Chapter 5 Mass, Momentum, and Energy Equations

Flow Rate and Conservation of Mass

1. cross-sectional area oriented normal to velocity vector (simple case where $\mathrm{V} \perp \mathrm{A}$)

$\mathrm{U}=$ constant: $\mathrm{Q}=$ volume flux $=\mathrm{UA}\left[\mathrm{m} / \mathrm{s} \times \mathrm{m}^{2}=\mathrm{m}^{3} / \mathrm{s}\right]$
$\mathrm{U} \neq$ constant: $\mathrm{Q}=\int_{\mathrm{A}} \mathrm{UdA}$
Similarly the mass flux $=\dot{m}=\int_{\mathrm{A}} \rho U \mathrm{dA}$
2. general case

$$
\begin{aligned}
\mathrm{Q} & =\int_{\mathrm{CS}} \underline{V} \cdot \underline{n d} \mathrm{~A} \\
& =\int_{\mathrm{CS}}|\underline{V}| \cos \theta \mathrm{dA} \\
\dot{\mathrm{~m}} & =\int_{\mathrm{CS}} \rho(\underline{\mathrm{~V}} \cdot \underline{\mathrm{n}}) \mathrm{dA}
\end{aligned}
$$

average velocity: $\overline{\mathrm{V}}=\frac{\mathrm{Q}}{\mathrm{A}}$

Example:

At low velocities the flow through a long circular tube, i.e. pipe, has a parabolic velocity distribution (actually paraboloid of revolution).

i.e., centerline velocity

a) find Q and \bar{V}

$$
\begin{aligned}
& \mathrm{Q}=\int_{\mathrm{A}} \underline{\mathrm{~V}} \cdot \underline{n d} \mathrm{~A}=\int_{\mathrm{A}} \mathrm{udA} \\
& \begin{aligned}
\int_{\mathrm{A}} \mathrm{udA} & =\int_{0}^{2 \pi} \int_{0}^{\mathrm{R}} \mathrm{u}(\mathrm{r}) \mathrm{rd} \theta \mathrm{dr} \\
& =2 \pi \int_{0}^{\mathrm{R}} \mathrm{u}(\mathrm{r}) \mathrm{rdr}
\end{aligned}
\end{aligned}
$$

$\mathrm{dA}=2 \pi \mathrm{rdr}$
$\mathrm{u}=\mathrm{u}(\mathrm{r})$ and not $\theta \therefore \int_{0}^{2 \pi} \mathrm{~d} \theta=2 \pi$
$\mathrm{Q}=2 \pi \int_{0}^{\mathrm{R}} \mathrm{u}_{\max }\left(1-\left(\frac{\mathrm{r}}{\mathrm{R}}\right)^{2}\right) \mathrm{rdr}=\frac{1}{2} \mathrm{u}_{\max } \pi \mathrm{R}^{2}$
$\overline{\mathrm{V}}=\frac{1}{2} \mathrm{u}_{\text {max }}$

Continuity Equation

RTT can be used to obtain an integral relationship expressing conservation of mass by defining the extensive property $\mathrm{B}=\mathrm{M}$ such that $\beta=1$.

$$
\begin{aligned}
& B=M=\text { mass } \\
& \beta=\mathrm{dB} / \mathrm{dM}=1
\end{aligned}
$$

General Form of Continuity Equation
$\frac{d M}{d t}=0=\frac{d}{d t} \int_{C V} \rho d \forall+\int_{C S} \rho \underline{V} \cdot \underline{d A}$
or

$$
\underbrace{\int_{\mathrm{CS}}^{\rho \underline{\mathrm{V}} \cdot \underline{\mathrm{dA}}}}=\underbrace{-\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{CV}} \rho \mathrm{dV}}
$$

net rate of outflow rate of decrease of of mass across CS mass within CV

Simplifications:

1. Steady flow: $-\frac{d}{d t} \int_{\mathrm{CV}} \rho \mathrm{dV}=0$
2. $\underline{\mathrm{V}}=$ constant over discrete $\underline{\mathrm{dA}}$ (flow sections):

$$
\int_{\mathrm{CS}} \rho \underline{\mathrm{~V}} \cdot \underline{\mathrm{dA}}=\sum_{\mathrm{CS}} \rho \underline{\mathrm{~V}} \cdot \underline{\mathrm{~A}}
$$

3. Incompressible fluid ($\rho=$ constant)

$$
\int_{\mathrm{CS}} \underline{\mathrm{~V}} \cdot \underline{\mathrm{dA}}=-\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{CV}} \mathrm{dV} \quad \quad \text { conservation of volume }
$$

4. Steady One-Dimensional Flow in a Conduit:

$$
\begin{aligned}
& \sum_{\mathrm{CS}} \rho \underline{\mathrm{~V}} \cdot \underline{\mathrm{~A}}=0 \\
& -\rho_{1} \mathrm{~V}_{1} \mathrm{~A}_{1}+\rho_{2} \mathrm{~V}_{2} \mathrm{~A}_{2}=0 \\
& \text { for } \rho=\text { constant } \quad \mathrm{Q}_{1}=\mathrm{Q}_{2}
\end{aligned}
$$

Some useful definitions:

Mass flux

$$
\dot{\mathrm{m}}=\int_{\mathrm{A}} \rho \underline{\mathrm{~V}} \cdot \underline{\mathrm{dA}}
$$

Volume flux

$$
\mathrm{Q}=\int_{\mathrm{A}}^{\mathrm{V}} \cdot \underline{\mathrm{dA}}
$$

Average Velocity $\quad \overline{\mathrm{V}}=\mathrm{Q} / \mathrm{A}$

Average Density $\quad \bar{\rho}=\frac{1}{\mathrm{~A}} \int \rho \mathrm{~d} \mathrm{~A}$
Note: $\dot{\mathrm{m}} \neq \bar{\rho} \mathrm{Q}$ unless $\rho=$ constant

*Steady flow

$*_{V_{1,2,3}}=50 \mathrm{fps}$
*@ ${ }^{-}$V varies linearly from zero at wall to
$\mathrm{V}_{\text {max }}$ at pipe center ${ }^{*}$ find $\dot{m}_{4}, \mathrm{Q}_{4}, \mathrm{~V}_{\text {max }}$

$$
\dot{\mathrm{m}}_{4}=\rho \int \mathrm{V}_{4} \mathrm{dA}_{4}=\rho \mathrm{V}\left(\mathrm{~A}_{1}+\mathrm{A}_{2}-\mathrm{A}_{3}\right) \quad \mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}=50 \mathrm{f} / \mathrm{s}
$$

$$
=\frac{1.94}{144} \times 50 \times \frac{\pi}{4}\left(1^{2}+2^{2}-1.5^{2}\right)
$$

$$
\text { = } 1.45 \text { slugs /s }
$$

$$
\begin{aligned}
& \int_{\mathrm{CS}} \rho \underline{\mathrm{~V}} \cdot \underline{\mathrm{dA}}=0=-\frac{\mathrm{d}}{\mathrm{~d}} \int_{\mathrm{CV}}^{\rho \mathrm{dV}}{ }^{0} \quad \text { *water, } \\
& \text { ide., }-\rho_{1} V_{1} A_{1}-\rho_{2} V_{2} A_{2}+\rho_{3} V_{3} A_{3}+\rho \int_{A_{4}} V_{4} d A_{4}=0 \\
& \rho=\text { cost. }=1.94 \mathrm{lb}-\mathrm{s}^{2} / \mathrm{ft}^{4}=1.94 \text { slug } / \mathrm{ft}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Q}_{4} & =\dot{\mathrm{m}}_{4} / \rho=.75 \mathrm{ft}^{3} / \mathrm{s} \\
& =\int_{\mathrm{A}_{4}} \mathrm{~V}_{4} \mathrm{dA}_{4}
\end{aligned}
$$

$$
\mathrm{Q}_{4}=\int_{0}^{\mathrm{r}_{0} 2 \pi} \int_{0}^{\mathrm{V}_{\max }\left(1-\frac{\mathrm{r}}{\mathrm{r}_{0}}\right)} \underbrace{\mathrm{V}_{\operatorname{melocity}} \text { profile }}_{\mathrm{V}_{4} \neq \mathrm{V}_{4}(\theta)} \underbrace{\mathrm{rd} \theta \mathrm{dr}}_{\mathrm{dA}_{4}}
$$

$$
=2 \pi \int_{0}^{r_{0}} V_{\max }\left(1-\frac{\mathrm{r}}{\mathrm{r}_{\mathrm{o}}}\right) \mathrm{rdr}
$$

$$
=2 \pi \mathrm{~V}_{\max } \int_{0}^{\mathrm{r}_{0}}\left[\mathrm{r}-\frac{\mathrm{r}^{2}}{\mathrm{r}_{\mathrm{o}}}\right] \mathrm{dr}
$$

$$
\overline{\mathrm{V}}_{4}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{\frac{1}{3} \pi \mathrm{r}_{\mathrm{o}}^{2} \mathrm{~V}_{\max }}{\pi \mathrm{r}_{\mathrm{o}}^{2}}
$$

$$
=\frac{1}{3} \mathrm{~V}_{\max }
$$

$$
\begin{aligned}
& =2 \pi \mathrm{~V}_{\max }\left[\left.\frac{\mathrm{r}^{2}}{2}\right|_{0} ^{\mathrm{r}_{0}}-\left.\frac{\mathrm{r}^{3}}{3 \mathrm{r}_{\mathrm{o}}}\right|_{0} ^{\mathrm{r}_{0}}\right] \\
& =2 \pi \mathrm{~V}_{\max } \mathrm{r}_{\mathrm{o}}^{2}\left[\frac{1}{2}-\frac{1}{3}\right]=\frac{1}{3} \pi \mathrm{r}_{\mathrm{o}}^{2} \mathrm{~V}_{\max } \\
\mathrm{V}_{\max } & =\frac{\mathrm{Q}_{4}}{\frac{1}{3} \pi \mathrm{r}_{\mathrm{o}}^{2}}=2.86 \mathrm{fps}
\end{aligned}
$$

Momentum Equation

RTT with $\mathrm{B}=\mathrm{M} \underline{\mathrm{V}}$ and $\beta=\underline{\mathrm{V}}$
$\sum\left[\underline{F}_{S}+\underline{F}_{B}\right]=\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{CV}} \rho \underline{\mathrm{V}} \mathrm{dV}+\int_{\mathrm{CS}} \underline{\mathrm{V}} \rho \underline{V}_{\mathrm{R}} \cdot \underline{\mathrm{dA}}$
$\underline{\mathrm{V}}=$ velocity referenced to an inertial frame (non-accelerating)
$\underline{V}_{\mathrm{R}}=$ velocity referenced to control volume
$\underline{F}_{s}=$ surface forces + reaction forces (due to pressure and viscous normal and shear stresses)
$\underline{F}_{B}=$ body force (due to gravity)

Applications of the Momentum Equation

Initial Setup and Signs

1. Jet deflected by a plate or a vane
2. Flow through a nozzle
3. Forces on bends
4. Problems involving non-uniform velocity distribution
5. Motion of a rocket
6. Force on rectangular sluice gate
7. Water hammer

Derivation of the Basic Equation General form for moving but
Recall RTT: $\quad \frac{\mathrm{dB}_{\text {sys }}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{CV}} \beta \rho \mathrm{d} \forall+\int_{\mathrm{CS}} \beta \rho \underline{\mathrm{V}}_{\mathrm{R}} \cdot \underline{\mathrm{dA}}$ non-accelerating reference frame
$\underline{\mathrm{V}}_{\mathrm{R}}=$ velocity relative to $\mathrm{CS}=\underline{\mathrm{V}}-\underline{\mathrm{V}}_{\mathrm{S}}=$ absolute - velocity CS
Subscript not shown in text but implied!
i.e., referenced to CV

Let, $\quad \mathrm{B}=\mathrm{M} \underline{\mathrm{V}}=$ linear momentum

$$
\beta=\underline{\mathrm{V}}
$$

$\underline{\mathrm{V}}$ must be referenced to inertial reference frame
$\underbrace{\frac{\mathrm{d}(\mathrm{M} \underline{\mathrm{V}})}{\mathrm{dt}}=\sum \underline{F}}_{\text {Newton } \mathrm{S}^{\text {nd }} \text { law }}=\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{CV}} \underline{\mathrm{VV}} \rho \mathrm{d} \mathrm{V}+\int_{\mathrm{CS}}^{\int \underline{\mathrm{V}} \rho \underline{\mathrm{V}}} \mathrm{R}_{\mathrm{R}} \cdot \underline{\mathrm{dA}}$
where $\quad \Sigma F=$ vector sum of all forces actingertial reference frame control volume including both surface and body forces
$=\Sigma \underline{F}_{S}+\Sigma \underline{F}_{B}$
$\Sigma \underline{F}_{S}=$ sum of all external surface forces acting at the CS, i.e., pressure forces, forces transmitted through solids, shear forces, etc.

$$
\begin{aligned}
\Sigma \underline{F}_{\mathrm{B}}= & \text { sum of all external } \\
& \text { body forces, i.e., } \\
& \text { gravity force }
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma \mathrm{F}_{\mathrm{x}}=\mathrm{p}_{1} \mathrm{~A}_{1}-\mathrm{p}_{2} \mathrm{~A}_{2}+\mathrm{R}_{\mathrm{x}} \\
& \Sigma \mathrm{~F}_{\mathrm{y}}=-\mathrm{W}+\mathrm{R}_{\mathrm{y}} \\
& \underline{\mathrm{R}}=\text { resultant force on fluid } \\
& \quad \text { in } \mathrm{CV} \text { due to } \mathrm{p}_{\mathrm{w}} \text { and } \tau_{\mathrm{w}}
\end{aligned}
$$

free body diagram i.e., reaction force on fluid Important Features (to be remembered)

1) Vector equation to get component in any direction must use dot product
x equation

$$
\sum \mathrm{F}_{\mathrm{x}}=\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{CV}} \rho \mathrm{ud} \forall+\int_{\mathrm{CS}} \rho \underline{\mathrm{~V}}_{\mathrm{R}} \cdot \underline{\mathrm{dA}}
$$

Carefully define coordinate system with forces positive in positive direction of coordinate axes

y equation

$\sum F_{y}=\frac{d}{d t} \int_{\mathrm{CV}} \rho v \mathrm{dV}+\int_{\mathrm{CS}} \rho \mathrm{v} \underline{\mathrm{V}}_{\mathrm{R}} \cdot \underline{\mathrm{dA}}$

z equation

$$
\sum \mathrm{F}_{\mathrm{z}}=\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{CV}} \rho \mathrm{wd} \forall+\int_{\mathrm{CS}} \rho \mathrm{~W} \underline{\mathrm{~V}}_{\mathrm{R}} \cdot \underline{\mathrm{dA}}
$$

2) Carefully define control volume and be sure to include all external body and surface faces acting on it.
For example,

$\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)=$ reaction force on fluid

$\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)=$ reaction force on nozzle
3) Velocity \underline{V} must be referenced to a non-accelerating inertial reference frame. Sometimes it is advantageous to use a moving (at constant velocity) reference frame. Note $\underline{V}_{R}=\underline{V}$ - $\underline{\mathrm{V}}_{\mathrm{S}}$ is always relative to CS.

> i.e., in these cases \underline{V} used for B also referenced to $C V$ (i.e., $\underline{V}=V_{R}$)
4) Steady vs. Unsteady Flow

Steady flow $\Rightarrow \frac{d}{d t} \int_{\mathrm{CV}} \rho \underline{\mathrm{V}} \mathrm{d} \forall=0$
5) Uniform vs. Nonuniform Flow
$\int \underline{\mathrm{V}} \rho \underline{\mathrm{V}}_{\mathrm{R}} \cdot \underline{d \mathrm{~A}}=$ change in flow of momentum across CS cs

$$
=\Sigma \underline{\mathrm{V}} \rho \underline{\mathrm{~V}}_{\mathrm{R}} \cdot \underline{\mathrm{~A}} \quad \text { uniform flow across } \underline{\mathrm{A}}
$$

6) $\underline{F}_{\text {pres }}=-\int p \underline{p} d A$ $\int_{V} \nabla f d \forall=\int_{S}^{f} \underline{n d s}$ $\mathrm{f}=$ constant, $\nabla \mathrm{f}=0$
$=0$ for $\mathrm{p}=$ constant and for a closed surface
i.e., always use gage pressure
7) Pressure condition at a jet exit

at an exit into the atmosphere jet pressure must be pa_{a}

Application of the Momentum Equation

1. Jet deflected by a plate or vane

Consider a jet of water turned through a horizontal angle

CV and CS are for jet so that F_{x} and F_{y} are vane reactions forces on fluid
x-equation: $\quad \sum F_{x}=F_{x}=\frac{d}{d t} \int \rho u d \forall+\int_{C S} \rho u \underline{V} \cdot \underline{d A}$

$$
\begin{aligned}
F_{x} & =\sum_{C S} \rho u \underline{V} \cdot \underline{A} \quad \text { steady flow } \\
& =\rho V_{1 x}\left(-V_{1} A_{1}\right)+\rho V_{2 x}\left(V_{2} A_{2}\right)
\end{aligned}
$$

continuity equation:

$$
\begin{aligned}
\rho A_{1} V_{1}=\rho A_{2} V_{2}=\rho Q \quad \text { for } A_{1} & =A_{2} \\
V_{1} & =V_{2}
\end{aligned}
$$

$F_{x}=\rho Q\left(V_{2 x}-V_{1 x}\right)$
y-equation: $\quad \sum \mathrm{F}_{\mathrm{y}}=\mathrm{F}_{\mathrm{y}}=\sum_{\mathrm{CS}} \rho \mathrm{v} \underline{\mathrm{V}} \cdot \underline{\mathrm{A}}$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{y}} & =\rho \mathrm{V}_{1 \mathrm{y}}\left(-\mathrm{A}_{1} \mathrm{~V}_{1}\right)+\rho \mathrm{V}_{2 \mathrm{y}}\left(-\mathrm{A}_{2} V_{2}\right) \\
& =\rho Q\left(\mathrm{~V}_{2 \mathrm{y}}-V_{1 \mathrm{y}}\right)
\end{aligned}
$$

for above geometry only
where:
note: $\quad F_{x}$ and F_{y} are force on fluid

- F_{x} and $-\mathrm{F}_{\mathrm{y}}$ are force on vane due to fluid

If the vane is moving with velocity \underline{V}_{v}, then it is convenient to choose CV moving with the vane
i.e., $\quad \underline{V}_{R}=\underline{V}-\underline{V}_{v}$ and \underline{V} used for B also moving with vane
x-equation: $\quad F_{x}=\int_{C S} \rho u \underline{V}_{R} \cdot \underline{d A}$

$$
F_{x}=\rho V_{1 x}\left[-\left(V-V_{v}\right)_{1} A_{1}\right]+\rho V_{2 x}\left[-\left(V-V_{v}\right)_{2} A_{2}\right]
$$

Continuity: $\quad 0=\int \rho \underline{V}_{R} \cdot \underline{d A}$

$$
\begin{aligned}
& \quad \text { i.e., } \rho\left(\mathrm{V}-\mathrm{V}_{\mathrm{v}}\right)_{1} \mathrm{~A}_{1}=\rho\left(\mathrm{V}-\mathrm{V}_{\mathrm{v}}\right)_{2} \mathrm{~A}_{2}=\rho(\underbrace{\left(\mathrm{V}-\mathrm{V}_{\mathrm{v}}\right) \mathrm{A}}_{\mathrm{Q}_{\text {rel }}} \\
& \mathrm{F}_{\mathrm{x}}=\underbrace{\left(\mathrm{V}-\mathrm{V}_{\mathrm{v}}\right) A}_{\mathrm{Q}_{\text {rel }}} A \mathrm{~V}_{2 \mathrm{x}}-\mathrm{V}_{1 \mathrm{x}}] \\
& \uparrow \\
& \text { on fluid } \left.\begin{array}{l}
\mathrm{V}_{2 \mathrm{x}}=\left(\mathrm{V}-\mathrm{V}_{\mathrm{v}}\right)_{2 \mathrm{x}} \\
\mathrm{~V}_{1 \mathrm{x}}=\left(\mathrm{V}-\mathrm{V}_{\mathrm{v}}\right)_{1 \mathrm{x}}
\end{array}\right\}
\end{aligned}
$$

Power $=-F_{x} V_{v}$
i.e., $=0$ for $V_{v}=0$
$\mathrm{F}_{\mathrm{y}}=\rho \mathrm{Q}_{\mathrm{rel}}\left(\mathrm{V}_{2 \mathrm{y}}-\mathrm{V}_{1 \mathrm{y}}\right)$
2. Flow through a nozzle

Consider a nozzle at the end of a pipe (or hose). What force is required to hold the nozzle in place?

CV = nozzle and fluid
$\therefore\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)=$ force required to hold nozzle in place

Assume either the pipe velocity or pressure is known. Then, the unknown (velocity or pressure) and the exit velocity V_{2} can be obtained from combined use of the continuity and Bernoulli equations.

Bernoulli: $\quad \mathrm{p}_{1}+\gamma \mathrm{z}_{1}+\frac{1}{2} \rho \mathrm{~V}_{1}^{2}=\mathrm{p}_{2}+\gamma \mathrm{Z}_{2}+\frac{1}{2} \rho \mathrm{~V}_{2}^{2} \quad \mathrm{Z}_{1}=\mathrm{z}_{2}$

$$
\mathrm{P}_{1}+\frac{1}{2} \rho \mathrm{~V}_{1}^{2}=\frac{1}{2} \rho \mathrm{~V}_{2}^{2}
$$

Continuity: $\quad A_{1} V_{1}=A_{2} V_{2}=Q$

$$
\begin{aligned}
& V_{2}=\frac{A_{1}}{A_{2}} V_{1}=\left(\frac{D}{d}\right)^{2} V_{1} \\
& \mathrm{P}_{1}+\frac{1}{2} \rho V_{1}^{2}\left(1-\left(\frac{D}{d}\right)^{4}\right)=0
\end{aligned}
$$

Say p_{1} known: $\quad V_{1}=\left[\frac{-2 p_{1}}{\rho\left(1-(D / d)^{4}\right)}\right]$
To obtain the reaction force R_{x} apply momentum equation in x direction

$$
\begin{aligned}
\sum \mathrm{F}_{\mathrm{x}} & =\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{CV}} \mathrm{u} \rho \mathrm{dV}+\int_{\mathrm{CS}} \rho \underline{u} \underline{V} \cdot \underline{\mathrm{dA}} \\
& =\sum_{\mathrm{CS}} \rho u \underline{\mathrm{~V}} \cdot \underline{\mathrm{~A}} \quad \begin{array}{l}
\text { steady flow and uniform } \\
\text { flow over } \mathrm{CS}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{R}_{\mathrm{x}}+\mathrm{p}_{1} \mathrm{~A}_{1}-\mathrm{p}_{2} \mathrm{~A}_{2} & =\rho \mathrm{V}_{1}\left(-\mathrm{V}_{1} \mathrm{~A}_{1}\right)+\rho \mathrm{V}_{2}\left(\mathrm{~V}_{2} \mathrm{~A}_{2}\right) \\
& =\rho \mathrm{Q}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)
\end{aligned}
$$

$$
R_{x}=\rho Q\left(V_{2}-V_{1}\right)-p_{1} A_{1}
$$

To obtain the reaction force R_{y} apply momentum equation in y direction

$$
\begin{aligned}
& \sum F_{y}=\sum_{C S} \rho v \underline{V} \cdot \underline{A}=0 \quad \text { since no flow in y-direction } \\
& R_{y}-W_{f}-W_{N}=0 \quad \text { i.e., } R_{y}=W_{f}+W_{N}
\end{aligned}
$$

Numerical Example: Oil with S = . 85 flows in pipe under pressure of 100 psi . Pipe diameter is 3 " and nozzle tip diameter is 1 "

$$
\rho=\frac{\mathrm{S} \gamma}{\mathrm{~g}}=1.65
$$

$$
\begin{aligned}
& \mathrm{V}_{1}=14.59 \mathrm{ft} / \mathrm{s} \\
& \mathrm{~V}_{2}=131.3 \mathrm{ft} / \mathrm{s} \\
& \mathrm{R}_{\mathrm{x}}=141.48-706.86=-569 \mathrm{lbf} \\
& \mathrm{R}_{\mathrm{z}}=10 \mathrm{lbf}
\end{aligned}
$$

$$
\mathrm{D} / \mathrm{d}=3
$$

$$
\mathrm{Q}=\frac{\pi}{4}\left(\frac{1}{12}\right)^{2} \mathrm{~V}_{2}
$$

$$
=.716 \mathrm{ft}^{3} / \mathrm{s}
$$

This is force on nozzle

3. Forces on Bends

Consider the flow through a bend in a pipe. The flow is considered steady and uniform across the inlet and outlet sections. Of primary concern is the force required to hold the bend in place, i.e., the reaction forces R_{x} and R_{y} which can be determined by application of the momentum equation.

$\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}=$ reaction force on bend i.e., force required to hold bend in place

Continuity: $\quad 0=\sum \rho \underline{V} \cdot \underline{A}=-\rho V_{1} A_{1}+\rho V_{2} A_{2}$

$$
\text { i.e., } \mathrm{Q}=\text { constant }=\mathrm{V}_{1} \mathrm{~A}_{1}=\mathrm{V}_{2} \mathrm{~A}_{2}
$$

x-momentum: $\sum \mathrm{F}_{\mathrm{x}}=\sum \rho \mathrm{u} \underline{\mathrm{V}} \cdot \underline{\mathrm{A}}$

$$
\begin{aligned}
p_{1} A_{1}-p_{2} A_{2} \cos \theta+R_{x} & =\rho V_{1 x}\left(-V_{1} A_{1}\right)+\rho V_{2 x}\left(V_{2} A_{2}\right) \\
& =\rho Q\left(V_{2 x}-V_{1 x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { y-momentum: } \sum F_{y}=\sum \rho v \underline{V} \cdot \underline{A} \\
& \qquad \begin{aligned}
p_{2} A_{2} \sin \theta+R_{y}-w_{f} & -w_{b}=\rho V_{1 y}\left(-V_{1} A_{1}\right)+\rho V_{2 y}\left(V_{2} A_{2}\right) \\
& =\rho Q\left(V_{2 y}-V_{1 y}\right)
\end{aligned}
\end{aligned}
$$

4. Problems involving Nonuniform Velocity Distribution See text pp. 215-216

5. Force on a rectangular sluice gate

 The force on the fluid due to the gate is calculated from the x momentum equation: flow at (2) and (2) is uniform and tomothonel

$\sum \mathrm{F}_{\mathrm{x}}=\sum \rho \mathrm{u} \underline{\mathrm{V}} \cdot \underline{\mathrm{A}}$

$$
\mathrm{F}_{1}+\mathrm{F}_{\mathrm{GW}}-\mathrm{F}_{\mathrm{visc}}-\mathrm{F}_{2}=\rho \mathrm{V}_{1}\left(-\mathrm{V}_{1} \mathrm{~A}_{1}\right)+\rho \mathrm{V}_{2}\left(\mathrm{~V}_{2} \mathrm{~A}_{2}\right)
$$

$$
F_{G W}=F_{2}-F_{1}+\rho Q\left(V_{2}-V_{1}\right)+F_{y \text { sc }} \text { usually can be neglected }
$$

$$
=\gamma \frac{\mathrm{y}_{2}}{2} \cdot \mathrm{y}_{2} \mathrm{~b}-\gamma \frac{\mathrm{y}_{1}}{2} \cdot \mathrm{y}_{1} \mathrm{~b}+\rho \mathrm{Q}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)
$$

$$
\mathrm{F}_{\mathrm{GW}}=\frac{1}{2} \mathrm{~b} \gamma\left(\mathrm{y}_{2}^{2}-\mathrm{y}_{1}^{2}\right)+\underbrace{\rho \mathrm{Q}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)}_{\frac{\rho \mathrm{Q}^{2}}{\mathrm{~b}}\left(\frac{1}{\mathrm{y}_{2}}-\frac{1}{\mathrm{y}_{1}}\right)}
$$

$$
V_{1}=\frac{Q}{y_{1} b}
$$

$$
\mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{y}_{2} \mathrm{~b}}
$$

Moment of Momentum Equation

See text pp. 221 - 229

Energy Equations

Derivation of the Energy Equation

The First Law of Thermodynamics
The difference between the heat added to a system and the work done by a system depends only on the initial and final states of the system; that is, depends only on the change in energy E: principle of conservation of energy

$$
\Delta \mathrm{E}=\mathrm{Q}-\mathrm{W}
$$

$\Delta \mathrm{E}=$ change in energy
$\mathrm{Q}=$ heat added to the system
$\mathrm{W}=$ work done by the system
$\mathrm{E}=\mathrm{E}_{\mathrm{u}}+\mathrm{E}_{\mathrm{k}}+\mathrm{E}_{\mathrm{p}}=$ total energy of the system
Internal energy due to molecular motion

The differential form of the first law of thermodynamics expresses the rate of change of E with respect to time

Energy Equation for Fluid Flow

The energy equation for fluid flow is derived from Reynolds transport theorem with

$$
\begin{aligned}
& B_{\text {system }}=E=\text { total energy of the system (extensive property) } \\
& \beta=E / \text { mass }=e=\text { energy per unit mass (intensive property) } \\
& =\hat{u}+e_{k}+e_{p}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{dE}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{CV}} \rho \mathrm{edV}+\int_{\mathrm{CS}} \rho \mathrm{e} \underline{\mathrm{~V}} \cdot \underline{\mathrm{dA}} \\
& \dot{Q}-\dot{W}=\frac{d}{d t} \int_{C V} \rho\left(\hat{u}+e_{k}+e_{p}\right) d \forall+\int_{C S} \rho\left(\hat{u}+e_{k}+e_{p}\right) \underline{V} \cdot \underline{d A}
\end{aligned}
$$

This can be put in a more useable form by noting the following:

$$
\mathrm{e}_{\mathrm{k}}=\frac{\text { Total KE of mass with velocity } \mathrm{V}}{\operatorname{mass}}=\frac{\Delta \mathrm{MV}^{2} / 2}{\Delta \mathrm{M}}=\frac{\mathrm{V}^{2}}{2} \quad \mathrm{~V}^{2}=|\underline{\mathrm{V}}|
$$

$e_{p}=\frac{E_{p}}{\Delta M}=\frac{\gamma \Delta \forall z}{\rho \Delta \forall}=g z \quad$ (for E_{p} due to gravity only)

$$
\left.\begin{array}{l}
\dot{Q}-\dot{W}=\frac{d}{d t} \int_{C V} \rho\left(\frac{V^{2}}{2}+g z+\hat{u}\right) d V+\int_{C s} \rho\left(\frac{V^{2}}{2}+g z+\hat{u}\right) \underline{V} \cdot \underline{d A} \\
\begin{array}{l}
\text { rate of work } \\
\text { done by system }
\end{array} \\
\begin{array}{l}
\text { rate of change } \\
\text { of energy in CV }
\end{array}
\end{array} \begin{array}{l}
\text { flux of energy } \\
\text { out of CV } \\
\text { (ie, across CS) }
\end{array}\right]
$$

Rate of Work Components: $\dot{\mathrm{W}}=\dot{\mathrm{W}}_{\mathrm{s}}+\dot{\mathrm{W}}_{\mathrm{f}}$

For convenience of analysis, work is divided into shaft work W_{s} and flow work W_{f}

$$
\begin{aligned}
\mathrm{W}_{\mathrm{f}}= & \text { net work done on the surroundings as a result of } \\
& \text { normal and tangential stresses acting at the control } \\
& \text { surfaces } \\
= & \mathrm{W}_{\mathrm{f} \text { pressure }}+\mathrm{W}_{\mathrm{f} \text { shear }}
\end{aligned}
$$

$\mathrm{W}_{\mathrm{s}}=$ any other work transferred to the surroundings usually in the form of a shaft which either takes energy out of the system (turbine) or puts energy into the system (pump)

Flow work due to pressure forces W_{fp} (for system)
neg. sign since pressure force on surrounding fluid acts in a direction opposite to the motion of the system boundary

$$
\text { at } \begin{aligned}
1 & \mathrm{~W}_{1}=-\mathrm{p}_{1} \mathrm{~A}_{1} \times \mathrm{V}_{1} \Delta \mathrm{t} \\
& \dot{\mathrm{~W}}_{1}=\mathrm{p}_{1} \underline{\mathrm{~V}}_{1} \cdot \underline{\mathrm{~A}}_{1}
\end{aligned}
$$

In general,

$$
\dot{\mathrm{W}}_{\mathrm{fp}}=\mathrm{p} \underline{\mathrm{~V}} \cdot \underline{\mathrm{~A}}
$$

for more than one control surface and \underline{V} not necessarily uniform over $\underline{\text { A }}$:

$$
\begin{aligned}
& \dot{\mathrm{W}}_{\mathrm{fp}}=\int_{\mathrm{CS}} \mathrm{PV} \underline{\mathrm{~V}} \cdot \underline{\mathrm{dA}}=\int_{\mathrm{CS}} \rho\left(\frac{\mathrm{p}}{\rho}\right) \underline{\mathrm{V}} \cdot \underline{\mathrm{dA}} \\
& \dot{\mathrm{~W}}_{\mathrm{f}}=\dot{\mathrm{W}}_{\mathrm{fp}}+\dot{\mathrm{W}}_{\mathrm{fshear}}
\end{aligned}
$$

Basic form of energy equation

$$
\begin{aligned}
& \dot{Q}-\dot{W}_{s}-\dot{W}_{\text {fshear }}-\int_{C S} \rho\left(\frac{p}{\rho}\right) \underline{V} \cdot \underline{d A} \\
&=\frac{d}{d t} \int_{C V} \rho\left(\frac{V^{2}}{2}+g z+\hat{u}\right) d \forall+\int_{C S} \rho\left(\frac{V^{2}}{2}+g z+\hat{u}\right) \underline{V} \cdot \underline{d A} \\
& \dot{Q}-\dot{W}_{s}-\dot{W} / /_{\text {shear }}=\frac{d}{d t} \int_{C V} \rho\left(\frac{V^{2}}{2}+g z+\hat{u}\right) d \forall
\end{aligned}
$$

Usually this term can be eliminated by proper choice of CV, i.e. CS normal to flow lines. Also, at fixed boundaries the velocity is zero (no slip

$$
+\int_{C S} \rho(\frac{V^{2}}{2}+\underbrace{g z+\hat{u}}_{\mathrm{h}=\text { enthalpy }}+\frac{p}{\rho}) \underline{V} \cdot \underline{d A}
$$ condition) and no shear stress flow work is done. Not included or discussed in text!

Simplified Forms of the Energy Equation

Energy Equation for Steady One-Dimensional Pipe Flow

Consider flow through the pipe system as shown

Energy Equation (steady flow)

$$
\begin{aligned}
\dot{Q}-\dot{W}_{s} & =\int_{C S} \rho\left(\frac{V^{2}}{2}+g z+\frac{p}{\rho}+\hat{u}\right) \underline{V} \cdot \underline{d A} \\
\dot{Q}-\dot{W}_{s} & +\int_{A_{1}}\left(\frac{p_{1}}{\rho}+g z_{1}+\hat{u}_{1}\right) \rho_{1} V_{1} A_{1}+\int_{A_{1}} \frac{\rho_{1} V_{1}^{3}}{2} d A_{1} \\
& =\int_{A_{2}}\left(\frac{p_{2}}{\rho}+g z_{2}+\hat{u}_{2}\right) \rho_{2} V_{2} A_{2}+\int_{A_{2}} \frac{\rho_{2} V_{2}^{3}}{2} d A_{2}
\end{aligned}
$$

*Although the velocity varies across the flow sections the streamlines are assumed to be straight and parallel; consequently, there is no acceleration normal to the streamlines and the pressure is hydrostatically distributed, i.e., $\mathrm{p} / \rho+\mathrm{gz}=$ constant.
*Furthermore, the internal energy u can be considered as constant across the flow sections, i.e. $\mathrm{T}=$ constant. These quantities can then be taken outside the integral sign to yield $\dot{Q}-\dot{W}_{s}+\left(\frac{p_{1}}{\rho}+g z_{1}+\hat{u}_{1}\right) \rho \int_{A_{1}} V_{1} d A_{1}+\rho \int_{A_{1}} \frac{V_{1}^{3}}{2} d A_{1}$
$=\left(\frac{p_{2}}{\rho}+g z_{2}+\hat{u}_{2}\right) \rho \int_{A_{2}} V_{2} d A_{2}+\rho \int_{A_{2}} \frac{V_{2}^{3}}{2} d A_{2}$
Recall that
$\mathrm{Q}=\int \underline{\mathrm{V}} \cdot \underline{\mathrm{dA}}=\overline{\mathrm{V}} \mathrm{A}$
So that
$\rho \int \underline{\mathrm{V}} \cdot \underline{\mathrm{d} \mathrm{A}}=\rho \overline{\mathrm{V}} \mathrm{A}=\dot{\mathrm{m}} \quad$ mass flow rate

Define:
$\rho \int_{\mathrm{A}} \frac{\mathrm{V}^{3}}{2} \mathrm{dA}=\underbrace{\frac{\rho \overline{\mathrm{V}}^{3} \mathrm{~A}}{2}}=\alpha \frac{\overline{\mathrm{V}}^{2}}{2} \dot{\mathrm{~m}}$
K.E. flux $\quad \underbrace{V}_{\text {K.E. flux for } ~}=\overline{\mathrm{V}}=$ constant across pipe
i.e., $\quad \alpha=\frac{1}{A_{A}} \int\left(\frac{V}{\bar{V}}\right)^{3} \mathrm{dA}=$ kinetic energy correction factor
$\dot{Q}-\dot{W}+\left(\frac{p_{1}}{\rho}+g z_{1}+\hat{u}_{1}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}\right) \dot{m}=\left(\frac{p_{2}}{\rho}+g z_{2}+\hat{u}_{2}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}\right) \dot{m}$
$\frac{1}{\dot{m}}(\dot{Q}-\dot{W})+\frac{p_{1}}{\rho}+g z_{1}+\hat{u}_{1}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}=\frac{p_{2}}{\rho}+g z_{2}+\hat{u}_{2}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}$
Nnote that:
$\alpha=1$ if V is constant across the flow section $\alpha>1$ if V is nonuniform

turbulent flow $\alpha=1.05 \sim 1$ may be used

Shaft Work

Shaft work is usually the result of a turbine or a pump in the flow system. When a fluid passes through a turbine, the fluid is doing shaft work on the surroundings; on the other hand, a pump does work on the fluid

$$
\dot{\mathrm{W}}_{\mathrm{s}}=\dot{\mathrm{W}}_{\mathrm{t}}-\dot{\mathrm{W}}_{\mathrm{p}} \quad \text { where } \dot{\mathrm{W}}_{\mathrm{t}} \text { and } \dot{\mathrm{W}}_{\mathrm{p}} \text { are }
$$

$$
\text { magnitudes of power } \quad\left(\frac{\text { work }}{\text { time }}\right)
$$

Using this result in the energy equation and deviding by g results in

$$
\frac{\dot{W}_{p}}{\dot{m} g}+\frac{p_{1}}{\gamma}+z_{1}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}=\frac{\dot{W}_{t}}{\dot{m} g}+\frac{p_{2}}{\gamma}+z_{2}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+\frac{\hat{u}_{2}-\hat{u}_{1}}{g}-\frac{\dot{Q}}{\dot{m} g}
$$

Note: each term has dimensions of length Define the following:
$\mathrm{h}_{\mathrm{p}}=\frac{\dot{\mathrm{W}}_{\mathrm{p}}}{\dot{\mathrm{m} g}}=\frac{\dot{\mathrm{W}}_{\mathrm{p}}}{\rho \mathrm{Qg}}=\frac{\dot{\mathrm{W}}_{\mathrm{p}}}{\gamma \mathrm{Q}}$
$\mathrm{h}_{\mathrm{t}}=\frac{\dot{\mathrm{W}}_{\mathrm{t}}}{\dot{\mathrm{mg}}}$
$h_{L}=\frac{\hat{u}_{2}-\hat{u}_{1}}{g}-\frac{\dot{Q}}{\dot{m} g}=$ head loss

Head Loss

In a general fluid system a certain amount of mechanical energy is converted to thermal energy due to viscous action. This effect results in an increase in the fluid internal energy. Also, some heat will be generated through energy dissipation and be lost (i.e. - \dot{Q}). Therefore the term

$$
h_{L}=\frac{\hat{u}_{2}-\hat{u}_{1}}{g}-\frac{\dot{Q}}{g \dot{m}}>0 \quad \begin{aligned}
& \text { from } 2^{\text {nd }} \text { law } \\
& \begin{array}{l}
\text { represents a loss in } \\
\text { mechanical energy due } \\
\text { to viscous stresses }
\end{array}
\end{aligned}
$$

Note that adding \dot{Q} to system will not make $h_{L}=0$ since this also increases Δu. It can be shown from $2^{\text {nd }}$ law of thermodynamics that $h_{L}>0$.

Drop - over $\overline{\mathrm{V}}$ and understand that V in energy equation refers to average velocity.

Using the above definitions in the energy equation results in (steady 1-D incompressible flow)
$\underbrace{\frac{p_{1}}{\gamma}+\alpha_{1} \frac{V_{1}^{2}}{2 g}+z_{1}+h_{p}=\frac{p_{2}}{\gamma}+\alpha_{2} \frac{V_{2}^{2}}{2 g}+z_{2}+h_{t}+h_{L}}$

Comparison of Energy Equation and Bernoulli Equation

Apply energy equation to a stream tube without any shaft work

Energy eq : $\frac{\mathrm{p}_{1}}{\gamma}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1}=\frac{\mathrm{p}_{2}}{\gamma}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2}+\mathrm{h}_{\mathrm{L}}$
-If $h_{L}=0$ (i.e., $\mu=0$) we get Bernoulli equation and conservation of mechanical energy along a streamline
-Therefore, energy equation for steady 1-D pipe flow can be interpreted as a modified Bernoulli equation to include viscous effects $\left(h_{L}\right)$ and shaft work (h_{p} or h_{t})

Summary of the Energy Equation
The energy equation is derived from RTT with
$B=E=$ total energy of the system
$\beta=\mathrm{e}=\mathrm{E} / \mathrm{M}=$ energy per unit mass

$$
\begin{aligned}
& \dot{\mathrm{W}}_{\mathrm{p}}=\int_{\mathrm{CV}} \mathrm{p} \underline{\mathrm{~V}} \cdot \underline{\mathrm{dA}}=\int_{\mathrm{CS}} \rho(\mathrm{p} / \rho) \underline{\mathrm{V}} \cdot \underline{\mathrm{dA}} \\
& \dot{\mathrm{~W}}_{\mathrm{s}}=\dot{\mathrm{W}}_{\mathrm{t}}-\dot{\mathrm{W}}_{\mathrm{p}} \\
& \dot{\mathrm{Q}}-\dot{\mathrm{W}}_{\mathrm{t}}+\dot{\mathrm{W}}_{\mathrm{p}}=\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{CV}} \rho \mathrm{ed} \mathrm{~V}+\int_{\mathrm{CS}} \rho(\mathrm{e}+\mathrm{p} / \mathrm{e}) \underline{\mathrm{V}} \cdot \underline{\mathrm{dA}} \\
& \quad \quad e=\hat{u}+\frac{1}{2} V^{2}+g z
\end{aligned}
$$

For steady 1-D pipe flow (one inlet and one outlet):

1) Streamlines are straight and parallel
$\Rightarrow \mathrm{p} / \rho+\mathrm{gz}=$ constant across CS
2) $\mathrm{T}=$ constant $\Rightarrow \mathrm{u}=$ constant across CS
3) define $\quad \alpha=\frac{1}{\mathrm{~A}} \int_{\mathrm{CS}}\left(\frac{\mathrm{V}}{\overline{\mathrm{V}}}\right)^{3} \mathrm{dA}=\mathrm{KE}$ correction factor

$$
\Rightarrow \quad \frac{\rho}{2} \int \mathrm{~V}^{3} \mathrm{dA}=\alpha \frac{\rho \overline{\mathrm{V}}^{3}}{2} \mathrm{~A}=\alpha \frac{\overline{\mathrm{V}}^{2}}{2} \dot{\mathrm{~m}}
$$

$$
\overbrace{\frac{\mathrm{p}_{1}}{\gamma}+\alpha_{1} \frac{\mathrm{~V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1}+\mathrm{h}_{\mathrm{p}}=\frac{\mathrm{p}_{2}}{\gamma}+\alpha_{2} \frac{\mathrm{~V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2}+\mathrm{h}_{\mathrm{t}}+\mathrm{h}_{\mathrm{L}}}^{\text {mechanical energy }} \quad \begin{gathered}
\text { Thermal } \\
\text { energy }
\end{gathered}
$$

$\mathrm{h}_{\mathrm{p}}=\dot{\mathrm{W}}_{\mathrm{p}} / \dot{\mathrm{m}} g$
$\mathrm{h}_{\mathrm{t}}=\dot{\mathrm{W}}_{\mathrm{t}} / \dot{\mathrm{m}} \mathrm{g}$
$h_{L}=\frac{\hat{u}_{2}-\hat{u}_{1}}{g}-\frac{\dot{Q}}{\dot{m} g}=$ head loss
Note: each term
has
units of length
V is average velocity (vector dropped) and corrected by α

Concept of Hydraulic and Energy Grade Lines

$\frac{\mathrm{p}_{1}}{\gamma}+\alpha_{1} \frac{\mathrm{~V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1}+\mathrm{h}_{\mathrm{p}}=\frac{\mathrm{p}_{2}}{\gamma}+\alpha_{2} \frac{\mathrm{~V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2}+\mathrm{h}_{\mathrm{t}}+\mathrm{h}_{\mathrm{L}}$
Define $\mathrm{HGL}=\underline{\mathrm{p}}+\mathrm{z}$ point-by-point application is graphically displayed

HGL corresponds to pressure tap measurement + z

EGL corresponds to stagnation tube measurement +z

$E G L_{1}=E G L_{2}+h_{L}$
for $h_{p}=h_{t}=0$

MGURE 7.4
EGL and HGL in a
straight pipe.

$\mathrm{f}=$ friction factor

$$
\mathrm{f}=\mathrm{f}(\mathrm{Re})
$$

pressure tap: $\frac{\mathrm{p}_{2}}{\gamma}=\mathrm{h}$
stagnation tube: $\frac{\mathrm{p}_{2}}{\gamma}+\alpha \frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}=\mathrm{h}$
$h=$ height of fluid in tap/tube
$E G L_{1}+h_{p}=E G L_{2}+h_{t}+h_{L}$
$\mathrm{EGL}_{2}=\mathrm{EGL}_{1}+\underbrace{\mathrm{h}_{\mathrm{p}}-\mathrm{h}_{\mathrm{t}}}-\mathrm{h}_{\mathrm{L}}$
 to h_{p} or h_{t}

Helpful hints for drawing HGL and EGL

1. $\mathrm{EGL}=\mathrm{HGL}+\alpha \mathrm{V}^{2} / 2 \mathrm{~g}=\mathrm{HGL}$ for $\mathrm{V}=0$
2.\&3. $h_{L}=f \frac{L}{D} \frac{V^{2}}{2 g}$ in pipe means EGL and HGL will slope downward, except for abrupt changes due to h_{t} or h_{p}

FGGURE 7.5
Rise in $E G L$ and $H G L$ due to pump.

4. $\mathrm{p}=0 \Rightarrow \mathrm{HGL}=\mathrm{z}$
5. for $h_{L}=f \frac{L}{D} \frac{V^{2}}{2 g}=$ constant $\times L$

EGL/HGL slope downward increasing L with slope $\frac{f}{D} \frac{V^{2}}{2 g}$
6. for change in $\mathrm{D} \Rightarrow$ change in V

$$
\text { i.e. } \left.\begin{array}{l}
\mathrm{V}_{1} \mathrm{~A}_{1}=\mathrm{V}_{2} \mathrm{~A}_{2} \\
\mathrm{~V}_{1} \frac{\pi \mathrm{D}_{1}^{2}}{4}=\mathrm{V}_{2} \frac{\pi \mathrm{D}_{2}^{2}}{4} \\
\mathrm{~V}^{2}=\mathrm{VO}^{2}
\end{array}\right\} \Rightarrow \begin{aligned}
& \text { change in distance between } \\
& \text { HGL \& EGL and slope } \\
& \text { change due to change in } \mathrm{h}_{\mathrm{L}}
\end{aligned}
$$

FIGURE 7.8
Change in EGL and HCL
due to change in
diameter of pipe.

7. If HGL $<\mathrm{z}$ then $\mathrm{p} / \gamma<0 \quad$ i.e., cavitation possible

FIGURE 7.9
Subatmospheric pressure when pipe is above HGL.

condition for cavitation:

$$
\begin{aligned}
& \qquad \mathrm{p}=\mathrm{p}_{\mathrm{va}}=2000 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \\
& \text { gage pressure } \mathrm{p}_{\mathrm{va}, \mathrm{~g}}=\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{atm}} \approx-\mathrm{p}_{\mathrm{atm}}=-100,000 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \\
& \frac{\mathrm{p}_{\mathrm{va}, \mathrm{~g}}}{\gamma} \approx-10 \mathrm{~m} \\
& 9810 \mathrm{~N} / \mathrm{m}^{3}
\end{aligned}
$$

4 Energy Considerations in Steady Flow

4.15 METHOD OF SOLUTION OF FLOW PROBLEMS

For the solutions of problems of fiquid fow there are two fundamental equations, the equation of continuity (3.10) and the energy equation in one of the foms from Eqs. (4.5) to (4.10). The following procedure may be employed:

1. Choose a datum plane through any conventent point.
2. Note at what sections the velocity is known or is to be assumed. If at any point the section area is great compared with its value elsewhere, the velocity head is so small that it may be disregarded.
3. Note at what points the pressure is known or is to be assumed. In a body of Hiquid at rest with a free surface the pressure is known at every point within the body. The pressure in a jet is the same as that of the medum surrounding the fel.
4. Note whether or not there is any point where all three terms, pressure, elevation, and velocity, ane known.
5. Note whether or not there is any point where there is only one unknown quantity.

It is generally possible to write an energy equation that will fulfll condtions 4 and 5 . If there are two unknowns in the equation, then the continuity equation must be used also. The application of these principles is shown in the following illustrative examples.

CHustrative Example 4.7 A pipeline with a pump leads to a nozzle as shown in the accomparying figure. Eimy the dow rate when the pume develoss a head of ge fa. Assume that the heat loss in the 6-in-diameter pipe may be expressed by $h_{5}=5 F_{6}^{2} / 2 \mathrm{~g}$, while the head loss in the 4 -in-dianeter pipe is $h_{2}=12 V_{4}^{2} 2 g$. Sketch the energy line and hydractic grade line, and find the pressare head at the suction side of the pamp.

Select the datum as the efevation of the sater surface in the reservoif Note trom continuity that

$$
V_{6}=\left(\frac{1}{6}\right)^{2} V_{3}=0.25 V_{3} \quad \text { and } \quad V_{ \pm}=\left(\frac{3}{4} y^{2} V_{4}=0.563 V_{3}\right.
$$

where V_{3} is the jet velocity. Writing an energy equation from the surface of the teservoir to the jet,

$$
\begin{aligned}
& \left(z_{1}+\frac{p_{3}}{7}+\frac{V_{1}^{2}}{2 g}\right)-h_{L_{t}}+h_{y}-h_{L_{4}}=z_{5}+\frac{P_{y}}{\gamma^{\prime}}+\frac{V_{3}^{2}}{2 g} \\
& 0+6+0-5 \frac{V_{b}^{2}}{2 g}+80-12 \frac{V_{4}^{2}}{2 g}=10+0+\frac{V_{3}^{2}}{2 g}
\end{aligned}
$$

Express ali velocities in terms of V_{3} :

$$
\begin{aligned}
& \frac{5\left(0.25 V_{3}\right)^{2}}{2 g}+80-12 \frac{\left(0.563 V_{3}\right)^{2}}{2 g}=10+\frac{V_{3}^{2}}{2 g} \\
& V_{3}=29.7 \mathrm{fps} \\
& g=A_{3} F_{3}=\frac{\pi}{4}\left(\frac{3}{1}\right)^{2} 29.7=1.45 \mathrm{cis}
\end{aligned}
$$

2. Head loss it suction pipe:

$$
\begin{aligned}
h_{\mathrm{f}} & =\$ \frac{V_{\mathrm{t}}^{\mathrm{J}}}{2 g}=\frac{56.25 V_{\mathrm{j}} I^{I}}{2 g}=\frac{0.312 V_{5}^{2}}{2 g} \\
& =4.3 \mathrm{ft}
\end{aligned}
$$

4 Head loss in discharge pipe:

$$
\begin{gathered}
h_{\mathrm{L}}=12 \frac{V_{4}^{2}}{2 g}=\frac{12\left(0.563 Y_{3}\right)^{2}}{2 g}=52.1 \mathrm{ft} \\
\frac{F_{3}^{2}}{2 g}=13.7 \mathrm{ft} \quad \frac{V_{4}^{2}}{2 g}=4.3 \mathrm{ft} \quad \frac{V_{4}^{2}}{2 q}=0.86 \mathrm{ft} \approx 0.9 \mathrm{ft}
\end{gathered}
$$

The encrgy tine and hydraulic grade han are drawn on the figare to seale. Inspection of the fighay shows that the pressure head on the suction side of the pamp is p gi? $=14.8$ I. . Likewise, the pressure head as aty point in the pipe may be found if the figure is to scate.

Illustrative Example 48 Given the two-dimensional fow as show in the accomparying figure.
Determine the flow rate. Assume no head loss.
: +

Application of the Energy, Momentum, and Continuity Equations in Combination

In general, when solving fluid mechanics problems, one should use all available equations in order to derive as much information as possible about the flow. For example, consistent with the approximation of the energy equation we can also apply the momentum and continuity equations

Energy:

$$
\frac{\mathrm{p}_{1}}{\gamma}+\alpha_{1} \frac{\mathrm{~V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1}+\mathrm{h}_{\mathrm{p}}=\frac{\mathrm{p}_{2}}{\gamma}+\alpha_{2} \frac{\mathrm{~V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2}+\mathrm{h}_{\mathrm{t}}+\mathrm{h}_{\mathrm{L}}
$$

Momentum:

$$
\sum F_{s}=\rho V_{2}^{2} A_{2}-\rho V_{1}^{2} A_{1}=\rho Q\left(V_{2}-V_{1}\right)
$$

Continuity:
one inlet and one outlet $\rho=$ constant

$$
\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}=\mathrm{Q}=\text { constant }
$$

Abrupt Expansion

Consider the flow from a small pipe to a larger pipe. Would like to know $h_{L}=h_{L}\left(V_{1}, V_{2}\right)$. Analytic solution to exact problem is extremely difficult due
 to the occurrence of flow separations and turbulence. However, if the assumption is made that the pressure in the separation region remains approximately constant and at the value at the point of separation, i.e, p_{1}, an approximate solution for h_{L} is possible:

Apply Energy Eq from 1-2 $\left(\alpha_{1}=\alpha_{2}=1\right)$
$\frac{\mathrm{p}_{1}}{\gamma}+\mathrm{z}_{1}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{p}_{2}}{\gamma}+\mathrm{z}_{2}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{h}_{\mathrm{L}}$
Momentum eq. For CV shown (shear stress neglected)

$$
\begin{aligned}
\sum \mathrm{F}_{\mathrm{s}}=\mathrm{p}_{1} \mathrm{~A}_{2}-\mathrm{p}_{2} \mathrm{~A}_{2}-\underbrace{-\mathrm{W} \sin \alpha} & =\sum \rho \mathrm{uV} \cdot \underline{A} \\
& =\rho \mathrm{V}_{1}\left(-\mathrm{V}_{1} \mathrm{~A}_{1}\right)+\rho \mathrm{V}_{2}\left(\mathrm{~V}_{2} \mathrm{~A}_{2}\right) \\
\underbrace{\gamma \mathrm{A}_{2} \mathrm{~L}}_{\mathrm{W} \sin \alpha} \underbrace{\mathrm{~L}}_{\text {艺 }} & =\rho \mathrm{V}_{2}^{2} \mathrm{~A}_{2}-\rho \mathrm{V}_{1}^{2} \mathrm{~A}_{1}
\end{aligned}
$$

next divide momentum equation by $\gamma \mathrm{A}_{2}$
$\div \gamma \mathrm{A}_{2} \quad \underbrace{\frac{\mathrm{p}_{1}}{\gamma}-\frac{\mathrm{p}_{2}}{\gamma}-\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)}=\frac{\mathrm{V}_{2}^{2}}{\mathrm{~g}}-\frac{\mathrm{V}_{1}^{2}}{\mathrm{~g}} \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}=\frac{\mathrm{V}_{1}^{2}}{\mathrm{~g}} \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}\left(\frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}-1\right)$
from energy equation
\Downarrow
$\frac{V_{2}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g}+h_{L}=\frac{V_{2}^{2}}{g}-\frac{V_{1}^{2}}{g} \frac{A_{1}}{A_{2}}$
$\mathrm{h}_{\mathrm{L}}=\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}\left(1-\frac{2 \mathrm{~A}_{1}}{\mathrm{~A}_{2}}\right)$
$\mathrm{h}_{\mathrm{L}}=\frac{1}{2 g}[\mathrm{~V}_{2}^{2}+\mathrm{V}_{1}^{2}-\underbrace{2 \mathrm{~V}_{1}^{2} \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}}_{-2 \mathrm{~V}_{1} \mathrm{~V}_{2}}]\left\{\begin{array}{l}\text { continutity eq. } \\ \mathrm{V}_{1} \mathrm{~A}_{1}=\mathrm{V}_{2} A_{2} \\ \frac{A_{1}}{\mathrm{~A}_{2}}=\frac{V_{2}}{\mathrm{~V}_{1}}\end{array}\right.$
$h_{L}=\frac{1}{2 g}\left[\mathrm{~V}_{2}-\mathrm{V}_{1}\right]^{2}$
If $V_{2} \ll V_{1}$,

$$
\mathrm{h}_{\mathrm{L}}=\frac{1}{2 \mathrm{~g}} \mathrm{~V}_{1}^{2}
$$

Forces on Transitions

Example 7-6

Fluid = water
$\mathrm{p}_{1}=250 \mathrm{kPa}$
$\mathrm{D}_{1}=30 \mathrm{~cm}$
$\mathrm{D}_{2}=20 \mathrm{~cm}$
$\mathrm{F}_{\mathrm{x}}=$?

First apply momentum theorem
$\sum \mathrm{F}_{\mathrm{x}}=\sum \rho \mathrm{u} \underline{\mathrm{V}} \cdot \underline{\mathrm{A}}$
$F_{x}+p_{1} A_{1}-p_{2} A_{2}=\rho V_{1}\left(-V_{1} A_{1}\right)+\rho V_{2}\left(V_{2} A_{2}\right)$
$\mathrm{F}_{\mathrm{x}}=\rho \mathrm{Q}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)-\mathrm{p}_{1} \mathrm{~A}_{1}+\mathrm{p}_{2} \mathrm{~A}_{2}$
force required to hold transition in place

The only unknown in this equation is p_{2}, which can be obtained from the energy equation.

$$
\begin{aligned}
& \frac{\mathrm{p}_{1}}{\gamma}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{p}_{2}}{\gamma}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{h}_{\mathrm{L}} \quad \text { note: } \mathrm{z}_{1}=\mathrm{z}_{2} \text { and } \alpha=1 \\
& \mathrm{p}_{2}=\mathrm{p}_{1}-\gamma\left[\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}-\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{h}_{\mathrm{L}}\right] \quad \text { drop in pressure } \\
& \Rightarrow F_{x}=\rho Q\left(V_{2}-V_{1}\right)+A_{2}[\underbrace{\text { (note: if } p_{2}=0 \text { same as nozzle) }}_{\left.p_{2}-\gamma\left(\frac{V_{2}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g}+h_{L}\right)\right]} \\
& \text { In this equation, } \\
& \mathrm{V}_{1}=\mathrm{Q} / \mathrm{A}_{1}=10 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~V}_{2}=\mathrm{Q} / \mathrm{A}_{2}=22.5 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~h}_{\mathrm{L}}=.1 \frac{\mathrm{~V}_{2}^{2}}{2 \mathrm{~g}}=2.58 \mathrm{~m} \\
& \mathrm{~F}_{\mathrm{x}}=-8.15 \mathrm{kN} \quad \text { is negative } \mathrm{x} \text { direction to hold } \\
& \text { transition in place } \\
& \mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2} \\
& \mathrm{~V}_{2}=\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}} \mathrm{~V}_{1} \\
& \text { i.e. } V_{2}>V_{1} \\
& \mathrm{~F}_{\mathrm{x}}=-8.15 \mathrm{kN} \quad \text { is negative } \mathrm{x} \text { direction to hold } \\
& \text { transition in place }
\end{aligned}
$$

