
2.14 (See Fluids in the News article titled "Giraffe's blood pressure," Section 2.3.1.) (a) Determine the change in hydrostatic pressure in a giraffe's head as it lowers its head from eating leaves 6 m above the ground to getting a drink of water at ground level as shown in Fig. P2.14. Assume the specific gravity of blood is SG = 1, (b) Compare the pressure change calculated in part (a) to the normal 120 mm of mercury pressure in a human's heart.

(a) For hydrostatic pressure change, $\Delta p = 8 - h = \left(9.80 \frac{kN}{m^2}\right) (6 \text{ m}) = 58.8 \frac{kN}{m^2} = \frac{58.8 \text{ kfa}}{8.8 \text{ m}} = \frac{58.8 \text{ kfa}}{10.8 \text{$

(b) To compare with pressure in human heart convert pressure in part (a) to mm Hg: $58.8 \frac{kN}{m^2} = \chi_{Hg} - h_{Hg} = (133 \frac{kN}{m^3}) + h_{Hg}$ $h_{Hg} = (0.442 \text{ m})(10^3 \frac{mm}{m}) = 442 \text{ mm Hg}$

Thus, the pressure change in the giraffe's head is 442 mm Hg compared with 120 mm Hg in the human heart.