

9.52

9.52 A 38.1-mm-diameter, 0.0245-N table tennis ball is released from the bottom of a swimming pool. With what velocity does it rise to the surface? Assume it has reached its terminal velocity.

For steady rise $\Sigma F_z = 0$ or $F_B = W + \mathcal{D}$, where $\mathcal{D} = drag = C_D \frac{1}{2} \rho U^2 \mathcal{I} D^2$ W = weight = 0.0245 N

$$F_B = buoyant force = \delta \forall = \delta \frac{4\pi}{3} \left(\frac{D}{2}\right)^3$$

Thus,

$$8 \frac{4\pi}{3} \left(\frac{D}{2}\right)^{3} = W + C_{D} \frac{1}{2} \rho U^{2} \frac{\pi}{4} D^{2}$$
or
$$(9.80 \times 10^{3} \frac{N}{m^{3}}) \frac{4\pi}{3} \left(\frac{0.0381}{2}\right)^{3} = 0.0245 N + \frac{1}{2} C_{D} (999 \frac{kg}{m^{3}}) U^{2} \frac{\pi}{4} (0.0381m)^{3}$$

or
$$C_D U^2 = 0.455 , \text{ where } U \sim \frac{m}{s} \tag{1}$$

Also,
$$Re = \frac{UD}{v}$$

$$Re = \frac{U(0.0381m)}{1.12 \times 10^{-6} \frac{m^2}{s}} = 3.40 \times 10^4 U, \text{ where } U = \frac{m}{s}$$
 (2)

Finally, from Fig. 9.21:
$$C_D$$

Re

(3)

Trial and error solution: Assume CD; obtain U from Eq.(1), Re from Eq.(2); check CD from Eq.(3), the graphs

Assume
$$C_D = 0.5 \longrightarrow U = 0.954 \frac{m}{s} \longrightarrow Re = 3.24 \times 10^4 \longrightarrow C_D = 0.4 \neq 0.5$$

Assume $C_D = 0.4 \longrightarrow U = 1.06 \frac{m}{s} \longrightarrow Re = 3.62 \times 10^4 \longrightarrow C_D = 0.4 \text{ (checks)}$

Thus, $U = 1.06 \frac{m}{s}$

Note: Because of the graph (Fig. 9.21) the answers are not accurate to three significant figures.