5.15 Water at 0.1 m³/s and alcohol (SG=0.8) at 0.3 m³/s are mixed in a y-duct as shown in Fig. 5.15. What is the average density of the mixture of alcohol and water? (1) For steady flow $$\dot{m}_1 + \dot{m}_2 = \dot{m}_3$$ or $$\rho_1 Q_1 + \rho_2 Q_2 = \rho_3 Q_3$$ Also, since the water and alcohol may be considered in compressible $$Q_1 + Q_2 = Q_3 \tag{2}$$ Combining Eqs. 1 and 2 we get $$P,Q,+P_2Q_2=P_3(Q,+Q_2)$$ or $$\rho_{3} = \frac{P, Q, + P_{2}Q_{2}}{Q, + Q_{2}}$$ and $$\rho_{3} = P, \frac{Q, + SG_{2}Q_{2}}{Q, + Q_{2}}$$ $$Q, + Q_{2}$$ and $$\begin{array}{ll} P_{3} &= P_{1} \frac{\left(Q_{1} + 5G_{2} Q_{2}\right)}{Q_{1} + Q_{2}} \\ P_{3} &= \left(999 \frac{kg}{m^{3}}\right) \left[0.1 \frac{m^{3}}{s} + (0.8)(0.3 \frac{m^{3}}{s})\right] \\ P_{3} &= 0.1 \frac{m^{3}}{s} + 0.3 \frac{m^{3}}{s} \end{array}$$ $$= 849 \frac{kg}{m^{3}}$$