk:
IE— I 1.17
Cup:
) 14
— C 64
Parachute (low porosity):
—l @ 1-2
Rectangular plate:
; b/h 1 1.18
—_— h 5 - 12
» 10 1.3
20 1.5
h © 20
Flat-faced cylinder:
L/id 0.5 1.15
1 0.90
—_— d 2 085
4 0.87
L 8 0.99
Ellipsoid: Laminar Turbulent
T Ljd 075 0.5 0.2
—_— d 1 047 02
_ 2 0.27 0.13
4 0.25 0.1
rr 8 02 0.08
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Figure 10.25. Time history of the aerodynamic drag of cars in comparison with strean.ﬂined
bodies. ( From Hucho, W. H., Janssen, L. J., Emmelmann, H. J., 1976, ‘‘The Optimisation of
Body Details—A Method For Reducing The Aerodynamic Drag of Road Vehicles,”” SAE

760185.)

Figure 1. Interaction between two disks placed one behind the
other; (reference 1,2).

m—

. |
ol o Wl e

(a) "BOX" SMAPE WITH SHARP EDGES ON WHEELS (4.0)

e

{b) BASIC CAR 8ODY WITH SHARP LATERAL EOGES (4.e

023
£ \\\’_
IR
JipN

(e} WITH SHARP.EDGED WINDSHIELD, "T*  TAPERING

(d) DITTO, WITH LONG TAPERING TAIL (4.e)

(7} NASH BODY 1949 (5.0).

(1) EXTREME STREAMUINE SHAPE, TESTED BY AVA (1)

Figure 3. Drag coefficients of “standard’™ passenge I Cars. . A .
o : S . . ,

tested either in wind tunnels on geometrically similar Figure 4. Drag coefficients of several sinooth wind
models or by deceleration of the full-scale vehicle:s- tunnel models (tested over fixed ground plate).
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Figure 2-4. Typical naval ship stern appendages (from Kirkman,
et al., 1979)

Cylimder with forverd

and aft end deng Iacerieronce drap eniy
(at the tatersection of

the bull sad sheft beening)

" Cylimdar wirh aft end drag
Cylisdat with ae end drag

Cylinder with ferverd end drag

Totl with ne tnterfironge drag -

Figure 2-5. Appendage decomposition (from Kirkman, et al., 1979)
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-_— Mode! Scale

Fiéure 2-6. Nominal boundary layer thickness in way of the DOG 51
appendages.
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Terminal Velocity

Terminal velocity is the maximum velocity attained by a
falling body when the drag reaches a magnitude such that
the sum of all external forces on the body is zero. Consider
a sphere using Newton’ Second law:

Y F=F+F,—-F,=ma

when terminal velocity 1s attained

ZE=§=O:

or
1
Epvoch A= (730here = Vtiuid ))VLSphere

For the sphere

Ap Z%dz and A/—Sphere :%d3

The terminal velocity is:

_ [(7/S;Jhere ~ ¥ fiuid )(4/3) d ]1/2

CoPuia

V

0

Magnus effect: Lift generation by spinning

Breaking the symmetry causes the lift!
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Lift
Stagnation Stagnation High velocity,
points points low pressure

—b-\/-P-

—b—\/—’—

(a) Potential flow over a stationary cylinder

—D\{—P

ow velocity,
high pressure

(b) Potential flow over a rotating cylinder

Effect of the rate of rotation on the lift and drag coefficients of a

smooth sphere:
0.8

Fp

J
. 0.4
)
s FI,
L™ Lpvezp?
0.2
Re=Y2 = 6x 10*
)
(0 1 2 3 4

DT vzl
SpV ED

Smooth sphere

LwDIV

Lift acting on the airfoil

Lift force: the component of the net force (viscous+pressure) that

is perpendicular to the flow direction
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(a) 5° (b) 15° (c) 30°

Variation of the lift-to-drag ratio with angle of attack:

120
100| NACA 64(1) — 412 airfoil
Re=7x10%
80
60
C.".
?D 40
20
0
=20
—40g -4 0 4 8

« degrees
The minimum flight velocity:
- Total weight W of the aircraft be equal to the lift

2 —
L,max Vmin A — Vmin -

W=FL:%C
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Effect of Compressbility on Drag: CD = CD(Re,
Ma)

Ma=—=

a
\ speed of sound = rate at which infinitesimal
disturbances are propagated from their
source into undisturbed medium

Ma<1 subsonic < 0.3 flow 1s incompressible,
Ma ~ 1 transonic (=1 sonic flow) 1.e., p ~ constant
Ma > 1 supersonic

Ma >> 1 hypersonic

Cp increases for Ma ~ 1 due to shock waves and wave drag

Maisical(Sphere) ~ .6

Ma,iscai(slender bodies) ~ 1

For U > a: upstream flow is not warned of approaching
disturbance which results in the formation of

shock waves across which flow properties
and streamlines change discontinuously
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FIGURE 11.12 2.0
Drag characteristics of

projectile, sphere, and .
cylinder with 1.5 ot

11T

compressibility effects. )
Square-ended cylinder

T T T 17T

[After Rouse (26)] Vo )
Cp 1.0 - i = S =
7 e &
05 Vo Spherexwm __'i ]
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Mach number, M = -

FIGURE 11.13

Contour plot of the drag
coefficient of the sphere
versus Reynolds and
Mach numbers.




