2.9 Develop an expression for the pressure variation in a liquid in which the specific weight increases with depth, h, as $\gamma = Kh + \gamma_0$, where K is a constant and γ_0 is the specific weight at the free surface.

$$\frac{dp}{dz} = -8 \qquad (Eg. 24)$$

Let
$$h = Z_0 - Z$$

so that $dh = -dZ$

Thus,
$$dp = 8 dh$$
and
$$\int_{0}^{h} dp = \int_{0}^{h} dh$$
For
$$\delta = k h + \delta_{0},$$

$$\int_{0}^{p} dp = \int_{0}^{h} (k h + \delta_{0}) dh$$
and
$$p = \frac{k h^{2}}{2} + \delta_{0} h$$