9.77 Air flows past two equal sized spheres (one rough, one smooth) that are attached to the arm of a balance as is indicated in Fig. P9.77. With U=0 the beam is balanced. What is the minimum air velocity for which the balance arm will rotate clockwise?

FIGURE P9.77

For clockwise rotation to start, $\Sigma M_0 < 0$ That is $0.3 \mathcal{D}_1 \ge 0.5 \mathcal{D}_2$, where $\mathcal{D}_1 = C_{D_1} \stackrel{!}{=} P V_1^2 A_1$ and $\mathcal{D}_2 = C_{D_2} \stackrel{!}{=} P V_2^2 A_2$

Thus, $0.3 C_{D_1}^{\frac{1}{2}} \rho V_1^2 A_1 = 0.5 C_{D_2}^{\frac{1}{2}} \rho V_2^2 A_2$, or since $V_1 = V_2$ and $A_1 = A_2$ this gives $C_{D_2} = 0.6 C_{D_1}$ (1)

Consider the curves in Fig. 9.25 with $\frac{\varepsilon}{D} = 0$ and $\frac{\varepsilon}{D} = 1.25 \times 10^{-2}$

 C_D $= \frac{\varepsilon}{D} = 1.25 \times 10^{-2}$ Trial and error solution to find Re so that Eq. (1) is satisfied.

Assume $Re = 6 \times 10^4 \longrightarrow C_{D_1} = 0.5$, $C_{D_2} = 0.46$ or $\frac{C_{D_2}}{C_{D_1}} = 0.92 \neq 0.6$ Assume $Re = 8 \times 10^4 \longrightarrow C_{D_1} = 0.5$, $C_{D_2} = 0.21$ or $\frac{C_{D_2}}{C_{D_1}} = 0.42 \neq 0.6$ Assume $Re = 7 \times 10^4 \longrightarrow C_{D_1} = 0.5$, $C_{D_2} = 0.33$ or $\frac{C_{D_2}}{C_{D_1}} = 0.66 \approx 0.6$ Thus, $Re \approx 7.1 \times 10^4 = \frac{UD}{V} = \frac{(0.1m) U}{1.46 \times 10^{-5} \frac{m^2}{c^2}}$ or $U \approx 10.4 \frac{m}{s}$