2.88

2.88 The homogeneous gate shown in Fig. P2.88 consists of one quarter of a circular cylinder and is used to maintain a water depth of 4 m. That is, when the water depth exceeds 4 m, the gate opens slightly and lets the water flow under it. Determine the weight of the gate per meter of length.

width = 1 m

Consider the free body diagram: of the gate and a portion of the water as shown. gate

$$\sum M_0 = 0$$
, or

(1)
$$l_2W + l_1W_1 - F_H l_3 - F_V l_4 = 0$$
, where

(2)
$$F_H = 8^{\circ}h_c A = 9.8 \times 10^3 \frac{N}{m^3} (3.5 \text{ m}) (1\text{ m}) (1\text{ m}) = 34.3 \text{ kN}$$

since for the vertical side, $h_c = 4m - 0.5m = 3.5m$
Also,

(3)
$$F_V = \partial h_c A = 9.8 \times 10^3 \frac{N}{m^3} (4m) (1m) (1m) = 39.2 \text{ kN}$$

(4)
$$W_{i} = \delta(1m)^{3} - \delta(\frac{\pi}{4}(1m)^{2})(1m) = 9.8 \times 10^{3} \frac{N}{m^{3}} \left[1 - \frac{\pi}{4}\right] m^{3} = 2.10 \text{ kN}$$

(5) Now,
$$l_4 = 0.5 m$$
 and $l_3 = 0.5 m + (\gamma_R - \gamma_c) = 0.5 m + \frac{I_{xc}}{\gamma_c A} = 0.5 m + \frac{I_2(/m)(/m)^3}{3.5 m (/m)(/m)} = 0.524 m$

(7) and
$$l_2 = lm - \frac{4R}{3\pi} = l - \frac{4(lm)}{3\pi} = 0.576m$$

To determine l_1 , consider a unit square that consits of a quarter circle and the remainder as shown in the figure. The centroids of areas 0 and 0 are as indicated.

(con't)

2.88 (con't)

so that with $A_2 = \frac{\pi}{4}(1)^2 = \frac{\pi}{4}$ and $A_1 = 1 - \frac{\pi}{4}$ this gives $(0.5 - \frac{4}{3\pi})\frac{\pi}{4} = (0.5 - l_1)(1 - \frac{\pi}{4})$

(8)
$$l_1 = 0.223 \, m$$

Hence, by combining Eqs (1) through (8):

(0.576m)W + (0.223m)(2.10kN) - (34.3kN)(0.524m) - (39.2kN)(0.5m) = 0

$$W = 64.4 \, kN$$