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Chapter 3 Bernoulli Equation 
 
Derivation of Bernoulli Equation 
 
Streamline Coordinates: 

 
(a) Flow in the x–z plane.  

(b) Flow in terms of streamline and normal coordinates. 
 
Streamlines are the lines that are tangent to the velocity vectors 
throughout the flow field. For many situations it is easiest to 
describe the flow in terms of the “streamline” coordinates (s, n) 
based on the streamlines. The particle motion is described in 
terms of its distance, ( )s s t= , along the streamline from some 
convenient origin and the local radius of curvature of the 
streamline, ( )sℜ =ℜ . 

Speed: 
dsV
dt

=  

Streamwise acceleration: s
Va V
s

∂
=

∂  

Normal acceleration: 
2

n
Va =
ℜ  
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Streamline coordinate system for two-dimensional flow. 

 
The velocity is always tangent to the s direction: 

( )ˆ ˆ, ,V V t s n= =V s s  
 
For steady, two-dimensional flow the acceleration for a given 
fluid particle (material derivative D/Dt) is: 

( )ˆ ˆˆD VD DV DV
Dt Dt Dt Dt

= = = +
sV sa s  

ˆ ˆ ˆˆV V ds V dn ds dnV
t s dt n dt t s dt n dt

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
s s ss  

Steady flow: 0V
t

∂
=

∂  

ˆ
0

t
∂

=
∂
s

  

Definition velocity: 
ds V
dt

=
  

0dn
dt

=  
 

ˆˆVV V V
s s

∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
sa s  
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Relationship between the unit vector along the streamline, ŝ, and 

the radius of curvature of the streamline,  
 
The quantity ∂ŝ/∂s represents the limit as δs → 0 of the change 
in the unit vector along the streamline, δŝ, per change in distance 
along the streamline, δs. The magnitude of ŝ is constant (|ŝ| = 1; 
it is a unit vector), but its direction is variable if the streamlines 
are curved. From Fig. 4.9 it is seen that the magnitude of ∂ŝ/∂s is 
equal to the inverse of the radius of curvature of the streamline, 

, at the point in question. This follows because the two 
triangles shown (AOB and A′O′B′) are similar triangles so that 
δs/  = |δŝ|/|ŝ| = |δŝ|, or |δŝ/δs| = 1/ . Similarly, in the limit δs → 
0, the direction of δŝ/δs is seen to be normal to the streamline. 
That is, 

0

ˆ ˆ ˆ
lim
ss sδ

δ
δ→

∂
= =

∂ ℜ
s s n

 
So we have 

2

ˆ ˆ ˆ ˆs n
V Va a V
s

∂⎛ ⎞= + = +⎜ ⎟∂ ℜ⎝ ⎠
a s n s n  

i.e., 

s
Va V
s

∂
=

∂ , 

2

n
Va =
ℜ  
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Newton's Second Law 
According to Newton's second law of motion, the net force 
acting on the fluid particle under consideration must equal its 
mass times its acceleration, 

m=F a  
 
Assumptions used in the derivation: 

(1) Inviscid  
(2) Incompressible  
(3) Steady  
(4) Conservative body force 

 
To determine the forces necessary to produce a given flow (or 
conversely, what flow results from a given set of forces), we 
consider the free-body diagram of a small fluid particle: 

 
 
F = ma along a Streamline 
The component of Newton's second law along the streamline 
direction, s, can be written as 

s s
V VF ma mV V
s s

δ δ δ ρδ∂ ∂
= = = ∀

∂ ∂∑  
The component of the weight force in the direction of the 
streamline: 

sin sinsW Wδ δ θ γδ θ= − = − ∀  
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Free-body diagram of a fluid particle for which  

the important forces are those due to pressure and gravity. 
 
1st-order Taylor series expansion for the pressure field: 

2s
p sp
s
δδ ∂

≈
∂  

The net pressure force on the particle in the streamline direction: 
( ) ( ) 2ps s s sF p p n y p p n y p n yδ δ δ δ δ δ δ δ δ δ= − − + = −  

p ps n y
s s
δ δ δ δ∂ ∂

= − = − ∀
∂ ∂  

The net force acting in the streamline direction on the particle is  
sins s ps

pF W F
s

δ δ δ γ θ δ∂⎛ ⎞= + = − − ∀⎜ ⎟∂⎝ ⎠
∑  

sin s
p VV a
s s

γ θ ρ ρ∂ ∂
− − = =

∂ ∂  

Noting that sin dz
ds

θ =  and 
21

2
V dVV
s ds

∂
=

∂
, the above equation can be 

rearranged and integrated:  
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21
2

dz dp dV
ds ds ds

γ ρ− − =  

( )21 0
2

dp d V dzρ γ+ + =  (along a streamline) 
For constant acceleration of gravity: 

21
2

dp V gz C
ρ
+ + =∫  (along a streamline) 

For steady, inviscid, and incompressible flow, we have the 
celebrated Bernoulli equation: 

21
2

p V z Cρ γ+ + =  (along a streamline) 
 
F = ma Normal to a Streamline 
The component of Newton's second law along the normal 
direction, n, can be written as 

2 2

n n
mV VF ma δ ρδδ δ ∀

= = =
ℜ ℜ∑  

The component of the weight (gravity force) in the normal 
direction: 

cos cosnW Wδ δ θ γδ θ= − = − ∀  
1st-order Taylor series expansion for the pressure field: 

2n
p np
n
δδ ∂

≈
∂  

The net pressure force on the particle in the streamline normal 
direction: 

( ) ( ) 2pn n n nF p p s y p p s y p s yδ δ δ δ δ δ δ δ δ δ= − − + = −  
p ps n y
n n
δ δ δ δ∂ ∂

= − = − ∀
∂ ∂  
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The net force acting in the normal direction on the particle is  
cosn n pn

pF W F
n

δ δ δ γ θ δ∂⎛ ⎞= + = − − ∀⎜ ⎟∂⎝ ⎠
∑  

Noting that cos dz
dn

θ = , we obtain the equation of motion along the 
normal direction:  

2dz p V
dn n

ργ ∂
− − =

∂ ℜ  

Since p dp
n dn
∂

=
∂

 if s is constant, integrate across the streamline: 
2dp V dn gz C

ρ
+ + =

ℜ∫ ∫  (across the streamline) 

For steady, inviscid, and incompressible flow, we have: 
2Vp dn z Cρ γ+ + =
ℜ∫  (across the streamline) 

 
Physical Interpretation 

Integration of the equation of motion to give the Bernoulli 
equation actually corresponds to the work-energy principle often 
used in the study of dynamics. With certain assumptions, a 
statement of the work-energy principle may be written as 
follows: The work done on a particle by all forces acting on the 
particle is equal to the change of the kinetic energy of the 
particle. The Bernoulli equation is a mathematical statement of 
this principle. In fact, an alternate method of deriving the 
Bernoulli equation is to use the first and second laws of 
thermodynamics (the energy and entropy equations), rather than 
Newton's second law. With the appropriate restrictions, the 
general energy equation reduces to the Bernoulli equation. 
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An alternate but equivalent form of the Bernoulli equation 
2

2
p V z C

gγ
+ + =  (along a streamline) 

Pressure head: p
γ

 

Velocity head: 
2

2
V

g
 

Elevation head: z  
The Bernoulli equation states that the sum of the pressure head, 
the velocity head, and the elevation head is constant along a 
streamline. 
 
Static, Stagnation, Dynamic, and Total Pressure 

21
2

p V z Cρ γ+ + =  (along a streamline) 
Static pressure: p  
Dynamic pressure: 21

2
Vρ  

Hydrostatic pressure: zγ  
 

 
Stagnation points on bodies in flowing fluids. 

 
Stagnation pressure: 21

2
p Vρ+ (assume elevation effects negligible) 

Total pressure: 21
2Tp p V z Cρ γ= + + =  (along a streamline) 
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The Pitot-static tube and typical Pitot-static tube designs. 

 
Typical pressure distribution along a Pitot-static tube. 

 
Applications of Bernoulli Equation 
 
Stagnation Tube 
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2
Vp

2
Vp

2
2

2

2
1

1 ρ+=ρ+    z1 = z2 

 

 ( )12
2

1 pp2V −
ρ

=    ( )dp
dp

2

1

+γ=
γ=

 

       = ( )γ
ρ
2  

  g2V1 =  
 
 
Pitot Tube 
  0 

2

2
22

1

2
11 z

g2
Vpz

g2
Vp

++
γ

=++
γ

 

 
 
 
 
 
 
 
 
 

2/1

2
2

1
1

2 zpzpg2V
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
+

γ
−⎟

⎠

⎞
⎜
⎝

⎛
+

γ
=   V1 = 0 

 
   h1    h2 
       h = piezometric head 

V2 = 0 
gage 

Limited by length of 
tube and need for free 
surface reference 
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( )212 hhg2VV −==    h1 – h2 from manometer  
or pressure gage 

for gas flow zp
∆>>

γ
∆  

 

ρ
∆

=
p2V  

 
 
Free Jets 

 
Vertical flow from a tank 

Application of Bernoulli Equation between points (1) and (2) on 
the streamline shown gives 

2 2
1 1 1 2 2 2

1 1
2 2

p V z p V zρ γ ρ γ+ + = + +  
Since 1z h= , 2 0z = , 1 0V ≈ , 1 0p = , 2 0p = , we have: 

2
2

1
2

h Vγ ρ=  

2 2 2hV ghγ
ρ

= =  

Bernoulli equation between points (1) and (5) gives 
( )5 2V g h H= +  
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Simplified form of the continuity equation 
Obtained from the following intuitive arguments:  

 
Steady flow into and out of a tank. 

Volume flowrate: Q VA=  
Mass flowrate: m Q VAρ ρ= =  

Conservation of mass requires 
1 1 1 2 2 2V A V Aρ ρ=  

For incompressible flow 1 2ρ ρ= , we have  
1 1 2 2 1 2V A V A or Q Q= =  

 
 
Volume Rate of flow (flowrate, discharge) 
 
1. cross-sectional area oriented normal to velocity vector 

(simple case where V ⊥ A) 
 

 
U = constant:  Q = volume flux = UA [m/s × m2 = m3/s] 
U ≠ constant:  Q = ∫

A
UdA  

 
Similarly the mass flux = ∫ρ=

A
UdAm  
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2. general case 
 
 

  
∫ θ=

∫ ⋅=

CS

CS

dAcosV

dAnVQ
 

( )∫ ⋅ρ=
CS

dAnVm  

average velocity:  
A
QV =  

 
Example: 
At low velocities the flow through a long circular tube, i.e. pipe, 
has a parabolic velocity distribution (actually paraboloid of 
revolution). 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

2

max R
r1uu  

i.e., centerline velocity 
 
 
 

 
a) find Q and V  
 

∫=∫ ⋅=
AA

udAdAnVQ  

 

∫ ∫ ∫ θ=
π

A

2

0

R

0
drrd)r(uudA  
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      = ∫π
R

0
rdr)r(u2    

dA = 2πrdr     

u = u(r) and not θ ∴ ∫ π=θ
π2

0
2d   

 

Q = ∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−π

R

0

2

max rdr
R
r1u2   = 2

max Ru
2
1

π   

maxu
2
1V =  

 
 
Flowrate Measurement 
Various flow meters are governed by the Bernoulli and 
continuity equations. 

 
Typical devices for measuring flowrate in pipes 
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Three commonly used types of flow meters are illustrated: the 
orifice meter, the nozzle meter, and the Venturi meter. The 
operation of each is based on the same physical principles—an 
increase in velocity causes a decrease in pressure. The difference 
between them is a matter of cost, accuracy, and how closely 
their actual operation obeys the idealized flow assumptions. 
 
We assume the flow is horizontal (z1 = z2), steady, inviscid, and 
incompressible between points (1) and (2). The Bernoulli 
equation becomes:  

2 2
1 1 2 2

1 1
2 2

p V p Vρ ρ+ = +  
If we assume the velocity profiles are uniform at sections (1) 
and (2), the continuity equation can be written as: 

1 1 2 2Q V A V A= =  
where A2 is the small (A2 < A1) flow area at section (2). 
Combination of these two equations results in the following 
theoretical flowrate 

( )
( )
1 2

2 2
2 1

2

1

p p
Q A

A Aρ

−
=

⎡ ⎤−⎣ ⎦
 

 
Other flow meters based on the Bernoulli equation are used to 
measure flowrates in open channels such as flumes and 
irrigation ditches. Two of these devices, the sluice gate and the 
sharp-crested weir, are discussed below under the assumption of 
steady, inviscid, incompressible flow. 
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Sluice gate geometry 

We apply the Bernoulli and continuity equations between points 
on the free surfaces at (1) and (2) to give: 

2 2
1 1 1 2 2 2

1 1
2 2

p V z p V zρ γ ρ γ+ + = + +  
and  

1 1 1 1 2 2 2 2Q V A bV z V A bV z= = = =  
With the fact that 1 2 0p p= = : 

( )
( )

1 2
2 2

2 1

2
1

g z z
Q z b

z z
−

=
−

 

In the limit of 1 2z z : 
2 12Q z b gz=  

 

 
Rectangular, sharp-crested weir geometry 
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For such devices the flowrate of liquid over the top of the weir 
plate is dependent on the weir height, Pw, the width of the 
channel, b, and the head, H, of the water above the top of the 
weir. Between points (1) and (2) the pressure and gravitational 
fields cause the fluid to accelerate from velocity V1 to velocity 
V2. At (1) the pressure is p1 = γh, while at (2) the pressure is 
essentially atmospheric, p2 = 0. Across the curved streamlines 
directly above the top of the weir plate (section a–a), the 
pressure changes from atmospheric on the top surface to some 
maximum value within the fluid stream and then to atmospheric 
again at the bottom surface. 
 
For now, we will take a very simple approach and assume that 
the weir flow is similar in many respects to an orifice-type flow 
with a free streamline. In this instance we would expect the 
average velocity across the top of the weir to be proportional to 

and the flow area for this rectangular weir to be proportional 
to Hb. Hence, it follows that 

3 2
1 12 2Q C Hb gH C b gH= =  

 
Energy grade line (EGL) and hydraulic grade line 
(HGL) 
In this chapter, we neglect losses and/or minor losses , and 
energy input or output by pumps or turbines: 

0, 0, 0L p th h h= = =  
 

2 2
1 1 2 2

1 22 2
p V p Vz z

g gγ γ
+ + = + +  
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Define  HGL = zp
+

γ
 

  EGL = 
2

2
p Vz

gγ
+ +  

 
 

HGL corresponds to pressure tap measurement + z 
EGL corresponds to stagnation tube measurement + z 

 
 
 
 
 
 
 
 
 

pressure tap:  hp2 =
γ

 

stagnation tube:  
2

2 2

2
p V h

gγ
+ =  

 
 
Helpful hints for drawing HGL and EGL 
 
1.  EGL = HGL + V2/2g = HGL for V = 0 
 
2.  p = 0 ⇒ HGL = z 

point-by-point 
application is 
graphically 
displayed 

h = height of fluid in 
      tap/tube 

EGL = HGL if V = 0 

hL = 
g2

2V
D
Lf  

i.e., linear variation in L for D, 
V, and f constant 

EGL1 = EGL2 + hL 
for hp = ht = 0 

f = friction factor  
f = f(Re) 
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⇒ 

3.  for change in D ⇒ change in V 
 
 i.e. V1A1 = V2A2 

  
4
DV

4
DV

2
2

2

2
1

1
π

=
π  

  2
21

2
11 DVDV =  

 

 

4.  If HGL < z then p/γ < 0  i.e., cavitation possible 

condition for cavitation: 
 

  2va m
N2000pp ==  

change in distance between 
HGL & EGL and slope  
change due to change in hL  
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gage pressure , 2100,000va g va atm atm
Np p p p
m

= − ≈ − = −  
 

   m10
p g,va −≈
γ

 

 
      9810 N/m3 
 
Limitations of Bernoulli Equation 
 
Assumptions used in the derivation Bernoulli Equation: 

(1) Inviscid  
(2) Incompressible  
(3) Steady  
(4) Conservative body force 

 
1. Compressibility Effects:  
The Bernoulli equation can be modified for compressible flows. 
A simple, although specialized, case of compressible flow 
occurs when the temperature of a perfect gas remains constant 
along the streamline—isothermal flow. Thus, we consider p = 
ρRT, where T is constant. (In general, p, ρ, and T will vary.). An 
equation similar to the Bernoulli equation can be obtained for 
isentropic flow of a perfect gas. For steady, inviscid, isothermal 
flow, Bernoulli equation becomes 

21
2

dpRT V gz const
p
+ + =∫  

The constant of integration is easily evaluated if z1, p1, and V1 
are known at some location on the streamline. The result is 
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2 2
1 1 2

1 2
2

ln
2 2
V RT p Vz z

g g p g
⎛ ⎞

+ + = +⎜ ⎟
⎝ ⎠

 

 
2. Unsteady Effects:  
The Bernoulli equation can be modified for unsteady flows. 
With the inclusion of the unsteady effect (∂V/∂t ≠ 0) the 
following is obtained: 

( )21 0
2

V ds dp d V dz
t

ρ ρ γ∂
+ + + =

∂
 (along a streamline) 

For incompressible flow this can be easily integrated between 
points (1) and (2) to give 

2

1

2 2
1 1 1 2 2 2

1 1
2 2

s

s

Vp V z ds p V z
t

ρ γ ρ ρ γ∂
+ + = + + +

∂∫  (along a streamline) 
 
3. Rotational Effects 
Care must be used in applying the Bernoulli equation across 
streamlines. If the flow is “irrotational” (i.e., the fluid particles 
do not “spin” as they move), it is appropriate to use the 
Bernoulli equation across streamlines. However, if the flow is 
“rotational” (fluid particles “spin”), use of the Bernoulli 
equation is restricted to flow along a streamline. 
 
4. Other Restrictions 
Another restriction on the Bernoulli equation is that the flow is 
inviscid. The Bernoulli equation is actually a first integral of 
Newton's second law along a streamline. This general 
integration was possible because, in the absence of viscous 
effects, the fluid system considered was a conservative system. 
The total energy of the system remains constant. If viscous 
effects are important the system is nonconservative and energy 
losses occur. A more detailed analysis is needed for these cases. 
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The Bernoulli equation is not valid for flows that involve pumps 
or turbines. The final basic restriction on use of the Bernoulli 
equation is that there are no mechanical devices (pumps or 
turbines) in the system between the two points along the 
streamline for which the equation is applied. These devices 
represent sources or sinks of energy. Since the Bernoulli 
equation is actually one form of the energy equation, it must be 
altered to include pumps or turbines, if these are present. 
 
 


