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Chapter 6 Differential Analysis of Fluid Flow  
 
Fluid Element Kinematics 
 
Fluid element motion consists of translation, linear defor-
mation, rotation, and angular deformation. 

 
Types of motion and deformation for a fluid element. 

 
Linear Motion and Deformation:  

 
Translation of a fluid element 

 
Linear deformation of a fluid element 
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Change inδ∀ : 

( )u x y z t
x

δ δ δ δ δ∂ ∀ =  ∂   

 
the rate at which the volume δ∀  is changing per unit vol-
ume due to the gradient ∂u/∂x is 
 

( ) ( )
0

1 lim
t

d u x t u
dt t xδ

δ δ
δ δ→

∀ ∂ ∂  ∂
= = ∀ ∂   

 
If velocity gradients ∂v/∂y and ∂w/∂z are also present, then 
using a similar analysis it follows that, in the general case, 

 
( )1 d u v w
dt x y z
δ

δ
∀ ∂ ∂ ∂

= + + = ∇ ⋅
∀ ∂ ∂ ∂

V  

 
This rate of change of the volume per unit volume is called 
the volumetric dilatation rate. 
 
Angular Motion and Deformation 
For simplicity we will consider motion in the x–y plane, 
but the results can be readily extended to the more general 
case. 
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Angular motion and deformation of a fluid element 

 
The angular velocity of line OA, ωOA, is 

0
limOA t tδ

δαω
δ→

=  
For small angles 

( )tan
v x x t v t

x x
δ δ

δα δα δ
δ

∂ ∂ ∂
≈ = =

∂  
so that 

( )
0

limOA t

v x t v
t xδ

δ
ω

δ→

∂ ∂  ∂
= =  ∂   

 
Note that if ∂v/∂x is positive, ωOA will be counterclockwise. 
 
Similarly, the angular velocity of the line OB is 

 

0
limOB t

u
t yδ

δβω
δ→

∂
= =

∂  

 
In this instance if ∂u/∂y is positive, ωOB will be clockwise. 
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The rotation, ωz, of the element about the z axis is defined 
as the average of the angular velocities ωOA and ωOB of the 
two mutually perpendicular lines OA and OB. Thus, if 
counterclockwise rotation is considered to be positive, it 
follows that 

1
2z

v u
x y

ω
 ∂ ∂

= − ∂ ∂   

 
Rotation of the field element about the other two coordinate 
axes can be obtained in a similar manner: 

1
2x

w v
y z

ω
 ∂ ∂

= − ∂ ∂   

1
2y

u w
z x

ω ∂ ∂ = − ∂ ∂   

 
The three components, ωx,ωy, and ωz can be combined to 
give the rotation vector, ω, in the form: 

1 1
2 2x y z curlω ω ω= + + = = ∇×ω i j k V V  

since 

1 1
2 2 x y z

u v w

∂ ∂ ∂
∇× =

∂ ∂ ∂

i j k

V

 

1 1 1
2 2 2

w v u w v u
y z z x x y

   ∂ ∂ ∂ ∂ ∂ ∂ = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    
i j k  
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The vorticity, ζ, is defined as a vector that is twice the rota-
tion vector; that is,  

2ς = = ∇×ω V  
 
The use of the vorticity to describe the rotational character-
istics of the fluid simply eliminates the (1/2) factor associ-
ated with the rotation vector. If 0∇× =V , the flow is 
called irrotational. 
 
In addition to the rotation associated with the derivatives 
∂u/∂y and ∂v/∂x, these derivatives can cause the fluid ele-
ment to undergo an angular deformation, which results in a 
change in shape of the element. The change in the original 
right angle formed by the lines OA and OB is termed the 
shearing strain, δγ, 

δγ δα δβ= +  
The rate of change of δγ is called the rate of shearing strain 
or the rate of angular deformation: 

 
�̇�𝛾𝑥𝑥𝑥𝑥 = lim

𝛿𝛿𝛿𝛿→0

𝛿𝛿𝛾𝛾
𝛿𝛿𝛿𝛿

= lim
𝛿𝛿𝛿𝛿→0

𝛿𝛿𝛾𝛾
𝛿𝛿𝛿𝛿

= �
(𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ )𝛿𝛿𝛿𝛿 + (𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ )𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿
� =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

 
Similarly, 

�̇�𝛾𝑥𝑥𝑥𝑥 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 
 

�̇�𝛾𝑥𝑥𝑥𝑥 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

 
The rate of angular deformation is related to a correspond-
ing shearing stress which causes the fluid element to 
change in shape. 
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The Continuity Equation in Differential Form 
 
The governing equations can be expressed in both integral 
and differential form.  Integral form is useful for large-scale 
control volume analysis, whereas the differential form is 
useful for relatively small-scale point analysis. 
 
Application of RTT to a fixed elemental control volume 
yields the differential form of the governing equations.  For 
example for conservation of mass 
 

   ∑ ∫
∂
ρ∂

−=⋅ρ
CS CV

Vd
t

AV  

 
net outflow of mass        = rate of decrease 
across CS     of mass within CV 
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( ) dydzdxu
x

u 



 ρ

∂
∂

+ρ  

outlet mass flux 

Consider a cubical element oriented so that its sides are to  
the (x,y,z) axes 

 
 
 
 
 
Taylor series expansion 

retaining only first order term 
 
We assume that the element is infinitesimally small such 
that we can assume that the flow is approximately one di-
mensional through each face. 
 
The mass flux terms occur on all six faces, three inlets, and 
three outlets.  Consider the mass flux on the x faces 
 

( )flux outflux influx
x ρu ρu dx dydz ρudydz

x
∂ = + − ∂   

 = dxdydz)u(
x
ρ

∂
∂  

      V 
 
Similarly for the y and z faces 

dxdydz)w(
z

z

dxdydz)v(
y

y

flux

flux

ρ
∂
∂

=

ρ
∂
∂

=
 

 

inlet mass flux 
ρudydz 
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The total net mass outflux must balance the rate of decrease 
of mass within the CV which is 

    dxdydz
t∂
ρ∂

−  

 
Combining the above expressions yields the desired result 

0)V(
t

0)w(
z

)v(
y

)u(
xt

0dxdydz)w(
z

)v(
y

)u(
xt

=ρ⋅∇+
∂
ρ∂

=ρ
∂
∂

+ρ
∂
∂

+ρ
∂
∂

+
∂
ρ∂

=







ρ

∂
∂

+ρ
∂
∂

+ρ
∂
∂

+
∂
ρ∂

  

ρ∇⋅+⋅∇ρ VV  
 

0V
Dt
D

=⋅∇ρ+
ρ    ∇⋅+

∂
∂

= V
tDt

D  

 
Nonlinear 1st order PDE; ( unless ρ = constant, then linear) 
Relates V to satisfy kinematic condition of mass conserva-
tion 
 
Simplifications: 
1. Steady flow:  0)V( =ρ⋅∇  
 
2. ρ = constant:  0V =⋅∇  
 

dV 

per unit V 
differential form of con-
tinuity equations 
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i.e.,   0
z
w

y
v

x
u

=
∂
∂

+
∂
∂

+
∂
∂  3D 

 

  0
y
v

x
u

=
∂
∂

+
∂
∂   2D 

 
The continuity equation in Cylindrical Polar Coordinates 

 
The velocity at some arbitrary point P can be expressed as 

r r z zv v vθ θ= + +V e e e  
The continuity equation: 

( ) ( ) ( )1 1 0r zr v v v
t r r r z

θρ ρ ρρ
θ

∂ ∂ ∂∂
+ + + =

∂ ∂ ∂ ∂  
 
For steady, compressible flow 

( ) ( ) ( )1 1 0r zr v v v
r r r z

θρ ρ ρ
θ

∂ ∂ ∂
+ + =

∂ ∂ ∂  
 
For incompressible fluids (for steady or unsteady flow) 

( )1 1 0r zrv v v
r r r z

θ

θ
∂ ∂ ∂

+ + =
∂ ∂ ∂  
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The Stream Function 
Steady, incompressible, plane, two-dimensional flow repre-
sents one of the simplest types of flow of practical im-
portance. By plane, two-dimensional flow we mean that 
there are only two velocity components, such as u and v, 
when the flow is considered to be in the x–y plane. For this 
flow the continuity equation reduces to 

0
y
v

x
u

=
∂
∂

+
∂
∂  

 
We still have two variables, u and v, to deal with, but they 
must be related in a special way as indicated. This equation 
suggests that if we define a function ψ(x, y), called the 
stream function, which relates the velocities as 

,u v
y x
y y∂ ∂

= = −
∂ ∂  

then the continuity equation is identically satisfied: 
2 2

0
x y y x x y x y

y y y y ∂ ∂ ∂ ∂ ∂ ∂ + − = − =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 
 

 
Velocity and velocity components along a streamline 
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Another particular advantage of using the stream function 
is related to the fact that lines along which ψ is constant are 
streamlines.The change in the value of ψ as we move from 
one point (x, y) to a nearby point (x + dx, y + dy) along a 
line of constant ψ is given by the relationship: 

0d dx dy vdx udy
x y
y yy ∂ ∂

= + = − + =
∂ ∂  

and, therefore, along a line of constant ψ 
dy v
dx u

=  

 
The flow between two streamlines 

The actual numerical value associated with a particular 
streamline is not of particular significance, but the change 
in the value of ψ is related to the volume rate of flow. Let 
dq represent the volume rate of flow (per unit width per-
pendicular to the x–y plane) passing between the two 
streamlines. 

dq udy vdx dx dy d
x y
y y y∂ ∂

= − = + =
∂ ∂  

Thus, the volume rate of flow, q, between two streamlines 
such as ψ1 and ψ2, can be determined by integrating to 
yield: 
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2

1
2 1q d

y

y
y y y= = −∫  

 
In cylindrical coordinates the continuity equation for in-
compressible, plane, two-dimensional flow reduces to 

( )1 1 0rrv v
r r r

θ

θ
∂ ∂

+ =
∂ ∂  

 
and the velocity components, vr and vθ, can be related to the 
stream function, ψ(r, θ), through the equations 

1 ,rv v
r rθ

y y
θ

∂ ∂
= = −

∂ ∂  
 
Navier-Stokes Equations 
 
Differential form of momentum equation can be derived by 
applying control volume form to elemental control volume 
 
The differential equation of linear momentum:  elemental 
fluid volume approach 
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∑𝐹𝐹 =

𝜕𝜕
𝜕𝜕𝛿𝛿
� 𝜌𝜌𝑉𝑉𝑑𝑑V
𝐶𝐶𝐶𝐶���������

(1)

+ � 𝑉𝑉𝜌𝜌𝑉𝑉 ⋅ 𝑛𝑛�𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶���������

(2)

 

 
(1) = 𝜕𝜕

𝜕𝜕𝛿𝛿
�𝜌𝜌𝑉𝑉�𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕 = �𝜕𝜕𝜕𝜕

𝜕𝜕𝛿𝛿
𝑉𝑉 + 𝜌𝜌 𝜕𝜕𝐶𝐶

𝜕𝜕𝛿𝛿
� 𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕 

 

(2) = � 𝜕𝜕
𝜕𝜕𝑥𝑥
�𝜌𝜌𝜕𝜕𝑉𝑉��������
𝑥𝑥−face

+ 𝜕𝜕
𝜕𝜕𝑥𝑥
�𝜌𝜌𝜕𝜕𝑉𝑉��������
𝑥𝑥−face

+ 𝜕𝜕
𝜕𝜕𝑥𝑥
�𝜌𝜌𝜕𝜕𝑉𝑉��������
𝑥𝑥−face

� 𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕 

 
     =�𝜌𝜌𝜕𝜕 𝜕𝜕𝐶𝐶

𝜕𝜕𝑥𝑥
+ 𝑉𝑉 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
+ 𝜌𝜌𝜕𝜕 𝜕𝜕𝐶𝐶

𝜕𝜕𝑥𝑥
+ 𝑉𝑉 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
+ 𝜌𝜌𝜕𝜕 𝜕𝜕𝐶𝐶

𝜕𝜕𝑥𝑥
+ 𝑉𝑉 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
� 𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕 

       
combining and making use of the continuity equation yields 
 

∑𝐹𝐹 = �𝑉𝑉 �𝜕𝜕𝜕𝜕
𝜕𝜕𝛿𝛿

+ ∇ ⋅ �𝜌𝜌𝑉𝑉����������
=0

� + 𝜌𝜌 �𝜕𝜕𝐶𝐶
𝜕𝜕𝛿𝛿

+ 𝑉𝑉 ⋅ ∇𝑉𝑉�� 𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕  

 
∴  ∑𝐹𝐹 = 𝜌𝜌 𝐷𝐷𝐶𝐶

𝐷𝐷𝛿𝛿
𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑𝜕𝜕   or       ∑f = 𝜌𝜌 𝐷𝐷𝐶𝐶

𝐷𝐷𝛿𝛿
 

 
where ∑𝐹𝐹 = ∑𝐹𝐹body + ∑𝐹𝐹surface 
 
           ∑f = ∑f𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥 + ∑f𝑠𝑠𝜕𝜕𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝑉𝑉 ⋅ ∇ = 𝜕𝜕 𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜕𝜕 𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜕𝜕 𝜕𝜕
𝜕𝜕𝑥𝑥

  

     𝐷𝐷
𝐷𝐷𝛿𝛿

= 𝜕𝜕
𝜕𝜕𝛿𝛿

+ 𝑉𝑉 ⋅ ∇  
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Body forces are due to external fields such as gravity or 
magnetics.  Here we only consider a gravitational field; that 
is, 
   
 ∑ ρ== dxdydzgFdF gravbody  
 and k̂gg −=  for  g↓  z↑ 
 i.e., k̂gf body ρ−=  
 
Surface forces are due to the stresses that act on the sides of 
the control surfaces 
        symmetric (σij = σji) 
  σij = - pδij + τij    2nd order tensor 
 
normal pressure  viscous stress 
 
    = -p+τxx     τxy     τxz 

        τyx  -p+τyy    τyz 

        τzx     τzy  -p+τzz 
 
 
 
As shown before for p alone it is not the stresses them-
selves that cause a net force but their gradients. 
 

   dFx,surf  =  ( ) ( ) ( ) dxdydz
zyx xzxyxx 








σ

∂
∂

+σ
∂
∂

+σ
∂
∂  

 

  =  ( ) ( ) ( ) dxdydz
zyxx

p
xzxyxx 







τ

∂
∂

+τ
∂
∂

+τ
∂
∂

+
∂
∂

−  

δij = 1 i = j 
δij = 0 i ≠ j 
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This can be put in a more compact form by defining vector 
stress on x-face 
 
 k̂ĵî xzxyxxx τ+τ+τ=τ    
 
and noting that 
 

 dFx,surf = dxdydz
x
p

x 



 τ⋅∇+

∂
∂

−  

 fx,surf  =  xx
p

τ⋅∇+
∂
∂

−  per unit volume 

 
similarly for y and z 

 fy,surf  =  yy
p

τ⋅∇+
∂
∂

−  k̂ĵî yzyyyxy τ+τ+τ=τ   

 

 fz,surf  =  zz
p

τ⋅∇+
∂
∂

−  k̂ĵî zzzyzxz τ+τ+τ=τ  

 
finally if we define 

k̂ĵî zyxij τ+τ+τ=τ   then 
 

ijijsurf pf σ⋅∇=τ⋅∇+−∇=   ijijij p τ+δ−=σ  
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Putting together the above results 
 

 
Dt

VDfff surfbody ρ=+∑ =  

 
 k̂gf body ρ−=  
 ijsurface pf τ⋅∇+−∇=  

 
DV Va V V
Dt t

∂
= = + ⋅∇

∂  
 
 
 ˆ

ija gk pρ ρ τ= − −∇ +∇⋅  
inertia   body   
force   force surface  surface force 
    due to force due  due to viscous 
    gravity to p   shear and normal  

stresses 
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For Newtonian fluid the shear stress is proportional to the 
rate of strain, which for incompressible flow can be written 
 
 𝜏𝜏𝑖𝑖𝑖𝑖 = 2𝜇𝜇𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜇𝜇 �𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗
+

𝜕𝜕𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕𝑖𝑖
�          

 
where,  
 𝜇𝜇 = coefficient of viscosity 

𝜀𝜀𝑖𝑖𝑖𝑖 =  rate of strain tensor 

      = 

⎣
⎢
⎢
⎢
⎡

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥 ⎦
⎥
⎥
⎥
⎤

 

 
 
𝜌𝜌𝑎𝑎 = −𝜌𝜌𝜌𝜌𝑘𝑘� − ∇𝑝𝑝 + ∇ ⋅ �𝜏𝜏𝑖𝑖𝑖𝑖�  
 
where, 

 ∇ ⋅ �𝜏𝜏𝑖𝑖𝑖𝑖� = 𝜇𝜇 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝜕𝜕𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
� = 𝜇𝜇

⎝

⎛𝜕𝜕2𝜕𝜕𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

2�
∇2𝐶𝐶

+ 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗�
=0⎠

⎞  

 
𝜌𝜌𝑎𝑎 = −𝜌𝜌𝜌𝜌𝑘𝑘� − ∇𝑝𝑝 + 𝜇𝜇∇2𝑉𝑉  
 
 
𝜌𝜌𝑎𝑎 = −∇(𝑝𝑝 + 𝛾𝛾𝜕𝜕) + 𝜇𝜇∇2𝑉𝑉  Navier-Stokes Equation 
∇ ⋅ 𝑉𝑉 = 0      Continuity Equation 
 

𝜏𝜏 = 𝜇𝜇
𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

 

Ex) 1-D flow 
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Four equations in four unknowns:  V and p 
Difficult to solve since 2nd order nonlinear PDE 
 

x: 𝜌𝜌 �𝜕𝜕𝜕𝜕
𝜕𝜕𝛿𝛿

+ 𝜕𝜕 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜕𝜕 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜕𝜕 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� = −𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
+ 𝜇𝜇 �𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

� 
 
y: 𝜌𝜌 �𝜕𝜕𝜕𝜕

𝜕𝜕𝛿𝛿
+ 𝜕𝜕 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
+ 𝜕𝜕 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
+ 𝜕𝜕 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
� = −𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
+ 𝜇𝜇 �𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

� 
 
z: 𝜌𝜌 �𝜕𝜕𝜕𝜕

𝜕𝜕𝛿𝛿
+ 𝜕𝜕 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
+ 𝜕𝜕 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
+ 𝜕𝜕 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
� = −𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
− 𝜌𝜌𝜌𝜌 + 𝜇𝜇 �𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

� 
 

0
z
w

y
v

x
u

=
∂
∂

+
∂
∂

+
∂
∂  

 
Navier-Stokes equations can also be written in other coor-
dinate systems such as cylindrical, spherical, etc. 
 
There are about 80 exact solutions for simple geometries.  
For practical geometries, the equations are reduced to alge-
braic form using finite differences and solved using com-
puters. 
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Ex) Exact solution for laminar incompressible steady flow 
in a circular pipe  

 
 
Use cylindrical coordinates with assumptions 
 
 𝜕𝜕

𝜕𝜕𝛿𝛿
= 0 : Steady flow 

 
 𝜕𝜕

𝜕𝜕𝑥𝑥
= 0 : Fully-developed flow 

  
𝜕𝜕𝑠𝑠 = 0 : Flow is laminar and parallel to the wall 
 

 𝜕𝜕𝜃𝜃 = 𝜕𝜕
𝜕𝜕𝜃𝜃

= 0 : Flow is axisymmetric with no swirl 
 
Continuity equation: 
 
 1

𝑠𝑠
𝜕𝜕(𝑠𝑠𝜕𝜕𝑟𝑟)
𝜕𝜕𝑠𝑠

+ 1
𝑠𝑠
𝜕𝜕𝜕𝜕𝜃𝜃
𝜕𝜕𝜃𝜃

+ 𝜕𝜕𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

= 0 
 
 
Thus, (𝜕𝜕𝑠𝑠 , 𝜕𝜕𝜃𝜃 , 𝜕𝜕𝑥𝑥) satisfies the continuity equation 
 
  

 19 
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Momentum equation: 
 

𝜌𝜌 �𝜕𝜕𝜕𝜕𝑟𝑟
𝜕𝜕𝛿𝛿

+ 𝜕𝜕𝑠𝑠
𝜕𝜕𝜕𝜕𝑟𝑟
𝜕𝜕𝑠𝑠

+ 𝜕𝜕𝜃𝜃
𝑠𝑠
𝜕𝜕𝜕𝜕𝑟𝑟
𝜕𝜕𝜃𝜃

− 𝜕𝜕𝜃𝜃
2

𝑠𝑠
+ 𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕𝑟𝑟
𝜕𝜕𝑥𝑥
�  

       = −𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠

+ 𝜌𝜌𝜌𝜌𝑠𝑠 + 𝜇𝜇 �1
𝑠𝑠
𝜕𝜕
𝜕𝜕𝑠𝑠
�𝑟𝑟 𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝑠𝑠
� − 𝜕𝜕𝑟𝑟

𝑠𝑠2
+ 1

𝑠𝑠2
𝜕𝜕2𝜕𝜕𝑟𝑟
𝜕𝜕𝜃𝜃2

− 2
𝑠𝑠2

𝜕𝜕𝜕𝜕𝜃𝜃
𝜕𝜕𝜃𝜃

+ 𝜕𝜕2𝜕𝜕𝑟𝑟
𝜕𝜕𝑥𝑥2

�  
 
𝜌𝜌 �𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝛿𝛿
+ 𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕𝜃𝜃
𝜕𝜕𝑠𝑠

+ 𝜕𝜕𝜃𝜃
𝑠𝑠
𝜕𝜕𝜕𝜕𝜃𝜃
𝜕𝜕𝜃𝜃

+ 𝜕𝜕𝑟𝑟𝜕𝜕𝜃𝜃
𝑠𝑠

+ 𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥
�  

     = −1
𝑠𝑠
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃

+ 𝜌𝜌𝜌𝜌𝜃𝜃 + 𝜇𝜇 �1
𝑠𝑠
𝜕𝜕
𝜕𝜕𝑠𝑠
�𝑟𝑟 𝜕𝜕𝜕𝜕𝜃𝜃

𝜕𝜕𝑠𝑠
� − 𝜕𝜕𝜃𝜃

𝑠𝑠2
+ 1

𝑠𝑠2
𝜕𝜕2𝜕𝜕𝜃𝜃
𝜕𝜕𝜃𝜃2

+ 2
𝑠𝑠2

𝜕𝜕𝜕𝜕𝑟𝑟
𝜕𝜕𝜃𝜃

+ 𝜕𝜕2𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥2

�  
 
𝜌𝜌 �𝜕𝜕𝜕𝜕𝑧𝑧

𝜕𝜕𝛿𝛿
+ 𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕𝑧𝑧
𝜕𝜕𝑠𝑠

+ 𝜕𝜕𝜃𝜃
𝑠𝑠
𝜕𝜕𝜕𝜕𝑧𝑧
𝜕𝜕𝜃𝜃

+ 𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥
�  

 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜌𝜌𝜌𝜌𝑥𝑥 + 𝜇𝜇 �1
𝑠𝑠
𝜕𝜕
𝜕𝜕𝑠𝑠
�𝑟𝑟 𝜕𝜕𝜕𝜕𝑧𝑧

𝜕𝜕𝑠𝑠
� + 1

𝑠𝑠2
𝜕𝜕2𝜕𝜕𝑧𝑧
𝜕𝜕𝜃𝜃2

+ 𝜕𝜕2𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥2

�  
 
or 
 
0 = −𝜌𝜌𝜌𝜌 sin𝜃𝜃 − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑠𝑠
    (1) 

0 = −𝜌𝜌𝜌𝜌 cos𝜃𝜃 − 1
𝑠𝑠
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃

    (2) 

0 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜇𝜇 �1
𝑠𝑠
𝜕𝜕
𝜕𝜕𝑠𝑠
�𝑟𝑟 𝜕𝜕𝜕𝜕𝑧𝑧

𝜕𝜕𝑠𝑠
��   (3) 

 
where, 
 𝜌𝜌𝑠𝑠 = −𝜌𝜌 sin𝜃𝜃 
 𝜌𝜌𝜃𝜃 = −𝜌𝜌 cos𝜃𝜃 
 
Equations (1) and (2) can be integrated to give 

𝑝𝑝 = −𝜌𝜌𝜌𝜌(𝑟𝑟 sin𝜃𝜃) + 𝑓𝑓1(𝜕𝜕) = −𝜌𝜌𝜌𝜌𝜕𝜕 + 𝑓𝑓1(𝜕𝜕) 
 

⇒ pressure 𝑝𝑝 is hydrostatic and 𝜕𝜕𝑝𝑝 𝜕𝜕𝜕𝜕⁄  is not a func-
tion of 𝑟𝑟 or 𝜃𝜃 

 20 
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Equation (3) can be written in the from 
 

1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟
𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝑟𝑟

� =
1
𝜇𝜇
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

 

 
and integrated (using the fact that 𝜕𝜕𝑝𝑝 𝜕𝜕𝜕𝜕⁄  = constant) to 
give 
 

𝑟𝑟
𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝑟𝑟

=
1

2𝜇𝜇
�
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕
� 𝑟𝑟2 + 𝐶𝐶1 

 
 Integrating again we obtain 
 

𝜕𝜕𝑥𝑥 =
1

4𝜇𝜇
�
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕
� 𝑟𝑟2 + 𝐶𝐶1 ln 𝑟𝑟 + 𝐶𝐶2 

 
B.C. 
 𝜕𝜕𝑥𝑥(𝑟𝑟 = 0) ≠ ∞  ⇒  𝐶𝐶1 = 0 
 𝜕𝜕𝑥𝑥(𝑟𝑟 = 𝑅𝑅) = 0   ⇒ 𝐶𝐶2 = − 1

4𝜇𝜇
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�𝑅𝑅2 

 

∴  𝜕𝜕𝑥𝑥 =
1

4𝜇𝜇
�
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕
� (𝑟𝑟2 − 𝑅𝑅2) 

 
⇒ at any cross section the velocity distribution is parabolic 
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1) Flow rate 𝑄𝑄: 
 

𝑄𝑄 = � 𝜕𝜕𝑥𝑥𝑑𝑑𝐴𝐴
𝑅𝑅

0
= 2𝜋𝜋� 𝜕𝜕𝑥𝑥𝑟𝑟𝑑𝑑𝑟𝑟

𝑅𝑅

0
= −

𝜋𝜋𝑅𝑅4

8𝜇𝜇
�
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕
� 

 
where, 𝑑𝑑𝐴𝐴 = (2𝜋𝜋𝑟𝑟)𝑑𝑑𝑟𝑟 
 
If the pressure drops Δ𝑝𝑝 over a length ℓ: Δ𝜕𝜕

ℓ
= −𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
 

 

𝑄𝑄 =
𝜋𝜋𝑅𝑅4Δ𝑝𝑝

8𝜇𝜇ℓ
 

 
2) Mean velocity 𝑉𝑉: 
 

𝑉𝑉 =
𝑄𝑄
𝐴𝐴

= �
1
𝜋𝜋𝑅𝑅2

� �
𝜋𝜋𝑅𝑅4Δ𝑝𝑝

8𝜇𝜇ℓ
� =

𝑅𝑅2Δ𝑝𝑝
8𝜇𝜇ℓ

 

 
 
3) Maximum velocity 𝜕𝜕𝑚𝑚𝑠𝑠𝑥𝑥: 
 

𝜕𝜕𝑚𝑚𝑠𝑠𝑥𝑥 = 𝜕𝜕𝑥𝑥(𝑟𝑟 = 0) = −
𝑅𝑅2

4𝜇𝜇
�
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕
� =

𝑅𝑅2Δ𝑝𝑝
4𝜇𝜇ℓ

= 2𝑉𝑉 

 
 
⇒  

𝜕𝜕𝑥𝑥
𝜕𝜕𝑚𝑚𝑠𝑠𝑥𝑥

= 1 − �
𝑟𝑟
𝑅𝑅
�
2
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4) Wall shear stress (𝜏𝜏𝑠𝑠𝑥𝑥)𝜕𝜕𝑎𝑎𝑤𝑤𝑤𝑤: 
 

𝜏𝜏𝑠𝑠𝑥𝑥 = 𝜇𝜇 �
𝜕𝜕𝜕𝜕𝑠𝑠
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝑟𝑟

� = 𝜇𝜇
𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝑟𝑟

 
 
where 
 

𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝑟𝑟

= 𝜕𝜕𝑚𝑚𝑠𝑠𝑥𝑥�
=2𝐶𝐶

�−
2𝑟𝑟
𝑅𝑅2
� = −

4𝑉𝑉𝑟𝑟
𝑅𝑅2

 

 
Thus, at the wall (i.e., 𝑟𝑟 = 𝑅𝑅), 
 

(𝜏𝜏𝑠𝑠𝑥𝑥)𝜕𝜕𝑠𝑠𝑤𝑤𝑤𝑤 = −
4𝜇𝜇𝑉𝑉
𝑅𝑅

 
 
and with 𝑄𝑄 = 𝜋𝜋𝑅𝑅2𝑉𝑉, 
 

|(𝜏𝜏𝑠𝑠𝑥𝑥)𝜕𝜕𝑠𝑠𝑤𝑤𝑤𝑤| =
4𝜇𝜇𝑄𝑄
𝜋𝜋𝑅𝑅3

 
 
 
Note: Only valid for laminar flows. In general, the flow 
remains laminar for Reynolds numbers, Re = 𝜌𝜌𝑉𝑉(2𝑅𝑅) 𝜇𝜇⁄ , 
below 2100. Turbulent flow in tubes is considered in Chap-
ter 8. 
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Differential Analysis of Fluid Flow 
 
We now discuss a couple of exact solutions to the Navier-
Stokes equations.  Although all known exact solutions 
(about 80) are for highly simplified geometries and flow 
conditions, they are very valuable as an aid to our under-
standing of the character of the NS equations and their so-
lutions.  Actually the examples to be discussed are for in-
ternal flow (Chapter 8) and open channel flow (Chapter 
10), but they serve to underscore and display viscous flow.  
Finally, the derivations to follow utilize differential analy-
sis.  See the text for derivations using CV analysis. 
 
Couette Flow  

boundary conditions 
 
First, consider flow due to the relative motion of two paral-
lel plates 
 

Continuity  0
x
u
=

∂
∂  

 

Momentum  2

2

dy
ud0 µ=  

 
or by CV continuity and momentum equations: 

u = u(y) 
v = o 

0
y
p

x
p

=
∂
∂

=
∂
∂  

 24 



57:020 Mechanics of Fluids and Transport Processes                                                                 Chapter 6 
Professor Fred Stern   Fall 2014  25 

yuyu 21 ∆ρ=∆ρ  
u1 = u2 
 

( )∑ =−ρ=⋅ρ∑ = 0uuQAdVuF 12x  

xdy
dy
dxyx

dx
dppyp ∆







 τ
+τ+∆τ−∆






 ∆+−∆= = 0 

 

0
dy
d

=
τ      

i.e. 0
dy
du

dy
d

=







µ     

 0
dy

ud
2

2
=µ      

 
from momentum equation 

C
dy
du

=µ       

DyCu +
µ

=      

u(0) = 0 ⇒ D = 0        

u(t) = U ⇒ C = 
t
U

µ    

y
t
Uu =        

=
µ

=µ=τ
t
U

dy
du constant 
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Generalization for inclined flow with a constant pressure 
gradient 
 
 
 
 
 
 
 
 

Continutity  0
x
u
=

∂
∂  

 

Momentum  ( ) 2

2

dy
udzp

x
0 µ+γ+

∂
∂

−=  

 

i.e.,  
dx
dh

dy
ud
2

2
γ=µ   h = p/γ +z = constant 

      plates horizontal 0
dx
dz

=  

      plates vertical 
dx
dz =-1 

which can be integrated twice to yield 
 

  Ay
dx
dh

dy
du

+γ=µ  

  BAy
2
y

dx
dhu

2
++γ=µ  

u = u(y) 
v = o 

0
y
p
=

∂
∂  
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now apply boundary conditions to determine A and B 
  u(y = 0) = 0   ⇒   B = 0 
  u(y = t) = U 
 

  
2
t

dx
dh

t
UAAt

2
t

dx
dhU

2
γ−

µ
=⇒+γ=µ  

 





 γ−
µ

µ
+

µ
γ

=
2
t

dx
dh

t
U1

2
y

dx
dh)y(u

2
 

= ( ) y
t
Uyty

dx
dh

2
2 +−

µ
γ

−  

 
This equation can be put in non-dimensional form: 

t
y

t
y

t
y1

dx
dh

U2
t

U
u 2

+





 −

µ
γ

−=  

 
define:  P = non-dimensional pressure gradient 

  = 
dx
dh

U2
t2

µ
γ

−     zph +
γ

=  

  Y = y/t    





+

γµ
γ

−=
dx
dz

dx
dp1

U2
z2

 

 ⇒ Y)Y1(YP
U
u

+−⋅=  

parabolic velocity profile 
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t
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t
Py

t
Py

U
u

2

2
+−=  

 

[ ]

t

dyU

t
qu

udyq

t

0

t

0

∫
==

∫=

 

 

∫ 



 +−=

t

0

2
2 dy

t
yy

t
Py

t
P

U
ut  =

2
t

3
Pt

2
Pt

+−  

 

2
U

dx
dh

12
tu

2
1

6
P

U
u 2

+





 γ−

µ
=⇒+=  

For laminar flow 1000tu
<

ν
  Recrit ∼ 1000 
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The maximum velocity occurs at the value of y for which: 

 0
dy
du

=   
t
1y

t
P2

t
P0

U
u

dy
d

2 +−==





  

 

  ( )
P2
t

2
t1P

P2
ty +=+=⇒  @ umax 

 

  ( )
P4

U
2
U

4
UPyuu maxmax ++==∴  

 

note:   if U = 0: 
3
2

4
P

6
P

u
u

max
==  

 
The shape of the velocity profile u(y) depends on P: 

1. If P > 0, i.e., 0
dx
dh

<  the pressure decreases in the  

direction of flow (favorable pressure gradient) and the 
velocity is positive over the entire width 

  

θγ−=







+

γ
γ=γ sin

dx
dpzp

dx
d

dx
dh  

 

a) 0
dx
dp

<  

 

b) θγ< sin
dx
dp  

 

for U = 0, y = t/2 
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1. If P < 0, i.e., 0>dxdh  the pressure increases in the di-
rection of flow (adverse pressure gradient) and the ve-
locity over a portion of the width can become negative 
(backflow) near the stationary wall.  In this case the 
dragging action of the faster layers exerted on the fluid 
particles near the stationary wall is insufficient to over-
come the influence of the adverse pressure gradient. 
 

0sin
dx
dp

>θγ−  

θγ> sin
dx
dp   or  

dx
dpsin <θγ  

 

2. If P = 0, i.e., 0
dx
dh

=  the velocity profile is linear 

y
t
Uu =  

a) 0
dx
dp

=  and θ = 0 

b) θγ= sin
dx
dp  

For U = 0 the form ( ) YY1PY
U
u

+−=  is not appropriate 

u = UPY(1-Y)+UY 

    = ( ) UYY1Y
dx
dh

2
t 2

+−
µ

γ
−  

Now let U = 0: ( )Y1Y
dx
dh

2
tu

2
−

µ
γ

−=   

 

Note:  we derived 
this special case 
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3. Shear stress distribution 
 
Non-dimensional velocity distribution 

( )* 1uu P Y Y Y
U

= = ⋅ − +  

where * uu
U

≡  is the non-dimensional velocity, 

 
2

2
t dhP
U dx

γ
µ

≡ − is the non-dimensional pressure gradient 

 
yY
t

≡ is the non-dimensional coordinate. 
Shear stress  

du
dy

τ µ=  

In order to see the effect of pressure gradient on shear 
stress using the non-dimensional velocity distribution, we 
define the non-dimensional shear stress: 

*

21
2

U

ττ
ρ

=  

Then  

    
( )
( )

*
*

2

1 2
1
2

Ud u U du
td y t Ut dYU

µτ µ
ρρ

= =  

    ( )2 2 1PY P
Ut
µ

ρ
= − + +  

    ( )2 2 1PY P
Ut
µ

ρ
= − + +  

    ( )2 1A PY P= − + +  

where 2 0A
Ut
µ

ρ
≡ >  is a positive constant.  

So the shear stress always varies linearly with Y across any 
section. 
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At the lower wall ( )0Y = : 

    ( )* 1lw A Pτ = +  

At the upper wall ( )1Y = : 

    ( )* 1uw A Pτ = −  
 
For favorable pressure gradient, the lower wall shear stress 
is always positive: 
 1. For small favorable pressure gradient ( )0 1P< < : 
    * 0lwτ >  and * 0uwτ >  
 2. For large favorable pressure gradient ( )1P > : 
    * 0lwτ >  and * 0uwτ <  
 
 
 
 
 
 
 
 
 
 
      ( )0 1P< <         ( )1P >  
 
 
For adverse pressure gradient, the upper wall shear stress is 
always positive: 
 1. For small adverse pressure gradient ( )1 0P− < < : 
    * 0lwτ >  and * 0uwτ >  
 2. For large adverse pressure gradient ( )1P < − : 
    * 0lwτ <  and * 0uwτ >  
  

τ τ
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      ( )1 0P− < <         ( )1P < −  
 
For 0U = , i.e., channel flow, the above non-dimensional 
form of velocity profile is not appropriate. Let’s use dimen-
sional form: 

    ( ) ( )
2

1
2 2
t dh dhu Y Y y t y

dx dx
γ γ
µ µ

= − − = − −  

Thus the fluid always flows in the direction of decreasing 
piezometric pressure or piezometric head because 

0, 0
2

yγ
µ
> >  and 0t y− > . So if 

dh
dx  is negative, u is posi-

tive; if 
dh
dx  is positive, u is negative. 

 
Shear stress: 

    
1

2 2
du dh t y
dy dx

γτ µ  = = − − 
 

 

 

Since 1 0
2

t y − > 
 

, the sign of shear stress τ  is always oppo-

site to the sign of piezometric pressure gradient dh
dx , and the 

magnitude of τ  is always maximum at both walls and zero 
at centerline of the channel. 

τ τ
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 For favorable pressure gradient, 0dh
dx

< , 0τ >  

 For adverse pressure gradient, 0dh
dx

> , 0τ <  
 
 
 
 
 
 
 
 
 
 
 
 

   0dh
dx

<       0dh
dx

>  

 
Flow down an inclined plane 

 
uniform flow ⇒ velocity and depth do not 

       change in x-direction 
 

Continuity 0
dx
du

=  

ττ
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x-momentum ( ) 2

2

dy
udzp

x
0 µ+γ+

∂
∂

−=  

y-momentum ( )⇒γ+
∂
∂

−= zp
y

0 hydrostatic pressure variation 

         0
dx
dp

=⇒  

 

   θγ−=µ sin
dy

ud
2

2
 

 

   cysin
dy
du

+θ
µ
γ

−=  

 

   DCy
2
ysinu

2
++θ

µ
γ

−=  

 

dsinccdsin0
dy
du

dy

θ
µ
γ

+=⇒+θ
µ
γ

−==
=

 

 
u(0) = 0  ⇒ D = 0 

 

   dysin
2
ysinu

2
θ

µ
γ

+θ
µ
γ

−=  

 

      = ( )yd2ysin
2

−θ
µ
γ  
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     u(y) = ( )yd2y
2
sing

−
ν
θ  

 

 
d

0

3
2

d

0 3
ydysin

2
udyq 








−θ

µ
γ

=∫=    

 

    = θ
µ
γ sind

3
1 3  

 

θ
ν

=θ
µ
γ

== sin
3

gdsind
3
1

d
qV

2
2

avg  

 
 
in terms of the slope So = tan θ ∼ sin θ 
 

  
ν

=
3

SgdV o
2

 

 
Exp. show Recrit ∼ 500, i.e., for Re > 500 the flow will be-
come turbulent 
 

  θγ−=
∂
∂ cos
y
p       

ν
=

dVRecrit  ∼ 500 

 
  Cycosp +θγ−=  
 
  ( ) Cdcospdp o +θγ−==  
 

discharge per 
unit width 
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i.e.,  ( ) opydcosp +−θγ=  
 
*  p(d) > po 
 
*  if θ = 0  p = γ(d − y) + po      

entire weight of fluid imposed 
 
    if θ = π/2 p = po 
   no pressure change through the fluid  
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