November 28, 2012

Fluids-ID

Quiz 14. The system consists of $1200 \ m$ of $5 \ cm$ diameter cast iron pipe, two 45° and four 90° flanged long-radius elbows, a fully open flanged globe valve, and a sharp exit into a reservoir. If the elevation at point 1 is $400 \ m$, what gage pressure is required at point 1 to deliver $0.005 \ m^3/s$ of water at 20 °C into the reservoir?

$$(\rho = 998 \ kg/m^3; g = 9.81 \ m/s^2; \mu = 0.001 \ kg/m.s; \varepsilon = 0.26 \ mm)$$

45° Open globe Elevation 400 m

• Energy Eq.:

$$\frac{p_1}{\rho g} + \frac{V_1^2}{2g} + z_1 + h_p = \frac{p_2}{\rho g} + \frac{V_2^2}{2g} + z_2 + \frac{V^2}{2g} \left(\frac{f\ell}{d} + \sum K_L\right)$$

• Friction factor, f:

$$\frac{1}{\sqrt{f}} = -1.8 \log\left[\left(\frac{\varepsilon/d}{3.7}\right)^{1.11} + \frac{6.9}{Re}\right]$$

Loss	KL	
Open flanged globe valve	8.5	
90° long-radius elbow	0.3	
45° long-radius elbow	0.2	
Sharp exit	1.0	