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Chapter 5 Mass, Momentum, and Energy Equations

Flow Rate and Conservation of Mass

1. cross-sectional area oriented normal to velocity vector
(simple case where V L A)

7 A
_——-@-U’l: %Xﬁ:ﬁ —~—PX
s

U = constant: Q = volume flux = UA [m/s x m* = m*/s]
U = constant: Q = [UdA
A

Similarly the mass flux = m = [pUdA
A

2. general case

Q= |V-ndA
CS
wlidg = [|V|cosBdA
CS
m= [p(V-n)dA
CS

<.s.
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Q

average velocity: V = N

Example:

At low velocities the flow through a long circular tube, i.e. pipe,
has a parabolic velocity distribution (actually paraboloid of
revolution).

I.e., centerline velocity
Olm* | L/;) _%"\'{.:'u\’t &c
Py

- T
a) find Q and V " o %ﬁ
Q= ]V -ndA = [udA »

A A

2ntR
JudA = [ [u(r)rdodr
A 00
R
= 2nfu(r)rdr
0
dA = 2nrdr

2n
u=u(r)andnot® .. [d0=2x
0
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R ) 1 )
Q - anumax 1—[Ej rdr — EumaXTCR

Continuity Equation

RTT can be used to obtain an integral relationship expressing
conservation of mass by defining the extensive property B = M
such that g = 1.

B = M = mass
B=dB/dM =1

General Form of Continuity Equation

M_0=C 1 pav+ [pv-da
dt dt cv cs
or
d

[pV-dA = —— [pdV

cs tcv

H—) H—/
net rate of outflow rate of decrease of
of mass across CS mass within CV

Simplifications:
1. Steady flow: _d [pdV =0
dt CcV
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2. V = constant over discrete dA (flow sections):

[pV-dA=3YpV-A
CS CS

3. Incompressible fluid (p = constant)

d
V-dA=-— [ dv conservation of volume
CS dt CcVv

4, Steady One-Dimensional Flow in a Conduit:
>pV-A=0
CS

—p1V1iAL + poVo A, =0
forp=constant Q;=0Q;
Some useful definitions:

Mass flux m=[pV-dA
A
Volume flux Q=[V-dA
A
Average Velocity V=Q/A
: - 1
Average Density p= A [pdA

Note: M= pQ unless p = constant
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Example

iD=y

Towhe

@~ N E_"@)
D'—"-"Q_ﬂﬁ R \D =\
&, R
0
d
JpV-dA =0=——fpdV
CS CVv

1L.e., -p1ViA1 - p2Vo A, + p3V3As +

*Steady flow
*Vl,2,3 = 50 fpS

*@ ~ V varies linearly

from zero at wall to
Vmax at pipe center
*find m4, Q4, VmaX

*water, py = 1.94 slug/ft®

m,

p [V,dA,=0

Ay

p = const. = 1.94 lb-s* /ft* = 1.94 slug/ft®

m4 = p'[ V4dA4 = pV(Al + A2 — A3) V1:V2:V3:V:50f/3

= 19 50 T2
144" 4

= 1.45 slugs/s

T;>

+22 152

vde
G
Ad

Aﬂi\ w VAVAD.
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Qs=rm,/p=.75 ft’s
= JV,dA,
A,
velocity profile
27 r
Qs = [ [ V| 1—— [rdodr
00 rO -
= ~— ~ dA4
V4 E= V4(6)
I r
=21 [V x| 1—— |rdr
0 Fo
1 >
_ Q 37“0 Vmax
V4 = — = 5
o r2 A TEI'O
:vamax(j) r—r— dr 1
0 - gvmax
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Momentum Equation

RTT with B = MV and p = V
S[Fs +Fal= 3 | pVaV 4+ [VpVy -dA
dtcv S

V = velocity referenced to an inertial frame (non-accelerating)

Vr = velocity referenced to control volume

Fs = surface forces + reaction forces (due to pressure and
viscous normal and shear stresses)

Fg = body force (due to gravity)

Applications of the Momentum Equation

Initial Setup and Signs

Jet deflected by a plate or a vane

Flow through a nozzle

Forces on bends

Problems involving non-uniform velocity distribution
Motion of a rocket

Force on rectangular sluice gate

Water hammer

NoOkowhE

General form for
dB d moving but
Recall RTT: P — — [BpdV+ [BpVR -dA | non-accelerating
dt dtcv CS reference frame

Derivation of the Basic Equation

Vr=Vvelocity relative to CS=V - Vs=absolute — velocity CS

'\ Subscript not shown in text but implied!
I.e., referenced to CV
Let, B = MV = linear momentum

V must be referenced to
B=V inertial reference frame
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d(MV)
\I\I at ~_ ond CS =~ Must be relative to a non-accelerating
ewton's 2™ law S
_inertial reference frame

where  XF = vector sum of all forces acting on the

control volume including both surface and

body forces

=2XFs + XFp
>Fs = sum of all external surface forces acting at
the CS, i.e., pressure forces, forces
transmitted through solids, shear forces, etc.

--——.. ;
e N >Fg = sum of all external
J‘__"P a ; V'L

ev body forces, i.e.,
= gravity force

_sE=9 [Vpdvi+ [VpVg -dA
J C“:CV

|

it

2Fx = p1A1 — p2A2 + Ry
R, =-W+Ry

ml;u

R = resultant force on fluid
in CV due to py and 1,

free body diagram 1.e., reaction force on fluid

Important Features (to be remembered)

1) Vector equation to get component in any direction must use
dot product

Carefully define coordinate

X equation : o
d system with forces positive in
>F, =— [pud¥+ [puVpg -dA positive direction of
tev cs coordinate axes
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y equation

ZFy=E [pvaV + [pvVpg -dA
dt cv cs

Z equation

zzezzfi [pwdV + [pwVg -dA
dt cv cs

2) Carefully define control volume and be sure to include all
external body and surface faces acting on it.
~ For example,

A (Rx,Ry) = reaction
A __,b‘ e, ey, A P B force on fluid
| e (Rx,Ry) = reaction
by —)  Fella—pty, force on nozzle
{ i.?—:;]i.h i

3) Velocity V must be referenced to a non-accelerating inertial
reference frame. Sometimes it is advantageous to use a

moving (at constant velocity) reference frame. Note Vg =V
— V, is always relative to CS. T

I.e., in these cases V used
for B also referenced to CV
(i.e., V=VR)
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4) Steady vs. Unsteady Flow

Steady flow = d [pVdV¥ =0
dt cv

5) Uniform vs. Nonuniform Flow

[VpVyg -dA = change in flow of momentum across CS
CS

=2VpVr-A uniform flow across A
6) Fores = —[pndA [VTdV = [fnds
Vv S

f = constant, Vf =0
=0 for p = constant and for a closed surface

I.e., always use gage pressure
7) Pressure condition at a jet exit

at an exit into the atmosphere jet
pressure must be p,

Pa
- =
————

£

Application of the Momentum Equation
1. Jet deflected by a plate or vane

Consider a jet of water turned through a horizontal angle
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BT

sz e CVand CSare

N y for jet so that F
i "7‘ and Fy are vane

reactions forces
on fluid

x-equation: YF, =F, =%jpud¥—|— [puV-dA
CS
F,=>puV-A steady flow
CS

= pVy, (=V1A) +pV,, (VLA,)

continuity equation: pALV1 = pAV; =pQ for A; = A,
Vl - V2
I:x - pQ(VZX - le)

y-equation: > F =F =>pvV-A
CS

Fy = pViy(= AV1) + pVoy(— AV))
- pQ(VZy - Vly)

for above geometry only
where: "V, =Vi1 Vi =-V,0080 Vi =-V5sin0 Vi =0
note: F« and Fy are force on fluid
- Fx and -F, are force on vane due to fluid

If the vane is moving with velocity V,, then it is convenient to
choose CV moving with the vane
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l.e.,, VR=V -V, and V used for B also moving with vane

x-equation: F, = [puVg -dA
CS

I:x - lex['(V - Vv)lAl] + pVZx['(V - VV)ZAZ]

Continuity: 0= [pVg -dA

i.e., p(V-VV)lAl = p(V-VV)2A2 = p(V-VV)A

Qrel
Fx = p(V-VV)A[Vax — Vix]
T Qrel
on fluid Vo = (V = V)
le - (V - Vv)lx
Power = -F,V, l.e., =0forV,=0

I:y - pQreI(VZy_ Vly)

2. Flow through a nozzle

Consider a nozzle at the end of a pipe (or hose). What force is
required to hold the nozzle in place?

| CV = nozzle
o r I \ and fluid

DYy —» A J‘_’ A S (R Ry) =
N " B force required
@& D - to hold nozzle

in place
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Assume either the pipe velocity or pressure is known. Then, the
unknown (velocity or pressure) and the exit velocity V, can be
obtained from combined use of the continuity and Bernoulli

equations.

Bernoulli:

Continuity:

Say p; known;

1 1
Py +724 +§le2 =p, +72, +5sz2 2,=7,
1 1
P1 +§PV12 = EPVZZ
AV =AV;,= Q
A

2
Vs :—1\/1 :(Bj Vi

1, DY)*
“ovi1-| = | |=0

B 11/2

V, -2p,

(-0l

To obtain the reaction force R, apply momentum equation in X-

direction

>F o =— jUpdV+ jpuV dA
~dtey
=Y puV-A steady flow and uniform
CS

flow over CS

Ry + P1A1 = P2A2 = pVi(-V1A1) + pV2a(V-A)

=pQ(V2- V)
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Rx = pQ(V2-Vi)-piAs

To obtain the reaction force R, apply momentum equation in y-
direction

>F, =>pvV-A=0  since no flow in y-direction
CS
Ry—W;-—Wy=0 ie, Ry=W;+ Wy

Numerical Example: Oil with S = .85 flows in pipe under
pressure of 100 psi. Pipe diameter is 3” and nozzle tip diameter

is1”
p= i =1.65
g
V, = 14.59 ft/s b
V, = 131.3 ft/s bid=3
R, = 141.48 — 706.86 = —569 Ibf 4\12) 2
R, =10 Ibf = 716 ft3/s

This is force on nozzle
3. Forces on Bends

Consider the flow through a bend in a pipe. The flow is
considered steady and uniform across the inlet and outlet
sections. Of primary concern is the force required to hold the
bend in place, i.e., the reaction forces Ry and R, which can be
determined by application of the momentum equation.
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%‘, "ﬁ/r
L\
v, - =
& 55 — X W= Aat =@
/?IA\ —p R en® + Q= QQ-KVIFVW
Y
e N\ VL\ A R
"%;)\ 1)7/ p - A g"\* Q\a- NB-W&:(Q—(\ILE‘ \I\\D\
o Rx, Ry = reaction force on
Al . bend i.e., force
/ L‘v‘%" required to hold
&&..LM% N MZ@ = bend in place

Continuity: 0= pV-A=—pV,A; +pV,A,
l.e., Q = constant = V;A; =V, A,

X-momentum: > F => puV-A
1A —P,A, €050+ R, =pVy, (- V1A )+pVa (V,A,)
= pQ(VZX _le)

y-momentum: > F, =>pvV-A
P,A,SINO+R, —w¢ —w, = ley(_ VIA, )+ pVZy(VZAZ)
= pQ(sz _Vly)

4. Problems involving Nonuniform Velocity Distribution
See text pp. 215—- 216
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5. Force on a rectangular sluice gate

The force on the fluid due to the gate is calculated from the x-
momentum equation:

e

Sl %S;j:)\ “ o (5‘&* [

&Y P Fow = L et }(,c e
Sovee @Ex.x_ ~ &V
%= WY A L% IS WA T s SO

. B & s
) Zc,.s. S T=s

e b, o @ AQ v dedan

. - N LZ ~ \7. s e = Aot ¢ 4: RN aX S

4 Vi Lo bonst @d‘ w\‘&;” A ) 1 * : Savira
PDT pdwm ey

ZFX = ZPUMA
F +Fow —Fiice = =pV) (_ V1A1)+ pV, (VzAz)

usually can be neglected
Fow = F =R +pQ(V, =V, )+ F/é

= YL;'Yzb_Y%'Wb*‘PQ(Vz -V;)
1
Few = EbY(yg - V1 )+ pQ(V, - V) V, = Q
pQZ( 1 1 j yib
b \y: w1 V, _Q
Y,

Moment of Momentum Equation
See text pp. 221 — 229
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Enerqy Equations

Derivation of the Energy Equation

The First Law of Thermodynamics

The difference between the heat added to a system and the work
done by a system depends only on the initial and final states of
the system; that is, depends only on the change in energy E:
principle of conservation of energy

AE=Q-W

AE = change in energy
Q = heat added to the system
W = work done by the system

E = E, + Ex + E, = total energy of the system

'\ ¥potential energy
kinetic energy

Internal energy due to molecular motion

The differential form of the first law of thermodynamics
expresses the rate of change of E with respect to time

de . ..
—=0-W
dt \\\

\ rate of work being done by system

rate of heat transfer to system
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Energy Equation for Fluid Flow

The energy equation for fluid flow is derived from Reynolds
transport theorem with

Bsstem = E = total energy of the system (extensive property)

B = E/mass = e = energy per unit mass (intensive property)
= U +ete

dE
dt

. . d
Q-W = m Cvp(u+ek+e)d3++.[ p(u+ek+e)V -dA

d Icv pedV + [..peV-dA

This can be put in a more useable form by noting the following:

Total KE of masswith velocityV ~ AMV?*/2  V? )
mass AM 2
Ep YAVZ

€ =
AM  pAV

=0z (for E, due to gravity only)

. o d V? n V? n
Q-W=—| p|l—+0gz+U |dV+| p|—+0gz+Uu [V-dA
A X dt Ccv 2 \ Cs 2 - T

rate of work rate of change flux of energy
done by system of energy in CV out of CV

(ie, across CS)
rate of heat

transfer to sysem
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Rate of Work Components: W =W, + W

For convenience of analysis, work is divided into shaft work W
and flow work Ws

W; = net work done on the surroundings as a result of
normal and tangential stresses acting at the control
surfaces

= Ws pressure T W shear

W, = any other work transferred to the surroundings
usually in the form of a shaft which either takes
energy out of the system (turbine) or puts energy into
the system (pump)

Flow work due to pressure forces Ws, (for system)
Asp= Ny e

a .Y
Pu. 3,

Note: here V' uniform over A

System at time t + At

System at time t
Work = force x distance
at 2 W, = p,A;, x VAt  (on surroundings)
rate of work= W, =p,A,V, =p,V,-A,

neg. sign since pressure atl Wi =-piA; x Vi1At
force on surrounding W, =p,V;-A
fluid acts in a direction

opposite to the motion

of the system boundary
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In general,

Wfp =pV

A
for more than one control surface and V not necessarily uniform
over A:

Wfp = jcs py ' % - Ics P(Ejy ' %

Wi = W, + Wgpear

Basic form of energy equation

Q _Ws _Wfshear B ICS P (%j\i ) d_A

2

d V? n \Y .
= Cvp(7+ gz+ujd\#+_[csp(7+ gz+uj\i-d_A

Q-W, -W —ij £+gz+0 dv-
S shear dt CV'O 2

Usually this term can be V 2 . P
eliminated by proper choice of +| p|l—+09z+Uu+— |V d_A
CV, i.e. CS normal to flow lines. Cs 2 Jo,

Also, at fixed boundaries the

velocity is zero (no slip
condition) and no shear stress
flow work is done. Not included
or discussed in text!

H_J
h=enthalpy
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Simplified Forms of the Enerqy Equation

Enerqy Equation for Steady One-Dimensional Pipe Flow

Consider flow through the pipe system as shown

> |

Energy Equation (steady flow)

. . . V2 P .
Q-W, :.Csp(7+ gz +;+uj\i-d_A

.. p R \VA
Q—WS+.A[%+gzl+uljp1V1A1+J'AlplTldAi
A V.
:J‘AZ(%"‘gzz"'uszzvaz"'J‘Az ,0222 dA,

*Although the velocity varies across the flow sections the
streamlines are assumed to be straight and parallel,
consequently, there is no acceleration normal to the streamlines
and the pressure is hydrostatically distributed, i.e., p/p +gz =
constant.
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*Furthermore, the internal energy u can be considered as
constant across the flow sections, i.e. T = constant. These
quantities can then be taken outside the integral sign to yield

v, 4 P gz 46 v
Q WS+[IO +gzl+u1],oJ‘AlV1dA&+,0J‘A1 ) dA
P, ; v,
—| 2 V 2
(,0 +gzz+u2ijA2 2dA2+p_[A2 5 dA,

Recall that Q=[V-dA=VA

So that p[V-dA=pVA=m mass flow rate
3 —3 —2
Define: ij—dA:och A:ocv m
A2 2 2

H_J %K_J — .
K.E. flux K.E. flux for V=V =constant across pipe

3
l.e., o= 1 j(!) dA = Kinetic energy correction factor
AAlV

—2 —2
Q-W +[%+ g21+01+alv71]m=£%+ g22+02+azv72}h

—2 —2
i_(Q—W)+&+ 0z, +U, + — P, gz, +U, +a,
m P
Nnote that: a =1 1f V iIs constant across the flow section
a > 1i1f V is nonuniform
=

Sm—

. laminar flow o = 2 turbulent flow oo = 1.05 ~ 1 may be used
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Shaft Work

Shaft work is usually the result of a turbine or a pump in the
flow system. When a fluid passes through a turbine, the fluid is
doing shaft work on the surroundings; on the other hand, a pump
does work on the fluid

W, =W, -W,  where W, and W, are

time
Using this result in the energy equation and deviding by g
results in

magnitudes of power [workj

W 72 W T2 A~ A 3

.—'”+&+zl+ozlv1 = .t+pz+22+052v2 e e W Q

mg y 2 mg vy 2 g mg
mechanical part thermal part

Note: each term has dimensions of length
Define the following:

n W, W, W,
" mg pQg 1Q
=t
mg
h =" Q _ head loss
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Head L oss

In a general fluid system a certain amount of mechanical energy
Is converted to thermal energy due to viscous action. This effect
results in an increase in the fluid internal energy. Also, some
heat will be generated through energy dissipation and be lost
(i.e. -Q). Therefore the term

/ from 2" law
represents a loss in

U, — Q :
h, = -——>0 mechanical energy due
to viscous stresses

Note that adding Q to system will not make h_ = 0 since this

also increases Au. It can be shown from 2" law of
thermodynamics that h_ > 0.

Drop — over V and understand that V in energy equation refers
to average velocity.

Using the above definitions in the energy equation results in
(steady 1-D incompressible flow)

2 2

V
&+al—+zl+hp p—2+oc2—2+22+ht+hL

2 2
& g Y g -

form of energy equation used for this course!
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Comparison of Enerqy Equation and Bernoulli Equation

Apply energy equation to a stream tube without any shaft work

=

& F |

Infinitesimal stream tube = OL1=0L=

2
Energy eq : &+—+z _&+—+z2 +h,

29 Y 29

elf h, =0 (i.e., u = 0) we get Bernoulli equation and
conservation of mechanical energy along a streamline

eTherefore, energy equation for steady 1-D pipe flow can be
interpreted as a modified Bernoulli equation to include viscous
effects (h.) and shaft work (h, or hy)

Summary of the Enerqy Equation

The energy equation is derived from RTT with
B = E = total energy of the system

B =e=E/M =energy per unit mass
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9E _ 9 | oedv+ [peV-dA=0O—W
dt dtcy cs h
heat work
add  done

Neglected in text presentation

W:WS+W|D+\N'V

shaft work [ \

done on or pressure Viscous stress
by system  work done work on CS
(pump or on CS

turbine)

W, = [pV-dA =[p(p/p)V-dA
CVv CS

W, = W, - W,

from 1% Law of
Thermodynamics

Q-W, +V.Vp :E JpedV + [p(e+p/e)V-dA
dt cv CS

e:0+%vz+gz

For steady 1-D pipe flow (one inlet and one outlet):

1) Streamlines are straight and parallel

= p/p +gz = constant across CS
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2) T =constant = u = constant across CS

3
3) define « _1 [ (Xj dA = KE correction factor
Acs\V

2

= pjv?’dA PV A:ocV?r'n
. Thermal
v mech@c\al energy : . / energy
&+oc M, qh =P2ig V—2+z +h,+h
1 1 p 2 2 t L
Y 29 Y 29
N/ Note: each term
=W, /m
p/ 9 @
_— units of length
=W, /mg . .
V is average velocity
64 O (vector dropped) and
h, =—=2———-= head loss corrected by o
g mg

> 0 represents loss in mechanical energy due to viscosity
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Concept of Hydraulic and Energy Grade Lines

2

2
&+alv—+zl+hp &+azv—2+zz+ht+hL
Y 29 Y 29
Define HGL= P4z point-by-point
Y application is
_p Ve graphically

Y 29 )

HGL corresponds to pressure tap measurement + z
EGL corresponds to stagnation tube measurement + z

EGL. and HGL/ EGL = HGL ifV= 0

EGL; = EGL, + h, R L2
forhp=h;=0 \\/ hy=f——
¥ HGL by D Zg
<\ e i.e., linear variation in L for D,
Db V, and f constant
i \\\\* f = friction factor
: g f = f(Re)
HGURE 7.4 . 2
BGL and HOL in a l
straight pipe. Datum
\
pressure tap: P2 _j,
! , h = height of fluid in
- P2 Va2 tap/tub
stagnation tube: —=+ ocz— =h ap/tube
Y g

EGL]_ + hp - EGL2 + ht + h|_
EGL2 - EGL1 + hp — ht - h|_

%(_J
abrupt \ L V2

change due
to h, or hy D 29
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Helpful hints for drawing HGL and EGL

1.  EGL =HGL + aV?2g=HGL for V=0

2
2.&3. h :f%V— in pipe means EGL and HGL will slope

29
downward, except for abrupt changes due to h; or h,

EGL

FIGURE 7.5 _
Rise in EGL and HGL Abrupt rise in
EGL equal

due to pump. toh,
HGL and EGL '
[ EGL
2 2
P1 Vi P2 V2
—+Zyt+t—=—"+Zy+—+h
k. head given
Y Zg Y 2 g ug to turbine
HGLZ = EGLl - h|_
2
V -
h L= for abrupt expansion EEE R
Zg G'radgal expansion of conduil allows TR
Drop in EGL and HGL Nl e o b o s B

due to turbine. hence the HGL approaches the EGL.
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4.p=0=HGL=z

2
5.for h, =f£\2/— = constant x L
J T~ e, linearly increased for
2
EGL/HGL slope downward increasing L with slope %\2/—9
6. for change in D = change in V
h
Le. VA =V,A .
' TEEZ ’ anz change in distance between
V,—Lt=V,—2 |} = HGL & EGL and slope
24 , 4 change due to change in h,

¥
Large §§ berause

smaller pipe here

Steeper EGL and HGL
because greater A,
per length of pipe

Head ioss
at putlet
L EGL and HGL
Y ~
\—_-‘.—.— ..............
d I
'“j'/ h——— ki o |

FIGURE 7.8

Change in EGL and HGL
due to change in

diameter of pipe.



57:020 Mechanics of Fluids and Transport Processes Chapter 5
Professor Fred Stern Fall 2006 31

7. IfHGL <zthenp/y<0 i.e., cavitation possible

HGL and EGL

P P
Positive 7 Negative ¥

Ve
2
FGURE?7.9 . . g
Subatmospheric pressure
z=0

when pipe is above HGL.

condition for cavitation:

N
p=p,, =2000—;
m
N
gage pressure Pyag =Pa ~Pam ~ ~Pam = ‘1OO’OOOF
Pvag __10m
Y

\ 9810 N/m?
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W8 4 Epergy Considerations in Steady Flow
4.15 METHOD OF SOLUTION OF FLOW PROBLEMS

For the solutions of probiems of liquid flow there are two fundamental equa-
tions, the equation of continuity {3.10} and the energy equation in one of the
forms from Eqs. (4.5) to (4.10), The following procedure may be employed:

1. Choose a datum plane through any convenient point.

2. Note at what sections the velocity is known or is to be assumed. If at any
point the section area is great compared with its value elsewhere, the velocity
head is s0 small that it may be disregarded.

3, Note at what points the pressure is known or is to be assumed. In a body of
liquid af rest with a free surface the pressure is known at every point within
the body. The pressure in a jet is the same as that of the medium surrounding
the jet.

4. Note whether or not there is any point where all three terms, pressure, ele-
vation, and velocity, are known.

5. Note whether or not there is any point where there is only one unknown
quantity.

it is generally possible Lo write an energy equation that wil} fulfill conditions
4 and 3. If there ate two unknowns in the equation, then the continuity equation
must be used aiso. The application of these principles is shown in the foilowing
itlustrative examples.

Huserative Example 4.7 A mipeline with 2 pump leads to a nozzle 28 shown in the ACCOMmMPAnY-
ing fgure Figd the flow rate when the nump develops a head of 30 fi. Assume that the head loss in
the &-in-dismeter pipe may be expressed by h, = TFE129, whils the head loss in the d-in-diameter pipe
is iy = 127}/29. Sketch the energy line and bydraulic grade line, and find the pressure head at the
suction side of the pump.

Select 1he datum as the elevation of the water susfage i the reservoir. Note from continuity that

Vo = {§7F, = 0251, and V. = (FP ¥, = 05631,

where 1, 13 the jet velocity. Writing an epergy cquation from the surface of the reservoir to the jer,

yl VI
'(z, +%+4)mkan+h,—hhﬂ33+?+i
I

2g i
'|;r2 [ V.i
P+0+0—5ud 4 80 172 = 10 4 0 2 ot
2g g i
Express ail velacities in terms of ¥,
52510 B.5831,° Ki
e g L RN VRSN 3 || R
2g i3 iq
by = 297 ps

3 I
G= Ay = g(ﬁ) 207 = 145 cfs

iy
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4.15 Method of Solution of Flaw Problems 109

K Head toss in sustion pipe:

Pl 2g g

% Head loss in discharge pipe:

¥i o 120.563%,3
by w 120s < 2RO
g g

- ¥ vi ¥}
Zenrn Zodin Zonsehxoon
g 2g g

The energy bne and hydraulic grade Hne are drawn on the figure 10 scale. Inspection of the fgurs
shows 1hat the pressure head on the suction side of the pump i8 ppi7 = 148 1. Likewise, the pressure
head a1 any poini in the Fipe may be found if the figure is to scale.

v

S
Elev 80
oo

I" diam jat\_z

Biev, 70

A
A’ “/-\{‘3

fHestrative Exsmpie 4.7 ?.
&

T 2
" 5 .

Hbayteative Example 48 Given the two-dimensional flow as shown in the accorpanying figure,
Determine the flow rate. Assume no head toss.

*

4 L M )

o= f_&ﬂ_’_ﬁx_ LRy ok e f::‘?a-;q%
_._5.;" +

2 : ) LT F9N
Vl'fzg ' L ),JEE—’?J‘-‘} ;_% = ?"j""-—""‘“% L
e ? A

V:f.'!g . \'!l.%'j .‘\%253

20 m i LS
Il B e . I
08m
8 alte
i i “

% Hustracive Exampie 4.8
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Application of the Energy, Momentum, and
Continuity Equations in Combination

In general, when solving fluid mechanics problems, one should
use all available equations in order to derive as much
information as possible about the flow. For example, consistent
with the approximation of the energy equation we can also apply
the momentum and continuity equations

Energy:
2 2
&+alv—1+zl+hp :&+oc2v—2+z2 +h,+h,
Y 29 Y 29
Momentum: \
>F =pV;A, —pVPA; =pQ(V, -V;) | oneinletand
»one outlet
Continuity: p = constant
AV = AV, =Q = constant
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Abrupt Expansion

Consider the flow from a small pipe to a larger pipe. Would like
to know h. = h_ (V1,V>). Analytic solution to exact problem is
extremely difficult due
to the occurrence of
flow separations and
turbulence. However, if
the assumption is made
that the pressure in the
separation region
remains approximately
constant and at the
value at the point of
separation, i.e, p1, an approximate solution for h._ is possible:

Apply Energy Eq from 1-2 (o; = o, = 1)
2 2

&+21+V—1=&+22+V—2+hL

Y 20 v 29
Momentum eq. For CV shown (shear stress neglected)
2R =pA; —p A, —Wsing =32 puV-A

VA FpV,(VAY)
yAZLE =pV; A, —pVPA,
S
W sin a
next divide momentum equation by YA,
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2 2 2
= A, &—p—z—(zl—zz):vz VI A :Vl Al(Al _1j
Y v g g A, g A A,

from energy equation

Vi Mn Ve VA
29 29 - g gA,
2 2
ho Ve Vify %A

20 29 A,

29 A

2
H(_J
—2V1V,
1 2
h, =—|V, -V
L 29[ 2 1]
If V, <V,
1
hL __V12

V1A1 - V2A2
AL_ Ve
AZ Vl

( continutity eq.
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Forces on Transitions
Example 7-6
30-cm diameter Q - 707 m3/S
20-cm diameter 2
V.
head loss = .1—%
29

/Fx
[ﬂ
= _____ -
| $ e
- . SN o
i . '
—b [
1Ay —H JI'—PzAz —x
1 AN
e ———— === 1
(I e sy —— / / 11
11 -
Ll

Control surface

First apply momentum theorem

ZFX ZZPUMA

(empirical equation)

Fluid = water
p: = 250 kPa
D;=30cm
D, =20 cm
F,=?

Fx + P1AL — P2A2 = pVi(-V1A)) + pVa(VLAY)

Fx = pQ(V2— V1) — piAL + p2A;

\ force required to hold transition in place
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The only unknown in this equation is p,, which can be obtained
from the energy equation.

v/ V,
P Vi _Pa, 2 +h, note:zy,=z,and a. =1

Yy 20 vy 29

P, — V—ZZ——12+h drop in pressure
Po=P1—7 29 29 L

P2 (note: if p, = 0 same as nozzle)

In this equation’ ContinUity AV =AV,
A
V= Q/A1 =10 m/s \Y% =A—1V1
- - 2
V, = Q/C? =22.5m/s e V,>V,
29
Fy =—-8.15 kN IS negative x direction to hold

transition in place



