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Chapter 4: Fluids Kinematics

4.1 Velocity and Description Methods

Primary dependent variable is fluid velocity vector
V =V (r); where r is the position vector

3 Y
If V is known then pressure P
- 1 =
and forces can be p r=Xi+y)+2k
determined using » X
techniques to be discussed V=(r,t) = ui + v]+ wk

In subsequent chapters.

Consideration of the velocity field alone is referred to as
flow field kinematics in distinction from flow field
dynamics (force considerations).

Fluid mechanics and especially flow kinematics is a
geometric subject and if one has a good understanding of
the flow geometry then one knows a great deal about the
solution to a fluid mechanics problem.

Consider a simple flow situation, such as an airfoil in a

wind tunnel: U = constant
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Velocity: Lagrangian and Eulerian Viewpoints

There are two approaches to analyzing the velocity field:
Lagrangian and Eulerian

Lagrangian: keep track of individual fluids particles (i.e.,
solve F = Ma for each particle)

Say particle p is at position ry(t;) and at position r,(t,) then,
r,—r . . -
V, = lim 220X, dys dzg
—  At>0t,—t;, dt  dt® dt

= Uy l+v,J+wpk

Of course the motion of one particle is insufficient to
describe the flow field, so the motion of all particles must
be considered simultaneously which would be a very
difficult task. Also, spatial gradients are not given directly.
Thus, the Lagrangian approach is only used in special
circumstances.

Eulerian: focus attention on a fixed point in space
X =Xi+Yj+zK

In general,

V=V(x,t)= u?+v]+wl2

~—

velocity components
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where,
u=u(xy,zt), v=v(x\y,zt), w=w(xy,zt)

This approach is by far the most useful since we are usually
interested in the flow field in some region and not the
history of individual particles.

However, must transform F = Ma 64’;‘*-\_ o
from system to CV (recall > ~ e
ReynOIdS TranSpOI’t Theorem Ex. Flow around a car

(RTT) & CV analysis from
thermodynamics)

V can be expressed in any coordinate system; e.g., polar or
spherical coordinates. Recall that such coordinates are
called orthogonal curvilinear coordinates. The coordinate
system is selected such that it is convenient for describing
the problem at hand (boundary geometry or streamlines).

V =V,8, +Vyé, X = rcos @

N y =rsin6
v . o
~ & =Cos0i+singj

€g = —sin 0i + cos 6]
Undoubtedly, the most convenient coordinate system is

streamline coordinates: e, L

V(s,t) = V. (s, t)é.(s,t =

V(5,) =V, 5,08, (5.1 %jm*,.t
$=95,

However, usually V not known a priori and even if known
streamlines maybe difficult to generate/determine.
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4.2 Flow Visualization and Plots of Fluid Flow Data
See textbook for:
Streamlines and Streamtubes
Pathlines
Streaklines
Timelines
Refractive flow visualization techniques
Surface flow visualization technigues

Profile plots
Vector plots
Contour plots

4.3 Acceleration Field and Material Derivative

The acceleration of a fluid particle is the rate of change of
its velocity.

In the Lagrangian approach the velocity of a fluid particle
Is a function of time only since we have described its
motion in terms of its position vector.
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Vy I =X, (Di+y, (1)j+z,()k
14, ar, . .
4 yp:E:up|+vpj+wpk
dv, d°T A A A
A _ p_ p_ : :
a, = & ar =a,l+ayj+a,k

X odt Y dt Ot dt

In the Eulerian approach the velocity is a function of both
space and time; consequently,

V =u(x,y,z,)i+v(x,y,z,t)j+ w(X,y,z,t)k X,z are f(t)
since we must
follow the

d\7 du~ dv~ dw-r ~ ~ ~ particle in
a= =—1+— ]+ k:axl+ayj+azk evaluating
dt dt dt dt du/dt

du ou au OX 6u ay ouéz ou ou ou ou
a, = +U—+V—+W

Tt ot ox ot 8y8t Yoo ot ox oy oz

— g
—~—~—

called substantial derivative %

Similarly for ay & a;,

_Dv_ov oV oV oV
+U—+V—+W

a
YT Dt ot ox oy oz

Dw aw aw oW oW
a, = +V—F+W—
Dt at ax oy 0z
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In vector notation this can be written concisely

%=ﬂ+yvy
Dt ot
ve2i,0 i+ oK gradient operator
ox oy oz

: \/ :
First term, aa—? called local or temporal acceleration results

from velocity changes with respect to time at a given point.
Local acceleration results when the flow is unsteady.

Second term,V - VV, called convective acceleration
because it is associated with spatial gradients of velocity in
the flow field. Convective acceleration results when the
flow is non-uniform, that is, if the velocity changes along a
streamline.

The convective acceleration terms are nonlinear which
causes mathematical difficulties in flow analysis; also, even
in steady flow the convective acceleration can be large if
spatial gradients of velocity are large.

Example: Flow through a converging nozzle can be
approximated by a one dimensional velocity distribution

u =u(x). For the nozzle shown, assume that the velocity
varies linearly from u =V, at the entrance to u = 3V, at the

by exit. Compute the acceleration

% as a function of x.
Dt
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Evaluate % at the entrance and exit if V, = 10 ft/s and

L =1 ft.

We have V = u(x)?

Assume linear

variation

between inlet

and exit
@x=0
@x=L

u(x) =

ou_

OX

2V,

u
=Uu

ou
ox Ox

ufn

|—\><

ux)=mx+b
u(0)=b=V,

m=

AU 3V, -V, 2V,

AX

L L

L

:2v§(2_x+1j
L \L

a, = 200 ft/s?

a, = 600 ft/s
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4.4 Other Kinematic Descriptions:
Types of Motion or Deformation of Fluid Elements

Motion of the fluid element:

[Motion]= [1. Translation] + [2. Rotation] +[3.Vohunetric strain]+[4.Shear strain]

1. Translation:

The rate of translation is described mathematically as the velocity vector
V=ui+vj+wk
2.Rotation:

The rate of rotation at a point is defined as the average rotation rate of two
initially perpendicular lines that intersect at that point.

PEN
PLONTN Ve = ()

W D i c i
Vel N Az = ax

:\ F %,

N B Ny Fo = a4y
Y A :

N

i 30

b A E B R

For example, think about the rotation in x-y plane.

Motion at point B: [Vertical motion]>>[Horizontal motion] because;

EB = AB - AE = Ax - Axcos @,
EB'=BH = Axsin 6,

Since 6, <<1,

EB = Ax(1 -c0s6)=0

EB' = BH = Axsin 6, = Ax,
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Motion at point D: [Horizontal motion]>>[ Vertical motion] because;

FD=AD— AF = Ay—Aycos8,
ﬁ;&ysin&z

Since 8, <<1,

FD = Ay(l —co0sf@,)=0

FD' = Aysin g, = Ayd,

Then, think about the deformation derived above in a small time Af as;

At point B, vertilcal motion dominates — Ax#, = AvAtr
At point D, horizontal motion dominates — Ay#, = —AuAt

Then, the rate of rotation is taking the average of i—]and 5—3
t

. At
;l(iﬁ_z] 1fAv Au)_1(ov ou
2\ At At) 2| Ax Ay 20 6x ay

Following the same manner in y-z plane and x-z plane, finally we obtain
rate of rotation vector as:

DGR drls (@_@]ul »_ouly
2\0y o0z) 2\o0z ox 2\ dx  dy

3. Volumetric strain

Defined as linear strain. Linear strain rate is the rate of increase in length per

unit length. f ! rr
/ D g SR SN
[ !
| I
e
e &_‘IF:_ e ?_ : . {:'h?: _._? m_-?:
S S S S R
.?:._ = 1I ..... [‘f‘hl“? d’*. 5 }1' G _T ¢
+ ] |
E U (e ot) s ~7
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Stretched length [ is
I = BC +u(x+ Ax)At = (B'C’ + uAt) = u(x + Ax)At — u(x)At

.‘.L=H(I+ﬂ.ﬂ —u(x) —:razi = lim el ]
At At a0 Ax ox

Following the same manner in y- and z- direction, we obtain the rate of

linear strain as;
_ Ou O ow

&g

=T T eyt Ty

4.5hear strain

Shear stress causes shear strain. Shear strain rate at a point is defined as half
of the rate of decrease of the angle between two initially perpendicular lines
that intersect at the point.

3

-

o
—
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First, think about x - direction only

tan 9] — A_.@__
AHB"

Let 8, <<1then
A" A _ u(y + Ay)At —u(y)At — tan6, = 6,
Al ] BI ] Ay
L0 _uG+A)—uy) _ ou

At Ay Oy

) ' , Ov

Following the same manner in y-direction (use 8, ) then obtain E = a .

1(6, 6, 1{0u ov
Finally, take an average of the two, then€x = S\ Ar + At = 5 5 + Fl

Extend it into three dimensions and finally we obtain the rate of shear strain

as;
1({ou ov l(aw au] 1({ov ow
Ey==|—+—|&,==| —+— Ey = —+—

2{ 0y oOx 2\ 0x 0Oz 2\ 0z Oy

Stretch and Strain are both caused by stress (both normal and parallel to the
surface), therefore, those two are combined together as a form called strain
rate tensor as follows;

(ou 1o ov L[a_uﬂ]\
ox 2oy ox) 2\o0z ox
Sxx EXJ" gxz
1(ov ou) ov 1(ov ow
€i = éw &y € |T|Fla2ct 5| =2 Sl 2t A
2\ox oy) oy 2\o0z oy
gu 52}’ gzz
l(@ﬁ_“] 1fow ov| ow
\2\ox 0z) 2\0 0z) Oz)
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Example problem: Deformation rate of fluid element

Consider the steady, two-dimensional velocity field given
by
V =(u,v) = (0.5+0.8x)i + (L.5-0.8y) j

Calculate the kinematic properties such as;

(a) Rate of translation

(b) Rate of rotation

(c) Rate of linear strain

(d) Rate of shear strain

Solution:

(a) Rate of translation:
u=05+0.8x, v=15-0.8y, w=0

(b) Rate of rotation:

(c) Rate of linear strain:

_au

Evx —520.85_1 ’ 5yy :@:—0.83_1’ g, =0

(d) Rate of shear strain:

gxyzl(a—u+@]:1(0+0)=0
2ley ox) 2
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Rotation and Vorticity

Q = fluid vorticity = 2 x angular velocity = 2o

=VxV l.e., curl V mng)‘é—g;’/

o
» A

_| 0 0 o] _[ow_ov i+(5_u_@)]+ v _au)
oX oy oz oy 0z 0z OX oX oy

To show that this definition is correct consider two lines in
the fluid

. o A
- tx AL
Ay 1/9"' H*%Hk! E j ef e
- 2L Avik
A . ; % :
& “&)A: S ¢/

Antr TR (yAke
Er) 4
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Angular velocity about z axis = average rate of rotation +O

1(doc dB)
W, = — =
2\ dt dt

adedt
do =tan™ axau
dx + —dxdt
OX
lim = 2t o, do_ov
dt—>0  OX dt ox
audydt
_ -1
dp =tan Py
dy+ — dydt
oy
lim = Yt o, P_U
dt—>0 oy dt oy
_ifov_ou
£ 2lox oy
. 1({ow ov
similarly, o, == —-—
2\ oy oz
1(ou ow
Oy =~ ——— =
2\ 0z OX
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Example problem: Calculation of VVorticity

Consider the following steady, three-dimensional velocity
field

V = (u,v,w) = (3.0+2.0x - y)i +(2.0x— 2.0y) j +(0.5xy ) k
Calculate the vorticity vector as a function of space (x,y,z)

Solution:

Vorticity vector in Cartesian coordinates:
so(ow_ v (a_u_@j, v _au)
oy 0z 0z OX oX oy

For u=3.0+2.0x-y, v=2.0x-2.0y, w=0.5xy

£ =(0.5x-0)i+(0-05y) j+(2.0-(-1))k
k

=(0. 5x)|—(0 5y)J+( 0)



