EXAM1 Solutions

Problem 1: Shear stress (Chapter 1)
Fixed plate
Information and assumptions

- $v=1.28 \times 10^{-2} \mathrm{ft}^{2} / \mathrm{s}$
- $\rho_{\text {water }}=1.94$ slugs $/ f^{3}$
- $\quad S G=1.26$
- $u(y)=\frac{B}{2 \mu}\left(y^{2}-h y\right)+V\left(1-\frac{y}{b}\right)$
- $V=0.02 \mathrm{ft} / \mathrm{s}$
- $\quad h=1.0 \mathrm{in}$
- $B=-0.334 \mathrm{lb} / \mathrm{ft}^{3}$

- $A=100 f t^{2}$

Find

- Find (a) shear stress on the plate, (b) required force, and (c) power to pull the plate

Solution
(a) Calculate dynamic viscosity

$$
\mu=v \cdot \rho=v \cdot\left(S G \cdot \rho_{\text {water }}\right)=\left(1.28 \times 10^{-2}\right)(1.26 \times 1.94)=3.13 \times 10^{-2} \mathrm{lb} \cdot \mathrm{~s} / \mathrm{ft}^{2}+1
$$

Shear stress

$$
\begin{gathered}
\tau=\mu \frac{d u}{d y}+5 \\
\tau=\mu\left(\frac{B}{2 \mu}(2 y-h)-\frac{V}{b}\right)+1
\end{gathered}
$$

Shear stress at the wall (at $y=0$)

$$
\therefore \tau=\left(3.13 \times 10^{-2}\right)\left(\frac{(-0.334)}{(2)\left(3.13 \times 10^{-2}\right)}\left(2 \times 0-\frac{1}{12}\right)-\frac{(0.02)}{(1 / 12)}\right)=\mathbf{0 . 0 0 6 4} \mathbf{l b} / \mathbf{f t}^{2}+1
$$

(b) Friction force

$$
F=\tau \cdot A=(0.0064)(100)=\mathbf{0 . 6 4} \mathbf{l b}+1
$$

(c) Power

$$
P=F \cdot V=(0.64)(0.02)=\mathbf{0 . 0 1 2 8} \mathbf{l b} \cdot \mathbf{f t} / \mathbf{s}+1
$$

1:131
11.1131 (See Fluids in the News article titled "Walking on water," Section 1.9.) (a) The water strider bug shown in Fig. P1.131 is supported on the surface of a pond by surface tension acting along the interface between the water and the bug's legs. Determine the minimum length of this interface needed to support the bug. Assume the bug weighs $10^{-4} \mathrm{~N}$ and the surface tension force acts vertically upwards. (b) Repeat part (a) if surface tension were to support a person weighing 750 N .

F\|GUREP1.131

For equilibrium,

$$
\omega \omega=\sigma l
$$

(a)

$$
\begin{aligned}
l & =\frac{\omega}{\sigma}=\frac{10^{-4} \mathrm{~N}}{7.34 \times 10^{-2} \frac{\mathrm{~N}}{\mathrm{~m}}} \\
& =1.36 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

$q \sim$ weight
$\sigma \sim$ surface tension
$l \sim$ length of interface

$$
=\left(1.36 \times 10^{-3} \mathrm{~m}\right)\left(10^{3} \frac{\mathrm{~mm}}{\mathrm{~m}}\right)=1.36 \mathrm{~mm}
$$

(b)

$$
l=\frac{750 \mathrm{~N}}{7.34 \times 10^{-2} \frac{\mathrm{~N}}{\mathrm{~m}}}=\underline{\left.\underline{1.02 \times 10^{4} \mathrm{~m}}(6.34 \mathrm{mi}!!)\right), ~(6)}(1)
$$

2.3.3 For the inclined-tube manometer of Fig. P2.43 the pressure in pipe A is 0.6 psi. The fluid in both pipes A and B is water, and the gage fluid in the manometer has a specific gravity of 2.6 . What is the pressure in pipe B corresponding to the differential reading shown?

FIGURE P2.43

$$
P_{A}+\gamma_{H_{2} O}\left(\frac{3}{12} f t\right)-\gamma_{g f}\left(\frac{8}{12} f t\right) \sin 30^{\circ}-\gamma_{H_{2} 0}\left(\frac{3}{12} f t\right)=p_{13}
$$

(where $\gamma_{g f}$ is the specific weight of the gage fluid) Thus,

$$
\begin{aligned}
P_{B} & =P_{A}-\gamma_{g f}\left(\frac{8}{12} \mathrm{ft}\right) \sin 30^{\circ} \\
& =\left(0.6 \frac{\mathrm{lb}}{i \mathrm{hi}^{2}}\right)\left(144 \frac{\mathrm{in} \mathrm{n}^{2}}{\mathrm{ft}}\right)-(2.6)\left(62,4 \frac{\mathrm{lb}}{\mathrm{ft}}\right)\left(\frac{8}{12} \mathrm{ft}\right)(0.5)=32.3 \frac{\mathrm{lb}}{\mathrm{ft}^{2}} \\
& =32.3 \mathrm{bb} / \mathrm{ft}^{2} / 144 \mathrm{im.}^{2} / \mathrm{ft}^{2}=0.224 \mathrm{P} \mathrm{P}^{2}
\end{aligned}
$$

2.44

2. 44 A flowrate measuring device is installed in a horizontal pipe through which water is flowing. A U-tube manometer is connected to the pipe through pressure taps located 3 in. on either side of the device. The gage fluid in the manomter has a specific weight of $112 \mathrm{lb} / \mathrm{ft}^{3}$. Determine the differential reading of the manometer corresponding to a pressure drop between the taps of $0.5 \mathrm{lb} / \mathrm{in} .^{2}$.

Let p_{1} and p_{2} be pressures at pressure taps.
flowmeter write manometer equation between p_{1} and p_{2}. Thus,
$p_{1}+\gamma_{H_{2} O}\left(h_{1}+h\right)-\gamma_{g f} h-\gamma_{H_{2} O} h_{1}=p_{2}$

$$
\begin{aligned}
h & =\frac{p_{1}-p_{2}}{\gamma_{g f}-\gamma_{H_{2 O}}}=\frac{\left(0.5 \frac{\mathrm{lb}}{\frac{i n .2}{2}}\right)\left(144 \frac{\mathrm{in}^{2}}{f t^{2}}\right)}{112 \frac{\mathrm{lb}}{f t^{3}}-62.4 \frac{\mathrm{lb}}{f t^{3}}} \\
& =1.45 \mathrm{ft}
\end{aligned}
$$

September 16, 2013

NAME
Fluids-ID

Quiz 2.

A large, open tank contains water and is connected to a 6 -ft-diameter conduit as shown the Figure. A circular plug is used to seal the conduit. (Hints: $I_{x c}=\pi R^{4} / 4, \gamma=62.4 \mathrm{lb} / \mathrm{ft}^{3}$)
(a) Determine the magnitude of the force of the water $\left(F_{R}\right)$ on the plug. (+4 points)
(b) Determine the location $\left(y_{R}\right)$ and direction of the force of the
 water on the plug. (+3 points)
Note: Attendance (+2 points), Format (+1 points)
Solution:
a)

$$
\begin{array}{ll}
F_{R}=p_{c} \cdot A & \text { (+2 points) } \\
p_{c}=\gamma \cdot h_{c}, \text { where } h_{C}=12 \mathrm{ft} & \text { (+1 point) } \\
A=\frac{\pi D^{2}}{4} & \text { (+0.5 point) } \\
F_{R}=\left(62.4 \frac{l b}{f t^{3}}\right)(12 f t)\left(\frac{\pi(6 f t)^{2}}{4}\right)=21,200 \mathrm{lb} & \text { (+0.5 point) }
\end{array}
$$

b)

$$
\begin{align*}
& y_{R}=y_{c}+\frac{I_{x c}}{y_{C} \cdot A} \tag{+2points}\\
& I_{x c}=\frac{\pi R^{4}}{4}=\frac{\pi(3 f t)^{4}}{4}=63.6 \mathrm{ft}^{4} \\
& y_{R}=12 \mathrm{ft}+\frac{63.6 \mathrm{ft}}{} \mathrm{t}^{4} \\
& (12 \mathrm{ft}) \pi(3 \mathrm{ft})^{2}
\end{align*}=12.19 \mathrm{ft}
$$

(+0.5 point)

The force acts below the water surface and is perpendicular to the plug surface as shown in the Figure below.

2.82

2.822 A structure is attached to the ocean floor as shown in Fig P2.82.A 2-m-diameter hatch is located in an inclined wall and hinged on one edge. Determine the minimum air pressure, p_{1}, within the container to open the hatch. Neglect the weight of the hatch and friction in the hinge.

- FIGURE P2.82

$$
F_{R}=\gamma h_{c} A \text { where } h_{c}=10 \mathrm{~m}+\frac{1}{2}(2 \mathrm{zm}) \sin 30^{\circ}
$$

$$
=10.5 \mathrm{~m}
$$

Thus,

$$
\begin{aligned}
F_{l} & =\left(10.1 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{3}}\right)(10.5 \mathrm{~m})\left(\frac{\pi}{4}\right)(2 \mathrm{~m})^{2} \\
& =3.33 \times 10^{5} \mathrm{~N}
\end{aligned}
$$

To locate F_{R},

$$
y_{R}=\frac{I_{x c}}{y_{c} A}+y_{c} \text { where } y_{c}=\frac{10 \mathrm{~m}}{\sin 30^{\circ}}+1 \mathrm{~m}=21 \mathrm{~m}
$$

so that

$$
y_{R}=\frac{\left(\frac{\pi}{4}\right)(1 \mathrm{~m})^{4}}{(21 \mathrm{~m})(\pi)(1 \mathrm{~m})^{2}}+21 \mathrm{~m}=21.012 \mathrm{~m}
$$

For equilibrium,

$$
\sum M_{H}=0
$$

so that

$$
F_{R}(21.012 m-20 \mathrm{~m})=p_{1}(\pi)(1 \mathrm{~m})^{2}(1 \mathrm{~m})
$$

and

$$
p_{1}=\frac{\left(3.33 \times 10^{5} \mathrm{~N}\right)(1.012 \mathrm{~m})}{\pi(1 \mathrm{~m})^{2}(1 \mathrm{~m})}=107 \mathrm{kP}
$$

NAME
Fluids-ID
Quiz 3. The quarter circle gate $B C$ in Figure 1 is hinged at C. Find the horizontal force P required to hold the gate stationary. The gate width into the paper is 3 m . Neglect the weight of the gate.

Resources:

- $F_{H}=\bar{p} A_{\text {proj }} ; \quad F_{V}=\gamma \forall$
- $y_{c p}=\bar{y}+I_{x c} / \bar{y} A_{p r o j} ; x_{c p}=\bar{x}$ of V
- $\quad \gamma=9,780 \mathrm{~N} / \mathrm{m}^{3}$ for water

$$
\begin{aligned}
& A=\frac{\pi R^{2}}{4} \\
& I_{x c}=I_{y c}=0.05488 R^{4} \\
& I_{x y c}=-0.01647 R^{4}
\end{aligned}
$$

Note: Attendance (+2 points), Format (+1 points)

Solution:

The horizontal component of water force is

$$
F_{H}=\gamma h_{c} A_{\text {proj }}=\left(9790 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}\right)(1 \mathrm{~m})\left(2 \times 3 \mathrm{~m}^{2}\right)=58,740 \mathrm{~N}
$$

and the vertical component of water force is
$F_{V}=\gamma \Downarrow=\left(9790 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}\right)\left[\left(\frac{\pi}{4}\right)(2 \mathrm{~m})^{2}(3 \mathrm{~m})\right]=92,270 \mathrm{~N}$
The pressure center is
$x_{c p}=\frac{4 R}{3 \pi}=\frac{(4)(2 \mathrm{~m})}{3 \pi}=0.849 \mathrm{~m}$
$y_{c p}=\bar{y}+\frac{I_{x c}}{\bar{y} A_{p r o j}}=(1 m)+\frac{(3 m)(2 m)^{3} / 12}{(1 m)(2 m)(3 m)}=1.333 \mathrm{~m}$
(+1 point)
where $x_{c p}$ is from the left of C and $y_{c p}$ is down from the surface. Sum moments clockwise about point C :
$\sum M_{C}=0=P \times(2 m)-(58,740 N)(2 m-1.333 m)-(92,270 N)(0.849 m)$
$P=58,700 N=58.7 \boldsymbol{k N}$
(+1 point)
3.51 Water flows through the pipe contraction shown in Fig. P3.51, For the given 0.2-m difference in the manometer level, determine the flowrate as a function of the diameter of the small pipe, D.

FIGURE P3.5;
$\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}$ with $A_{1} V_{1}=A_{2} V_{2}$
Thus, with $z_{1}=z_{2} \quad$ or $\quad V_{2}=\frac{\left(\frac{\pi}{4} D_{1}^{2}\right)}{\left(\frac{\pi}{4} D_{2}^{2}\right)} V_{1}=\left(\frac{0.1}{\Delta}\right)^{2} V_{1}$

$$
\frac{p_{1}-p_{2}}{\gamma}=\frac{V_{2}^{2}-V_{1}^{2}}{2 g}=\frac{\left[\left(\frac{0.1}{\Delta}\right)^{4}-1\right] V_{1}^{2}}{2 g}
$$

but

$$
\rho_{1}=\gamma h_{1} \text { and } \rho_{2}=\gamma h_{2} \text { so that } \rho_{1}-p_{2}=\gamma\left(h_{1}-h_{2}\right)=0.2 \gamma
$$

Thus,

$$
\begin{aligned}
& \frac{0.2 \gamma}{\gamma}=\frac{\left[\left(\frac{0.1}{D}\right)^{4}-1\right] V_{1}^{2}}{2 g} \text { or } V_{1}=\sqrt{\frac{0.2(2 g)}{\left[\left(\frac{0.1}{D}\right)^{4}-1\right]}} \\
& \text { and } \\
& Q=A_{1} V_{1}=\frac{\pi}{4}(0.1)^{2} \sqrt{\frac{0.2(2(9.81))}{\left[\left(\frac{0.1}{D}\right)^{4}-1\right]}}
\end{aligned}
$$

or

September 30, 2016

NAME

Quiz 5. When a valve is opened, fluid flows in the expansion duct shown below according to the approximation

$$
\underline{V}=u \hat{\boldsymbol{\imath}}=U\left(1-\frac{x}{2 L}\right)\left(\frac{U t}{L}\right) \hat{\boldsymbol{\imath}}
$$

for $\mathrm{t} \ll L / U$. If $L=1 \mathrm{~m}$ and $U=1 \mathrm{~m} / \mathrm{s}$, then at $(x, t)=(L, L / 2 U)$,

1) Find the unsteady (local) acceleration of a_{x}
2) Find the convective acceleration of a_{x}
3) Find the total acceleration a_{x}

Acceleration:

$$
\begin{aligned}
& a_{x}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z} \\
& a_{y}=\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z} \\
& a_{z}=\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}
\end{aligned}
$$

Note: Attendance (+2 points), format (+1 point)

Solution:

1) local acceleration

$$
\left(a_{x}\right)_{l o c a l}=\frac{\partial u}{\partial t}=\frac{\partial}{\partial t}\left[U\left(1-\frac{x}{2 L}\right)\left(\frac{U t}{L}\right)\right]=\frac{U^{2}}{L}\left(1-\frac{x}{2 L}\right)
$$

(+2 points)
at $(x, t)=(L, L / 2 U)$,

$$
\left(a_{x}\right)_{l o c a l}=\frac{U^{2}}{L}\left(1-\frac{L}{2 L}\right)=\frac{U^{2}}{2 L}=\frac{(1 \mathrm{~m} / \mathrm{s})^{2}}{2 \times 1 \mathrm{~m}}=0.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

(+1 points)
2) convective acceleration

$$
\begin{equation*}
\left(a_{x}\right)_{c o n v}=u \frac{\partial u}{\partial x}=U\left(1-\frac{x}{2 L}\right)\left(\frac{U t}{L}\right) \frac{\partial}{\partial x}\left[U\left(1-\frac{x}{2 L}\right)\left(\frac{U t}{L}\right)\right]=-\frac{U^{2}}{2 L}\left(1-\frac{x}{2 L}\right)\left(\frac{U t}{L}\right)^{2} \tag{+2points}
\end{equation*}
$$

at $(x, t)=(L, L / 2 U)$,

$$
\left(a_{x}\right)_{c o n v}=-\frac{U^{2}}{2 L}\left(1-\frac{L}{2 L}\right)\left(\frac{U}{L} \cdot \frac{L}{2 U}\right)^{2}=-\frac{U^{2}}{16 L}=-\frac{(1 \mathrm{~m} / \mathrm{s})^{2}}{16 \times 1 \mathrm{~m}}=-0.0625 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

(+1 points)

September 30, 2016

3) total acceleration

$$
a_{x}=\left(a_{x}\right)_{l o c a l}+\left(a_{x}\right)_{c o n v}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\frac{U^{2}}{2 L}\left(1-\frac{x}{2 L}\right)\left(1-\frac{1}{2}\left(\frac{U t}{L}\right)^{2}\right)
$$

(+0.5 points)
at $(x, t)=(L, L / 2 U)$,

$$
a_{x}=\frac{U^{2}}{L}\left(1-\frac{L}{2 L}\right)\left(1-\frac{1}{2}\left(\frac{U}{L} \cdot \frac{L}{2 U}\right)^{2}\right)=\frac{7 U^{2}}{16 L}=\frac{7 \times(1 \mathrm{~m} / \mathrm{s})^{2}}{16 \times 1 \mathrm{~m}}=0.4375 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

