3.148 Information and assumptions

provided in problem statement

Find

location of water line for stability and specific gravity of material

Solution

For neutral stability, the distance to the metacenter is zero. In other words

$$GM = \frac{I_{oo}}{\forall} - GC = 0$$

where GC is the distance from the center of gravity to the center of buoyancy. The moment of inertia at the waterline is

$$I_{oo} = \frac{w^3 L}{12}$$

where L is the length of the body. The volume of liquid displaced is hwL so

$$GC = \frac{w^3L}{12hwL} = \frac{w^2}{12h}$$

The value for GC is the distance from the center of buoyancy to the center of gravity, or

$$GC = \frac{w}{2} - \frac{h}{2}$$

So

$$\frac{w}{2} - \frac{h}{2} = \frac{w^2}{12h}$$

or

$$\left(\frac{h}{w}\right)^2 - \frac{h}{w} + \frac{1}{6} = 0$$

Solving for h/w gives 0.789 and 0.211. The first root gives a physically unreasonable solution. Therefore

$$\frac{h}{w} = 0.211$$

The weight of the body is equal to the weight of water displaced.

$$\gamma_b V_b = \gamma_f V$$

Therefore

$$S = \frac{\gamma_b}{\gamma_f} = \frac{whL}{w^2L} = \frac{h}{w} = \underline{0.211}$$

The the specific gravity is smaller than this value, the body will be unstable (floats too high).