
57:020 Fluid Mechanics                                                                 Chapter 4 
Professor Fred Stern   Fall 2005 1

Chapter 4:  Fluids Kinematics 
 
4.1 Velocity and Description Methods 
 
Primary dependent variable is fluid velocity vector   
V = V ( r ); where r is the position vector 
 
If V is known then pressure 
and forces can be 
determined using 
techniques to be discussed 
in subsequent chapters. 
 
Consideration of the velocity field alone is referred to as 
flow field kinematics in distinction from flow field 
dynamics (force considerations). 
 
Fluid mechanics and especially flow kinematics is a 
geometric subject and if one has a good understanding of 
the flow geometry then one knows a great deal about the 
solution to a fluid mechanics problem. 
 
Consider a simple flow situation, such as an airfoil in a 
wind tunnel: 
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Velocity: Lagrangian and Eulerian Viewpoints 
 
There are two approaches to analyzing the velocity field: 
Lagrangian and Eulerian 
 
Lagrangian:  keep track of individual fluids particles (i.e., 
solve F = Ma for each particle) 
 
Say particle p is at position r1(t1) and at position r2(t2) then, 
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Of course the motion of one particle is insufficient to 
describe the flow field, so the motion of all particles must 
be considered simultaneously which would be a very 
difficult task.  Also, spatial gradients are not given directly.  
Thus, the Lagrangian approach is only used in special 
circumstances. 
 
Eulerian:  focus attention on a fixed point in space 

 k̂zĵyîxx ++=   
 
In general,  
 
 k̂wĵvîu)t,x(VV ++==  
 
     velocity components 
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where, 
 u = u(x,y,z,t),   v = v(x,y,z,t),   w = w(x,y,z,t)   
 
This approach is by far the most useful since we are usually 
interested in the flow field in some region and not the 
history of individual particles. 
 
However, must transform F = Ma 
from system to CV (recall 
Reynolds Transport Theorem 
(RTT) & CV analysis from 
thermodynamics) 
 
V can be expressed in any coordinate system; e.g., polar or 
spherical coordinates.  Recall that such coordinates are 
called orthogonal curvilinear coordinates.  The coordinate 
system is selected such that it is convenient for describing 
the problem at hand (boundary geometry or streamlines).   

 
Undoubtedly, the most convenient coordinate system is 
streamline coordinates: 

)t,s(ê)t,s(v)t,s(V ss=  
 
However, usually V not known a priori and even if known 
streamlines maybe difficult to generate/determine. 

Ex. Flow around a car 
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4.2 Flow Visualization and Plots of Fluid Flow Data 
 See textbook for: 
  Streamlines and Streamtubes 
  Pathlines 
  Streaklines 
  Timelines 
  Refractive flow visualization techniques 
  Surface flow visualization techniques 
 
  Profile plots 
  Vector plots 
  Contour plots 
 
 
 
4.3 Acceleration Field and Material Derivative 
 
The acceleration of a fluid particle is the rate of change of 
its velocity.   
 
In the Lagrangian approach the velocity of a fluid particle 
is a function of time only since we have described its 
motion in terms of its position vector. 
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In the Eulerian approach the velocity is a function of both 
space and time; consequently, 

k̂)t,z,y,x(wĵ)t,z,y,x(vî)t,z,y,x(uV ++=  
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dt
du

dt
Vda zyx ++=++==  

 

z
uw

y
uv

x
uu

t
u

t
z

z
u

t
y

y
u

t
x

x
u

t
u

dt
dua x ∂

∂
+

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

==

 

called substantial derivative 
Dt
Du  

Similarly for ay & az, 
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x,y,z are f(t) 
since we must 
follow the 
particle in 
evaluating 
du/dt 
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In vector notation this can be written concisely 
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First term, 
t
V
∂
∂ , called local or temporal acceleration results 

from velocity changes with respect to time at a given point.  
Local acceleration results when the flow is unsteady. 
 
Second term, VV ∇⋅ , called convective acceleration 
because it is associated with spatial gradients of velocity in 
the flow field.  Convective acceleration results when the 
flow is non-uniform, that is, if the velocity changes along a 
streamline. 
 
The convective acceleration terms are nonlinear which 
causes mathematical difficulties in flow analysis; also, even 
in steady flow the convective acceleration can be large if 
spatial gradients of velocity are large. 
Example:  Flow through a converging nozzle can be 
approximated by a one dimensional velocity distribution  
u = u(x).  For the nozzle shown, assume that the velocity 
varies linearly from u = Vo at the entrance to u = 3Vo at the 

exit.  Compute the acceleration 

Dt
VD   as a function of x.  

y 
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Evaluate 
Dt

VD  at the entrance and exit if Vo = 10 ft/s and  

L =1 ft. 
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@ x = 0  ax = 200 ft/s2 
 
@ x = L  ax = 600 ft/s2 
 
 

Assume linear 
variation 
between inlet 
and exit 

u(x) = mx + b 
u(0) = b = Vo 

m = 
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Example problem: Deformation rate of fluid element 
 
Consider the steady, two-dimensional velocity field given 
by 

jyixvuV )8.05.1()8.05.0(),( −++==  
Calculate the kinematic properties such as; 

(a) Rate of translation 
(b) Rate of rotation 
(c) Rate of linear strain 
(d) Rate of shear strain 

 
Solution: 
 
(a) Rate of translation:  
 0.5 0.8u x= + , 1.5 0.8v y= − , 0w =  
 
(b) Rate of rotation:  

 ( )1 1 0 0 0
2 2

v u k k
x y

ω
⎛ ⎞∂ ∂

= − = − =⎜ ⎟∂ ∂⎝ ⎠
  

 
(c) Rate of linear strain: 

 10.8xx
u s
x
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= =
∂  , 

10.8yy
v s
y
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= = −
∂ , 0zzε =  

 
(d) Rate of shear strain: 
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2 2xy

u v
y x

ε
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Rotation and Vorticity 
 
Ω = fluid vorticity = 2 × angular velocity = 2ω 
 
    = ∇ × V i.e.,  curl V v u

x x y
∂ ∂ω = −∂ ∂  
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To show that this definition is correct consider two lines in 
the fluid 
 

 



57:020 Fluid Mechanics                                                                 Chapter 4 
Professor Fred Stern   Fall 2005 14

Angular velocity about z axis = average rate of rotation +  
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similarly,    
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   i.e.,  Ω = 2ω 
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Example problem: Calculation of Vorticity 
 
Consider the following steady, three-dimensional velocity 
field 

( )( , , ) (3.0 2.0 ) (2.0 2.0 ) 0.5V u v w x y i x y j xy k= = + − + − +  
Calculate the vorticity vector as a function of space ( ), ,x y z  
 
Solution: 
 
Vorticity vector in Cartesian coordinates: 

w v u w v ui j k
y z z x x y

ζ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
For 3.0 2.0u x y= + − , 2.0 2.0v x y= − , 0.5w xy=  
 

( ) ( ) ( )( )
( ) ( ) ( )
0.5 0 0 0.5 2.0 1

0.5 0.5 3.0

x i y j k

x i y j k

ζ = − + − + − −

= − +  

 


