November 28, 2012

NAME
Fluids-ID

Quiz 14. The system consists of 1200 m of 5 cm diameter cast iron pipe, two 45° and four 90° flanged long-radius elbows, a fully open flanged globe valve, and a sharp exit into a reservoir. If the elevation at point 1 is 400 m , what gage pressure is required at point 1 to deliver $0.005 \mathrm{~m}^{3} / \mathrm{s}$ of water at $20^{\circ} \mathrm{C}$ into the reservoir?

$$
\left(\rho=998 \mathrm{~kg} / \mathrm{m}^{3} ; g=9.81 \mathrm{~m} / \mathrm{s}^{2} ; \mu=0.001 \mathrm{~kg} / \mathrm{m} . \mathrm{s} ; \varepsilon=0.26 \mathrm{~mm}\right)
$$

- Energy Eq.:

$$
\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}+h_{p}=\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}+\frac{V^{2}}{2 g}\left(\frac{f \ell}{d}+\sum K_{L}\right)
$$

- Friction factor, f :

$$
\frac{1}{\sqrt{f}}=-1.8 \log \left[\left(\frac{\varepsilon / d}{3.7}\right)^{1.11}+\frac{6.9}{R e}\right]
$$

Loss	K_{L}
Open flanged globe valve	8.5
90° long-radius elbow	0.3
45° long-radius elbow	0.2
Sharp exit	1.0

