3.148 A floating body has a square cross-section with side w as shown in the figure. The center of gravity is at the centroid of the cross-section. Find the location of the water line, l / w, where the body would be neutrally stable $(G M=0)$. If the body is floating in water, what would be the specific gravity of the body material?

Solution: For neutral stability, the distance to the metacenter is zero.

$$
G M=\frac{I_{O O}}{V}-G C=0
$$

where $G C$ is the distance from the center of gravity to the center of buoyancy. The moment of inertia at the waterline is

$$
I_{O O}=\frac{w^{3} L}{12}
$$

where L is the length of the body. The volume of liquid displaced is $l w L$ so

$$
G C=\frac{w^{3} L}{12 l w L}=\frac{w^{2}}{12 l}
$$

The value for $G C$ is the distance from the center of buoyancy to the center of gravity, or

$$
G C=\frac{w}{2}-\frac{l}{2}
$$

So

$$
\frac{w}{2}-\frac{l}{2}=\frac{w^{2}}{12 l}
$$

or

$$
\left(\frac{l}{w}\right)^{2}-\frac{l}{w}+\frac{1}{6}=0
$$

Solving for l / w gives 0.789 and 0.211 . Therefore

$$
\frac{l}{w}=0.789 \text { or } 0.211
$$

The weight of the body is equal to the weight of water displaced. So

$$
\gamma_{b} V_{b}=\gamma_{f} V
$$

Therefore

$$
S G=\frac{\gamma_{b}}{\gamma_{f}}=\frac{w l L}{w^{2} L}=\frac{l}{w}=0.789 \text { or } 0.211
$$

