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Chapter 9 Flow over Immersed Bodies 
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Basic Considerations

Recall separation of drag components into form and skin-friction

[image: image5.png]



[image: image1.emf][image: image138.wmf]d

=

÷

÷

ø

ö

ç

ç

è

æ

d

+

d

=

=

2

3

U

y

2

3

2

3

U

u

0

y

2

y


[image: image6.wmf](

)

þ

ý

ü

î

í

ì

ò

×

t

+

ò

×

-

r

=

¥

S

w

S

2

D

dA

i

ˆ

t

dA

i

ˆ

n

p

p

A

V

2

1

1

C






  CDp


   Cf

[image: image7.wmf](

)

þ

ý

ü

î

í

ì

×

ò

-

r

=

¥

dA

j

ˆ

n

p

p

A

V

2

1

1

C

S

2

L



[image: image8.wmf]c

t

 << 1
Cf > > CDp
  
streamlined body


[image: image9.wmf]c

t

 ( 1
CDp  > > Cf

bluff body

Streamlining: One way to reduce the drag
Make a body streamlined:


( reduce the flow separation(reduce the pressure drag


( increase the surface area ( increase the friction drag

( Trade-off relationship between pressure drag and friction drag
[image: image10.png]0.12
0.10
0.08
0.06
0.04

0.02

L =length
Total drag

Friction
drag

Pressure drag
|

0.1 0.2 0.3 0.4
D/L





Trade-off relationship between pressure drag and friction drag

Benefit of streamlining: reducing vibration and noise
Qualitative Description of the Boundary Layer 
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Recall our previous description of the flow-field regions for high Re flow about slender bodies
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large near the surface where 

fluid undergoes large changes to satisfy the no-slip condition

Boundary layer theory is a simplified form of the complete NS equations and provides (w as well as a means of estimating Cform.  Formally, boundary-layer theory represents the asymptotic form of the Navier-Stokes equations for high Re flow about slender bodies.  As mentioned before, the NS equations are 2nd order nonlinear PDE and their solutions represent a formidable challenge.  Thus, simplified forms have proven to be very useful.

Near the turn of the century (1904), Prandtl put forth boundary-layer theory, which resolved D’Alembert’s paradox.  As mentioned previously, boundary-layer theory represents the asymptotic form of the NS equations for high Re flow about slender bodies.  The latter requirement is necessary since the theory is restricted to unseparated flow.  In fact, the boundary-layer equations are singular at separation, and thus, provide no information at or beyond separation.  However, the requirements of the theory are met in many practical situations and the theory has many times over proven to be invaluable to modern engineering.

The assumptions of the theory are as follows: 
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The theory assumes that viscous effects are confined to a thin layer close to the surface within which there is a dominant flow direction (x) such that u ( U and v << u.  However, gradients across ( are very large in order to satisfy the no slip condition.

Next, we apply the above order of magnitude estimates to the NS equations.
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Retaining terms of O(1) only results in the celebrated boundary-layer equations
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Some important aspects of the boundary-layer equations:

1) the y-momentum equation reduces to
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i.e.,

p = pe = constant across the boundary layer
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from the Bernoulli equation:

 


[image: image21.wmf]=

r

+

2

e

e

U

2

1

p

constant

i.e., 

[image: image22.wmf]x

U

U

x

p

e

e

e

¶

¶

r

-

=

¶

¶


Thus, the boundary-layer equations are solved subject to a specified inviscid pressure distribution

2) continuity equation is unaffected

3) Although NS equations are fully elliptic, the boundary-layer equations are parabolic and can be solved using marching techniques

4) [image: image148.png]


Boundary conditions



u = v = 0

y = 0

u = Ue

y = (
+ appropriate initial conditions @ xi
There are quite a few analytic solutions to the boundary-layer equations.  Also numerical techniques are available for arbitrary geometries, including both two- and three-dimensional flows.  Here, as an example, we consider the simple, but extremely important case of the boundary layer development over a flat plate.

Quantitative Relations for the Laminar Boundary Layer
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Laminar boundary-layer over a flat plate:  Blasius solution (1908)

student of Prandtl
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We now introduce a dimensionless transverse coordinate and a stream function, i.e.,
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substitution into the boundary-layer equations yields
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Blasius Equation
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The Blasius equation is a 3rd order ODE which can be solved by standard methods (Runge-Kutta).  Also, series solutions are possible.  Interestingly, although simple in appearance no analytic solution has yet been found.  Finally, it should be recognized that the Blasius solution is a similarity solution, i.e., the non-dimensional velocity profile f( vs. ( is independent of x.  That is, by suitably scaling all the velocity profiles have neatly collapsed onto a single curve.

Now, lets consider the characteristics of the Blasius solution:
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see below
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displacement thickness

measure of displacement of inviscid flow to due boundary layer
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H = shape parameter = 
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Quantitative Relations for the Turbulent Boundary Layer

2-D Boundary-layer Form of RANS equations
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requires modeling

Momentum Integral Analysis

Background:  History and Modern Approach: FD

To obtain general momentum integral relation which is valid for both laminar and turbulent flow
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   flat plate equation 
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momentum thickness
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displacement thickness

Can also be derived by CV analysis as shown next for flat plate boundary layer.

Momentum Equation Applied to the Boundary Layer



CV = 1, 2, 3, 4
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next eliminate h using continuity
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       ( = momentum thickness
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 cf = local skin friction coefficient






momentum integral relation for 

flat plate boundary layer
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Approximate solution for a laminar boundary-layer

Assume cubic polynomial for u(y)
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  Compare with









  Exact Blassius

i.e.,
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span length


total skin-friction drag coefficient
Approximate solution Turbulent Boundary-Layer


Ret ( 3 X 106
for a flat plate boundary layer
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as was done for the approximate laminar flat plate boundary-layer analysis, solve by expressing cf = cf (() and ( = ((() and integrate, i.e.

assume log-law valid across entire turbulent boundary-layer
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Next, evaluate
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can use log-law or more simply a power law fit
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Alternate forms given in text depending on experimental information and power-law fit used, etc.  (i.e., dependent on Re range.)

Some additional relations given in texts for larger Re are as follows:
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Re > 107
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Finally, a composite formula that takes into account both the initial laminar boundary-layer (with translation at 

ReCR = 500,000) and subsequent turbulent boundary layer 
is 
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105 < Re < 107
Drag of 2-D Bodies

First consider a flat plate both parallel and normal to the flow
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laminar flow

     =  
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turbulent flow
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where Cp based on experimental data
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= 2    using numerical integration of experimental data

Cf  = 0

For bluff body flow experimental data used for cD.

In general, Drag = f(V, L, (, (, c, t, (, T, etc.)

from dimensional analysis
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     scale factor

Potential Flow Solution:  
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surface pressure

Flow Separation

Flow separation: 

(The fluid stream detaches itself from the surface of the body at
    sufficiently high velocities. Only appeared in viscous flow!!

Flow separation forms the region called ‘separated region’
[image: image121.png]Separation point Reattachment point

Separated flow region




Inside the separation region:

(low-pressure, existence of recirculating/backflows

(viscous and rotational effects are the most significant!

Important physics related to flow separation:

(’Stall’ for airplane (Recall the movie you saw at CFD-PreLab2!)

(Vortex shedding 

(Recall your work at CFD-Lab2, AOA=16°! What did you see in your velocity-vector plot at the trailing edge of the air foil?)

[image: image122.png](b) 15°






[image: image123.png]alternate formation and shedding of vortices also creates a regular change in
pressure with consequent periodicity in side thrust on the cylinder. Vortex shed.
ding was the primary cause of failure of the Tacoma Narrows suspension bridge
in the state of Washington in 1940. Another, more commonplace, effect of vor.
tex shedding is the “singing” of wires in the wind.

If the frequency of the vortex shedding is in resonance with the natural fre-.
quency of the member that produces it, large amplitudes of vibration with con.
sequent large stresses can develop. Experiments show that the frequency of
shedding is given in terms of the Strouhal number S, and this in turn is a func-
tion of the Reynolds number. Here the Strouhal number is defined as

d o
s =124 , 11-
% ()
where n is the frequency of shedding of vortices from one side of cylinder, in
Hz, d is the diameter of cylinder, and V, is the free-stream velocity.

The relationship between the Strouhal number and the Reynolds number for
vortex shedding from a circular cylinder is given in Fig. 11-10. C

= nd
VO

Strouhal number, §

Re = 70!
v

FIGURE 11-10  Strouhal number versus Reynolds number for flow past a circular cylin-.
der. [After Jones (14) and Roshko (23)]

Other cylindrical and two-dfmcnsional bodies also shed vortices. CoElse-'
quently, the engineer should always be alert to vibration problems when design-
ing structures that are exposed to wind or water flow.

EXAMPLE 11-2  For the ¢ylinder and conditions of Example 11-1, at what fre-
quency will the vortices be shed?
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Table 7.2
DRAG OF TWO-DIMENSIONAL BODIES AT Re = 10°

Shape Cp based on frontal area Shape Cp based on frontal area
Plate: Half-cylinder:
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Square cylinder:
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— <> L6 D Q 16
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T e — D>
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Elliptical cylinder: Laminar Turbulent
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2:1 O . 0.6 0.2

4:1 CD 0.35 0.15
8] ——— <> 025 0.1
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Figure 10.25.Time history of the aerodynamic drag of cars in comparison with streamlined
bodies. ( From Hucho, W. H., Janssen, L. J., Emmelmann, H. J., 1976, ““The Optimisation of
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Magnus effect: Lift generation by spinning
Breaking the symmetry causes the lift! 
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Effect of the rate of rotation on the lift and drag coefficients of a smooth sphere:
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Lift acting on the airfoil

Lift force: the component of the net force (viscous+pressure) that is perpendicular to the flow direction

[image: image132.png](b) 15°




Variation of the lift-to-drag ratio with angle of attack:
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The minimum flight velocity:

(Total weight W of the aircraft be equal to the lift
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Effect of Compressibility on Drag: CD = CD(Re, Ma)
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speed of sound = rate at which infinitesimal

disturbances are propagated from their source into undisturbed medium


Ma < 1

subsonic

 

Ma ( 1

transonic  (=1 sonic flow)


Ma > 1

supersonic

Ma >> 1

hypersonic

CD increases for Ma ( 1 due to shock waves and wave drag

Macritical(sphere) ( .6

Macritical(slender bodies) ( 1

For U > a:  
upstream flow is not warned of approaching 

disturbance which results in the formation of shock waves across which flow properties and streamlines change discontinuously
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Local 


shear-stress coefficient





Total shear-stress coefficient





i.e., much faster growth rate than laminar boundary layer 





Note: can not be used to obtain  cf (() since (w ( (





cf (()





neglect laminar sub layer and velocity defect region





parabolic





� EMBED Equation.3  ���





depends on u(y)





Steady


( = constant


neglect g


v << u = uo ( p = constant


i.e., -(p = 0





y = h + δ*= streamline 


starts in uniform flow


 	 merges with ( at 3





edge value, i.e., inviscid flow value!





Note: � EMBED Equation.3  ��� = 0 for a flat plate





elliptic





For flat plate or ( for general case
























































flow pattern





vortex wake


typical of bluff body flow





� EMBED Equation.3  ���





< 0.3 flow is incompressible,


                  i.e., ( ( constant
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