
57:020 Mechanics of Fluids and Transport Processes                                                     Chapter 5 
Professor Fred Stern   Fall 2006 1

Chapter 5 Mass, Momentum, and Energy Equations 
 
Flow Rate and Conservation of Mass 
 
1. cross-sectional area oriented normal to velocity vector 

(simple case where V ⊥ A) 
 

 
U = constant:  Q = volume flux = UA [m/s × m2 = m3/s] 
U ≠ constant:  Q = ∫

A
UdA  

Similarly the mass flux = ∫ρ=
A

UdAm  

 
 
2. general case 

 
 

  
∫ θ=

∫ ⋅=

CS

CS

dAcosV

dAnVQ
 

( )∫ ⋅ρ=
CS

dAnVm  
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average velocity:  
A
QV =  

 
 
Example: 
At low velocities the flow through a long circular tube, i.e. pipe, 
has a parabolic velocity distribution (actually paraboloid of 
revolution). 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

2

max R
r1uu  

i.e., centerline velocity 
 
 
 

 
a) find Q and V  
 

∫=∫ ⋅=
AA

udAdAnVQ  

 

∫ ∫ ∫ θ=
π

A

2

0

R

0
drrd)r(uudA  

      = ∫π
R

0
rdr)r(u2    

dA = 2πrdr     

u = u(r) and not θ ∴ ∫ π=θ
π2

0
2d   
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Q = ∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−π

R

0

2

max rdr
R
r1u2   = 2

max Ru
2
1

π   

maxu
2
1V =  

 
 
Continuity Equation 
 
RTT can be used to obtain an integral relationship expressing 
conservation of mass by defining the extensive property B = M 
such that β = 1. 
 
  B = M = mass 
  β = dB/dM = 1 
 
General Form of Continuity Equation 
 

∫ ∫ ⋅ρ+ρ==
CV CS

dAVVd
dt
d0

dt
dM  

or 

∫ρ−=⋅∫ρ
CVCS

Vd
dt
ddAV  

 
net rate of outflow   rate of decrease of 
of mass across CS  mass within CV 
 
Simplifications: 

1. Steady flow:  0Vd
dt
d

CV
=∫ρ−  
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2. V = constant over discrete dA (flow sections): 
 

∫ ∑ ⋅ρ=⋅ρ
CS CS

AVdAV  

 
3. Incompressible fluid (ρ = constant) 

CS CV

dV dA dV
dt

⋅ = −∫ ∫    conservation of volume 

 
4. Steady One-Dimensional Flow in a Conduit: 

∑ =⋅ρ
CS

0AV  

 
−ρ1V1A1 + ρ2V2A2 = 0 
 
for ρ = constant Q1 = Q2 

 
Some useful definitions: 
 
Mass flux   ∫ ⋅ρ=

A
dAVm  

 
Volume flux  ∫ ⋅=

A
dAVQ  

 
Average Velocity A/QV =  
 

Average Density ∫ρ=ρ dA
A
1  

 
Note:  m Q≠ ρ  unless ρ = constant 
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Example 

 
*Steady flow 

*V1,2,3 = 50 fps 

*@  V varies linearly   
  from zero at wall to  
  Vmax at pipe center 
*find 4m , Q4, Vmax 

0  *water, ρw = 1.94 slug/ft3 

∫ρ−=∫ =⋅ρ
CVCS

Vd
dt
d0dAV  

        

i.e.,  -ρ1V1A1 - ρ2V2A2 + ρ3V3A3 + ρ ∫
4A

44dAV = 0   

ρ = const. = 1.94 lb-s2 /ft4 = 1.94 slug/ft3 

 
∫ρ= 444 dAVm = ρV(A1 + A2 – A3)      V1=V2=V3=V=50f/s 

    = ( )222 5.121
4

50
144

94.1
−+

π
××   

 = 1.45 slugs/s 
 
 
 
 
 
 
 

4m  
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Q4 = 75.m4 =ρ  ft3/s 
 
     = ∫

4A
44dAV  

velocity profile 

Q4   = ∫ ∫ θ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

πor

0

2

0 o
max drrd

r
r1V   

 
 

 
max

2
o

2
omax

r

0o

3r

0

2

max

r

0 o

2

max

r

0 o
max

Vr
3
1

3
1

2
1rV2

r3
r

2
rV2

dr
r
rrV2

rdr
r
r1V2

o0

o

o

π=⎥⎦
⎤

⎢⎣
⎡ −π=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−π=

∫ ⎥
⎦

⎤
⎢
⎣

⎡
−π=

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−π=

 

Vmax = 86.2
r

3
1

Q
2

o

4 =
π

fps 

V4 ≠ V4(θ) 
dA4 

2
o

max
2
o

4
r

Vr
3
1

A
QV

π

π
==

       = maxV
3
1  
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Momentum Equation 
 
RTT with B = MV and β = V 

[ ]∑ ∫ ∫ ⋅ρ+ρ=+
CV CS

RBS dAVVVdV
dt
dFF  

V = velocity referenced to an inertial frame (non-accelerating) 
VR = velocity referenced to control volume 
FS = surface forces + reaction forces (due to pressure and  

viscous normal and shear stresses) 
FB = body force (due to gravity) 
 
Applications of the Momentum Equation 
Initial Setup and Signs 
1. Jet deflected by a plate or a vane 
2. Flow through a nozzle 
3. Forces on bends 
4. Problems involving non-uniform velocity distribution 
5. Motion of a rocket 
6. Force on rectangular sluice gate 
7. Water hammer 
 
Derivation of the Basic Equation 

Recall RTT: ∫ ⋅βρ+∫βρ=
CS

R
CV

sys dAVVd
dt
d

dt
dB

 

 
VR=velocity relative to CS=V – VS=absolute – velocity CS 

Subscript not shown in text but implied! 
 i.e., referenced to CV 
Let,   B = MV = linear momentum 
  β = V 

General form for 
moving but  
non-accelerating 
reference frame 

V must be referenced to 
inertial reference frame 
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Must be relative to a non-accelerating 
inertial reference frame

∫ ⋅ρ+∫ ρ=∑=
CS

R
CV

dAVVVdV
dt
dF

dt
)VM(d  

Newton’s 2nd law 
where ΣF = vector sum of all forces acting on the  

 control volume including both surface and  
 body forces 

       = ΣFS + ΣFB 
  ΣFS = sum of all external surface forces acting at  

  the CS, i.e., pressure forces, forces  
  transmitted through solids, shear forces, etc. 

 
ΣFB = sum of all external  

   body forces, i.e.,  
   gravity force 

 

      ΣFx = p1A1 – p2A2 + Rx 
ΣFy = -W + Ry 
 
R = resultant force on fluid  
       in CV due to pw and τw 

 
 
Important Features (to be remembered) 
 
1) Vector equation to get component in any direction must use 

dot product 
 
 x equation 

 ∑ ∫ ⋅ρ+∫ρ=
CS

R
CV

x dAVuVud
dt
dF  

Carefully define coordinate 
system with forces positive in 
positive direction of 
coordinate axes 

free body diagram i.e., reaction force on fluid 
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 y equation      

∑ ∫ ⋅ρ+∫ρ=
CS

R
CV

y dAVvVvd
dt
dF      

 
 z equation 

 ∑ ∫ ⋅ρ+∫ρ=
CS

R
CV

z dAVwVwd
dt
dF  

 
2) Carefully define control volume and be sure to include all 

external body and surface faces acting on it. 
For example, 
 
 
 
 
 
 
 
 
 
 
 
 
 

3) Velocity V must be referenced to a non-accelerating inertial 
reference frame.  Sometimes it is advantageous to use a 
moving (at constant velocity) reference frame.  Note VR = V 
– Vs is always relative to CS. 

 
 

(Rx,Ry) = reaction 
force on fluid 

(Rx,Ry) = reaction 
force on nozzle  

i.e., in these cases V used 
for B also referenced to CV 
(i.e., V = VR) 
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4) Steady vs. Unsteady Flow 
 

Steady flow ⇒ ∫ =ρ
CV

0VdV
dt
d  

 
5) Uniform vs. Nonuniform Flow 

 
∫ ⋅ρ

CS
R dAVV  = change in flow of momentum across CS 

      = ΣVρVR⋅A  uniform flow across A 
6) Fpres = −∫ dAnp    ∫ ∫=∇

V S
dsnfVfd  

f = constant, ∇f = 0 
 = 0  for p = constant and for a closed surface 
 
 i.e., always use gage pressure 
 
7)  Pressure condition at a jet exit 
   

at an exit into the atmosphere jet 
pressure must be pa 

 
 
 
 
 
Application of the Momentum Equation 
1.  Jet deflected by a plate or vane 
 
Consider a jet of water turned through a horizontal angle 
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x-equation: ∑ ∫ ∫ ⋅ρ+ρ==
CS

xx dAVuVud
dt
dFF  

        steady flow 
 
        = )AV(V)AV(V 22x211x1 ρ+−ρ  
 
continuity equation: ρA1V1 = ρA2V2 = ρQ 
 
Fx = ρQ(V2x – V1x) 
 
y-equation: ∑ ∑ ⋅ρ==

CS
yy AVvFF  

   Fy = ρV1y(– A1V1) + ρV2y(– A2V2) 
        = ρQ(V2y – V1y) 
      
     for above geometry only 
where:  V1x = V1    V2x = -V2cosθ   V2y = -V2sinθ  V1y = 0 
note:  Fx and Fy are force on fluid 
  - Fx and -Fy are force on vane due to fluid 
 
If the vane is moving with velocity Vv, then it is convenient to 
choose CV moving with the vane 
 

∑ ⋅ρ=
CS

x AVuF

CV and CS are 
for jet so that Fx 
and Fy are vane 
reactions forces 
on fluid 

for A1 = A2 
      V1 = V2 
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i.e.,  VR = V -  Vv  and V used for B also moving with vane 
 
x-equation: ∫ ⋅ρ=

CS
Rx dAVuF  

 
  Fx = ρV1x[-(V – Vv)1A1] + ρV2x[-(V – Vv)2A2] 
 
 
Continuity: 0 = ∫ ⋅ρ dAVR  

 i.e., ρ(V-Vv)1A1 = ρ(V-Vv)2A2 = ρ(V-Vv)A 
         Qrel 

Fx = ρ(V-Vv)A[V2x – V1x] 
Qrel  

 
on fluid  V2x = (V – Vv)2x 
   V1x = (V – Vv)1x  
 
Power = -FxVv   i.e., = 0 for Vv = 0 
 
Fy = ρQrel(V2y – V1y) 
 
 
2.  Flow through a nozzle 
 
Consider a nozzle at the end of a pipe (or hose).  What force is 
required to hold the nozzle in place? 
 
 
 
 

 

CV = nozzle 
         and fluid 
∴ (Rx, Ry) = 
force required 
to hold nozzle 
in place 
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Assume either the pipe velocity or pressure is known.  Then, the 
unknown (velocity or pressure) and the exit velocity V2 can be 
obtained from combined use of the continuity and Bernoulli 
equations. 
 

Bernoulli: 2
222

2
111 V

2
1zpV

2
1zp ρ+γ+=ρ+γ+       z1=z2 

   
2
2

2
11 V

2
1V

2
1p ρ=ρ+  

 
Continuity: A1V1 = A2V2 = Q 

   1

2

1
2

1
2 V

d
DV

A
AV ⎟

⎠
⎞

⎜
⎝
⎛==  

   0
d
D1V

2
1p

4
2

11 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−ρ+  

Say p1 known:  
( )

2/1

4
1

1

d
D1

p2V
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞⎜

⎝
⎛ −ρ

−
=  

To obtain the reaction force Rx apply momentum equation in x-
direction 
 

 ∫ ⋅ρ+∫ ρ=∑
CSCV

x dAVuVdu
dt
dF  

  =∑ ⋅ρ
CS

AVu   

 
  Rx + p1A1 – p2A2   = ρV1(-V1A1) + ρV2(V2A2) 
    = ρQ(V2 - V1) 

steady flow and uniform  
flow over CS
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     Rx = ρQ(V2 - V1) - p1A1 
 
To obtain the reaction force Ry apply momentum equation in y-
direction 
 
 ∑ ∑ =⋅ρ=

CS
y 0AVvF  since no flow in y-direction 

 Ry – Wf − WN = 0 i.e., Ry = Wf + WN 
 
Numerical Example:  Oil with S = .85 flows in pipe under 
pressure of 100 psi.  Pipe diameter is 3” and nozzle tip diameter 
is 1” 
   

V1 = 14.59 ft/s 
  V2 = 131.3 ft/s 
 
  Rx = 141.48 – 706.86 = −569 lbf 
  Rz = 10 lbf 
 
This is force on nozzle  
 
3.  Forces on Bends 
 
Consider the flow through a bend in a pipe.  The flow is 
considered steady and uniform across the inlet and outlet 
sections.  Of primary concern is the force required to hold the 
bend in place, i.e., the reaction forces Rx and Ry which can be 
determined by application of the momentum equation. 

65.1
g

S
=

γ
=ρ  

D/d = 3 

Q = 2

2

V
12
1

4
⎟
⎠
⎞

⎜
⎝
⎛π  

    = .716 ft3/s  
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Continuity: ∑ ρ+ρ−=⋅ρ= 2211 AVAVAV0  
   i.e., Q = constant = 2211 AVAV =  
 
x-momentum: ∑ ∑ ⋅ρ= AVuFx   
 ( ) ( )22x211x1x2211 AVVAVVRcosApAp ρ+−ρ=+θ−  
           = ( )x1x2 VVQ −ρ  
 
y-momentum:  ∑ ∑ ⋅ρ= AVvFy  

( ) ( )22y211y1bfy22 AVVAVVwwRsinAp ρ+−ρ=−−+θ  
        = ( )y1y2 VVQ −ρ  
 
 
4. Problems involving Nonuniform Velocity Distribution 

See text pp. 215− 216 

Rx, Ry = reaction force on 
     bend i.e., force  
     required to hold  
     bend in place 
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5. Force on a rectangular sluice gate 
The force on the fluid due to the gate is calculated from the x-
momentum equation: 

∑ ∑ ⋅ρ= AVuFx  
 

( ) ( )2221112viscGW1 AVVAVVFFFF ρ+−ρ=−−+  
 

( ) visc1212GW FVVQFFF +−ρ+−=  

 = ( )121
1

2
2 VVQby

2
yby

2
y

−ρ+⋅γ−⋅γ  

( ) ( )12
2
1

2
2GW VVQyyb

2
1F −ρ+−γ=  

    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ρ

12

2

y
1

y
1

b
Q  

 
Moment of Momentum Equation 

See text pp. 221 − 229 
 

usually can be neglected 

by
QV

by
QV

2
2

1
1

=

=
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Energy Equations 
 
Derivation of the Energy Equation 
 
The First Law of Thermodynamics 
The difference between the heat added to a system and the work 
done by a system depends only on the initial and final states of 
the system; that is, depends only on the change in energy E: 
principle of conservation of energy 
 
  ∆E = Q – W 
 
∆E = change in energy 
Q = heat added to the system 
W = work done by the system 
 
E = Eu + Ek + Ep = total energy of the system 
    potential energy 
   kinetic energy 
 
 
 
The differential form of the first law of thermodynamics 
expresses the rate of change of E with respect to time 
 

 WQ
dt
dE

−=  

rate of work being done by system 
 

rate of heat transfer to system 

Internal energy due to molecular motion  
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Energy Equation for Fluid Flow 
The energy equation for fluid flow is derived from Reynolds 
transport theorem with 
 
Bsystem = E = total energy of the system (extensive property) 
 
β = E/mass = e = energy per unit mass (intensive property) 
   = û  + ek + ep 
 

∫ ⋅ρ+∫ ρ= CSCV dAVeVed
dt
d

dt
dE  

ˆ ˆ( ) ( )k p k pCV CS

dQ W u e e dV u e e V dA
dt

ρ ρ− = + + + + + ⋅∫ ∫  
 
This can be put in a more useable form by noting the following: 
        

2
V

M
2/MV

mass
VvelocitywithmassofKETotale

22

k =
∆

∆
==  

gz
V
zV

M
E

e p
p =

∆ρ
∆γ

=
∆

=   (for Ep due to gravity only) 

 
 

2 2

ˆ ˆ
2 2CV Cs

d V VQ W gz u dV gz u V dA
dt

ρ ρ
⎛ ⎞ ⎛ ⎞

− = + + + + + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫  

  
 rate of work   rate of change  flux of energy 
 done by system  of energy in CV  out of CV 
         (ie, across CS) 
rate of heat 
transfer to sysem 

VV2 =  
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System at time t + ∆t 

System at time t 

CS 

Rate of Work Components:  fs WWW +=  
For convenience of analysis, work is divided into shaft work Ws 
and flow work Wf 
 
Wf = net work done on the surroundings as a result of  

 normal and tangential stresses acting at the control  
 surfaces 

     = Wf pressure + Wf shear 
 
 
Ws = any other work transferred to the surroundings  

 usually in the form of a shaft which either takes  
 energy out of the system (turbine) or puts energy into  
 the system (pump) 

 
 
Flow work due to pressure forces  Wf p  (for system) 
          

 

 

 

        

       

  
Work = force × distance 

     at 2 W2 = p2A2 × V2∆t 
rate of work⇒ 2222222 AVpVApW ⋅==   
 

at 1 W1 = −p1A1 × V1∆t  
 1111 AVpW ⋅=   

Note: here V  uniform over A  

(on surroundings) 

neg. sign since pressure 
force on surrounding 
fluid acts in a direction 
opposite to the motion 
of the system boundary 

CV 
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In general, 
   
  AVpWfp ⋅=  
 
for more than one control surface and V not necessarily uniform 
over A: 
 

  ∫ ⋅⎟
⎠

⎞
⎜
⎝

⎛
ρ

ρ=∫ ⋅= CSCSfp dAVpdAVpW  

  fshearfpf WWW +=  
 
Basic form of energy equation 

2 2

ˆ ˆ
2 2

s fshear CS

CV CS

pQ W W V dA

d V Vgz u dV gz u V dA
dt

ρ
ρ

ρ ρ

⎛ ⎞
− − − ⋅⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞

= + + + + + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫

∫ ∫
 

2

2

ˆ
2

ˆ
2

s fshear CV

CS

d VQ W W gz u dV
dt

V pgz u V dA

ρ

ρ
ρ

⎛ ⎞
− − = + +⎜ ⎟

⎝ ⎠
⎛ ⎞

+ + + + ⋅⎜ ⎟
⎝ ⎠

∫

∫
           h=enthalpy 
 
 
 
 
 

Usually this term can be 
eliminated by proper choice of 
CV, i.e. CS normal to flow lines.  
Also, at fixed boundaries the 
velocity is zero (no slip 
condition) and no shear stress 
flow work is done.  Not included 
or discussed in text! 
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Simplified Forms of the Energy Equation 
 
Energy Equation for Steady One-Dimensional Pipe Flow 
 
Consider flow through the pipe system as shown 
 
 
 
 
 
 
 
 
 
 
Energy Equation (steady flow) 

2

ˆ
2s CS

V pQ W gz u V dAρ
ρ

⎛ ⎞
− = + + + ⋅⎜ ⎟

⎝ ⎠
∫  

1 1

2 2

3
1 1 1

1 1 1 1 1 1

3
2 2 2

2 2 2 2 2 2

ˆ
2

ˆ
2

s A A

A A

p VQ W gz u V A dA

p Vgz u V A dA

ρρ
ρ

ρρ
ρ

⎛ ⎞
− + + + +⎜ ⎟

⎝ ⎠
⎛ ⎞

= + + +⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫
 

 
*Although the velocity varies across the flow sections the 
streamlines are assumed to be straight and parallel; 
consequently, there is no acceleration normal to the streamlines 
and the pressure is hydrostatically distributed, i.e., p/ρ +gz = 
constant. 
 



57:020 Mechanics of Fluids and Transport Processes                                                     Chapter 5 
Professor Fred Stern   Fall 2006 22

*Furthermore, the internal energy u can be considered as 
constant across the flow sections, i.e. T = constant.  These 
quantities can then be taken outside the integral sign to yield 

1 1

2 2

3
1 1

1 1 1 1 1

3
2 2

2 2 2 2 2

ˆ
2

ˆ
2

s A A

A A

p VQ W gz u V dA dA

p Vgz u V dA dA

ρ ρ
ρ

ρ ρ
ρ

⎛ ⎞
− + + + +⎜ ⎟

⎝ ⎠
⎛ ⎞

= + + +⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫
 

 
Recall that AVdAVQ =∫ ⋅=  
So that  mAVdAV =ρ=∫ ⋅ρ   mass flow rate 
 

Define:  m
2

V
2

AVdA
2

V 23

A

3
α=

ρ
α=∫ρ  

   K.E. flux              K.E. flux for V= V =constant across pipe 

i.e.,       ∫ ⎟
⎠
⎞

⎜
⎝
⎛=α

A

3

dA
V
V

A
1  = kinetic energy correction factor 

2 2
1 21 2

1 1 1 2 2 2ˆ ˆ
2 2

p pV VQ W gz u m gz u mα α
ρ ρ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− + + + + = + + +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

( )
2 2
1 21 2

1 1 1 2 2 2
1 ˆ ˆ

2 2
p pV VQ W gz u gz u

m
α α

ρ ρ
− + + + + = + + +  

 
Nnote that:  α = 1 if V is constant across the flow section 

α > 1 if V is nonuniform 
 
 
 

 
 laminar flow α = 2        turbulent flow α = 1.05  ∼ 1 may be used 
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Shaft Work 
Shaft work is usually the result of a turbine or a pump in the 
flow system.  When a fluid passes through a turbine, the fluid is 
doing shaft work on the surroundings; on the other hand, a pump 
does work on the fluid 
 pts WWW −=   where tW  and pW  are 

     magnitudes of power ⎟
⎠
⎞

⎜
⎝
⎛

time
work  

Using this result in the energy equation and deviding by g 
results in  
 

   
2 2

1 1 2 2 2 1
1 1 2 2

ˆ ˆ
2 2

p tW Wp V p V u u Qz z
mg mg g mg

α α
γ γ

−
+ + + = + + + + −  

 
   mechanical part       thermal part 
 
Note: each term has dimensions of length 
Define the following: 
 

Q
W

Qg
W

gm
W

h ppp
p γ

=
ρ

==  

 

gm
Wh t

t =  

 
2 1ˆ ˆ

L
u u Qh head loss

g mg
−

= − =  



57:020 Mechanics of Fluids and Transport Processes                                                     Chapter 5 
Professor Fred Stern   Fall 2006 24

Head Loss 
In a general fluid system a certain amount of mechanical energy 
is converted to thermal energy due to viscous action.  This effect 
results in an increase in the fluid internal energy.  Also, some 
heat will be generated through energy dissipation and be lost 
(i.e. -Q).  Therefore the term 
      from 2nd law 
 

 
2 1ˆ ˆ

0L
u u Qh

g gm
−

= − >   

 
Note that adding Q to system will not make hL = 0 since this 
also increases ∆u.  It can be shown from 2nd law of 
thermodynamics that hL > 0. 
 
Drop ⎯ over V and understand that V in energy equation refers 
to average velocity. 
 
Using the above definitions in the energy equation results in 
(steady 1-D incompressible flow) 
 

Lt2

2
2

2
2

p1

2
1

1
1 hhz

g2
Vphz

g2
Vp

+++α+
γ

=++α+
γ

 

 
form of energy equation used for this course! 
 
 
 
 

 

represents a loss in 
mechanical energy due 
to viscous stresses 
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Comparison of Energy Equation and Bernoulli Equation 
 
Apply energy equation to a stream tube without any shaft work 
 
 
 
 
 
 
 
 

Energy eq : L2

2
22

1

2
11 hz

g2
Vpz

g2
Vp

+++
γ

=++
γ

 

 
•If hL = 0 (i.e., µ = 0) we get Bernoulli equation and 
conservation of mechanical energy along a streamline 
 
•Therefore, energy equation for steady 1-D pipe flow can be 
interpreted as a modified Bernoulli equation to include viscous 
effects (hL) and shaft work (hp or ht) 
 
Summary of the Energy Equation 
 
The energy equation is derived from RTT with  
 
B = E = total energy of the system 
 
β = e = E/M  = energy per unit mass 
 

Infinitesimal stream tube ⇒ α1=α2=1 
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heat 
add

Neglected in text presentation 

  = û  + 2V
2
1 +gz 

 
 internal   KE      PE 
 

WQdAVeVed
dt
d

dt
dE

CSCV
−=∫ ⋅ρ+∫ρ=    

       
 
 

vps WWWW ++=  
 
 
 
 
 
 

( )∫ ⋅ρρ∫ =⋅=
CSCV

p dAVpdAVpW    

 
pts WWW −=  

( )∫ ⋅+ρ+∫ρ=+−
CSCV

pt dAVepeVed
dt
dWWQ  

21ˆ
2

e u V gz= + +  
 
For steady 1-D pipe flow (one inlet and one outlet): 
1) Streamlines are straight and parallel  

 ⇒ p/ρ +gz = constant across CS 

work 
done 

from 1st Law of 
Thermodynamics 

shaft work 
done on or 
by system 
(pump or 
turbine) 

pressure 
work done 

on CS 

Viscous stress 
work on CS 
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mechanical energy 
Thermal 
energy 

Note: each term 
has  

  units of length 
 

V is average velocity 
(vector dropped) and  
 corrected by α 

2) T = constant ⇒ u = constant across CS 
 

3) define ∫ ⎟
⎠
⎞

⎜
⎝
⎛=α

CS

3

dA
V
V

A
1  = KE correction factor 

  

 ⇒ ∫ α=
ρ

α=
ρ m

2
VA

2
VdAV

2

23
3  

   
 

Lt2

2
2

2
2

p1

2
1

1
1 hhz

g2
Vphz

g2
Vp

+++α+
γ

=++α+
γ

 

 
gmWh pp =  

 
gmWh tt =  

 
2 1ˆ ˆ

L
u u Qh

g mg
−

= − =  head loss 

   > 0  represents loss in mechanical energy due to viscosity
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abrupt 
change due 
to hp or ht 

g2
V

D
Lf

2
 

Concept of Hydraulic and Energy Grade Lines 
 

Lt2

2
2

2
2

p1

2
1

1
1 hhz

g2
Vphz

g2
Vp

+++α+
γ

=++α+
γ

 

Define  HGL = zp
+

γ
 

  EGL = 
g2

Vzp 2
α++

γ
 

 
HGL corresponds to pressure tap measurement + z 
EGL corresponds to stagnation tube measurement + z 

 
 
 
 
 
 
 
 
 

pressure tap:  hp2 =
γ

 

stagnation tube:  h
g2

Vp 2
22 =α+

γ
 

 
EGL1 + hp = EGL2 + ht + hL 
EGL2 = EGL1 + hp − ht − hL 
 
 

point-by-point 
application is 
graphically 
displayed 

h = height of fluid in 
      tap/tube 

EGL = HGL if V = 0 

hL = 
g2

2V
D
Lf  

i.e., linear variation in L for D, 
V, and f constant 

EGL1 = EGL2 + hL 
for hp = ht = 0 

f = friction factor  
f = f(Re) 
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Helpful hints for drawing HGL and EGL 
 
1. EGL = HGL + αV2/2g = HGL for V = 0 
 

2.&3. 
g2

V
D
Lfh

2

L =  in pipe means EGL and HGL will slope  

  downward, except for abrupt changes due to ht or hp 
 

  

Lh
g2

2
2V

2z2p

g2

2
1V

1z1p
+++

γ
=++

γ
 

HGL2 = EGL1 - hL 

g2

2
V

Lh = for abrupt expansion 
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⇒ 

4. p = 0 ⇒ HGL = z 
 

5. for 
g2

V
D
Lfh

2

L =  = constant × L 

 
EGL/HGL slope downward 

 
6. for change in D ⇒ change in V 

 
 i.e. V1A1 = V2A2 

  
4
DV

4
DV

2
2

2

2
1

1
π

=
π  

  2
21

2
11 DVDV =  

 
 

i.e., linearly increased for 

increasing L with slope 
g2

V
D
f 2

 

change in distance between 
HGL & EGL and slope  
change due to change in hL  
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7.  If HGL < z then p/γ < 0  i.e., cavitation possible 
 

 
 
 

condition for cavitation: 
 

  2va m
N2000pp ==  

 

gage pressure 2atmatmAg,va m
N000,100pppp −=−≈−=  

 

   m10
p g,va −≈
γ

 

 
      9810 N/m3 
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Application of the Energy, Momentum, and 
Continuity Equations in Combination 
 
In general, when solving fluid mechanics problems, one should 
use all available equations in order to derive as much 
information as possible about the flow.  For example, consistent 
with the approximation of the energy equation we can also apply 
the momentum and continuity equations 
 
Energy:  

Lt2

2
2

2
2

p1

2
1

1
1 hhz

g2
Vphz

g2
Vp

+++α+
γ

=++α+
γ

 

 
Momentum: 
 ( )∑ −ρ=ρ−ρ= 121

2
12

2
2s VVQAVAVF  

 
Continuity: 
 A1V1 = A2V2 = Q = constant 

one inlet and 
one outlet 
ρ = constant 
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Abrupt Expansion 
Consider the flow from a small pipe to a larger pipe.  Would like 
to know hL = hL(V1,V2).  Analytic solution to exact problem is 

extremely difficult due 
to the occurrence of 
flow separations and 
turbulence.  However, if 
the assumption is made 
that the pressure in the 
separation region 
remains approximately 
constant and at the 
value at the point of 

separation, i.e, p1, an approximate solution for hL is possible: 
 
Apply Energy Eq from 1-2 (α1 = α2 = 1) 

L

2
2

2
2

2
1

1
1 h

g2
Vzp

g2
Vzp

+++
γ

=++
γ

 

 
Momentum eq. For CV shown (shear stress neglected) 
 
∑ ∑ ⋅ρ=α−−= AVusinWApApF 2221s  

      = )AV(V)AV(V 222111 ρ+−ρ  
      = 1

2
12

2
2 AVAV ρ−ρ  

 
      W  sin α 
next divide momentum equation by γA2 

L
zLA2

∆
γ  
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÷ γA2  ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=−−

γ
−

γ
1

A
A

A
A

g
V

A
A

g
V

g
Vzzpp

2

1

2

1
2

1

2

1
2

1
2
2

21
21  

 
from energy equation   
    ⇓ 

      
2

1
2

1
2
2

L

2
1

2
2

A
A

g
V

g
Vh

g2
V

g2
V

−=+−  

   

    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

2

1
2

1
2
2

L A
A21

g2
V

g2
Vh  

 

    ⎥
⎦

⎤
⎢
⎣

⎡
−+=

2

12
1

2
1

2
2L A

AV2VV
g2

1h  

 
          −2V1V2 
   

  [ ]212L VV
g2

1h −=  

 
If 2 1V V , 

2
L 1

1h = V
2g  

continutity eq. 
V1A1 = V2A2 

    
1

2

2

1

V
V

A
A

=  
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Forces on Transitions 
 
Example 7-6 

Q = .707 m3/s 

head loss = 
g2

V1.
2
2  

(empirical equation) 
 
 
Fluid = water 
p1 = 250 kPa 
D1 = 30 cm 
D2 = 20 cm 
Fx = ? 
 
 

 
First apply momentum theorem 
 
∑ ∑ ⋅ρ= AVuFx  
 
Fx + p1A1 − p2A2 = ρV1(−V1A1) + ρV2(V2A2)  
 
Fx = ρQ(V2 − V1) − p1A1 + p2A2 
  

force required to hold transition in place 
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The only unknown in this equation is p2, which can be obtained 
from the energy equation. 
 

 L

2
22

2
11 h

g2
Vp

g2
Vp

++
γ

=+
γ

  note: z1 = z2 and α = 1 

 

 ⎥
⎦

⎤
⎢
⎣

⎡
+−γ−= L

2
1

2
2

12 h
g2

V
g2

Vpp  drop in pressure 

 

⇒ ( ) 11L

2
1

2
2

1212x Aph
g2

V
g2

VpAVVQF −⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−γ−+−ρ=  

 
         p2   
 
In this equation,     
 
 V1 = Q/A1 = 10 m/s       
 V2 = Q/A2 = 22.5 m/s 

 m58.2
g2

V1.h
2
2

L ==  

 
 Fx = −8.15 kN  is negative x direction to hold  

transition in place 
 
 

(note: if p2 = 0 same as nozzle) 

continuity A1V1 = A2V2 

   1
2

1
2 V

A
AV =  

   i.e. V2 > V1 


