Applications of Momentum Equation

Initial Setup

1. RTT:

$$
\frac{D B_{s y s}}{D t}=\frac{d}{d t} \int_{C V} \beta \rho d \bigvee+\int_{C S} \beta \rho \underline{V_{R}} \cdot d \underline{A}
$$

where, $\underline{V_{R}}=\underline{V}-\underline{V_{S}}$ and $\underline{d A}=\widehat{\boldsymbol{n}} d A$.
If CV is non-deforming and flow is steady $(\partial / \partial t=0)$,

$$
\frac{d}{d t} \int_{C V} \beta \rho d \bigvee=\int_{C V} \frac{\partial}{\partial t}(\beta \rho) d \bigvee=0
$$

If CV is fixed (i.e., ${\underline{V_{S}}}^{=}=0$),

$$
\underline{V_{R}}=\underline{V}
$$

Also, if flow is 1D at discrete CS's,

$$
\int_{C S} \beta \rho \underline{V} \cdot \underline{d A}=\sum(\beta \dot{m})_{o u t}-\sum(\beta \dot{m})_{i n}
$$

where,

$$
\dot{m}=\rho \underline{V} \cdot \underline{A}=\rho Q=\rho V A(V=|\underline{V}| \text { if } \underline{V} \text { is normal to } A)
$$

2. Linear momentum equation:

Simplified RTT for 1) fixed CV, 2) steady flow, and 3) 1D flows at discrete CS’s:

$$
\frac{D B_{y s s}}{D t}=\sum(\beta \dot{m})_{o u t}-\sum(\beta \dot{m})_{i n}
$$

Let,

$$
\begin{gathered}
B=m \underline{V} \\
\beta=\frac{d B}{d m}=\underline{V}
\end{gathered}
$$

Then,

$$
\frac{D B_{s y s}}{D t}=\sum \underline{F}
$$

Thus, a simplified momentum equation becomes

$$
\sum \underline{F}=\sum(\underline{V} \dot{m})_{o u t}-\sum(\underline{V} \dot{m})_{i n}
$$

or, in component forms:

$$
\begin{aligned}
& \sum F_{x}=\sum\left(V_{x} \dot{m}\right)_{o u t}-\sum\left(V_{x} \dot{m}\right)_{i n} \\
& \sum F_{y}=\sum\left(V_{y} \dot{m}\right)_{o u t}-\sum\left(V_{y} \dot{m}\right)_{i n} \\
& \sum F_{z}=\sum\left(V_{z} \dot{m}\right)_{o u t}-\sum\left(V_{z} \dot{m}\right)_{i n}
\end{aligned}
$$

where,

$$
\dot{m}=\rho Q=\rho V A
$$

1. Jet deflected by a plate or vane (Lecture note Ch5, page 12)

Consider a jet of water turned through a horizontal angle

CV and CS are for jet so that F_{x} and F_{y} are vane reactions forces on fluid

1) Bernoulli equation

$$
\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}
$$

Since $p_{1}=p_{2}=p_{\text {atm }}=0$ (gage) and assume $\left(V_{1}^{2}, V_{2}^{2}\right) \gg 2 g\left(z_{1}-z_{2}\right)$,

$$
\therefore V_{1}=V_{2}
$$

2) Continuity equation

$$
\rho_{1} V_{1} A_{1}=\rho_{2} V_{2} A_{2}
$$

Since $\rho_{1}=\rho_{2}=\rho$ and $V_{1}=V_{2}$,

$$
\therefore A_{1}=A_{2}
$$

3) Momentum equation
x-equation:

$$
\begin{gathered}
\sum F_{x}=\left(V_{x} \rho V A\right)_{\text {out }}-\left(V_{x} \rho V A\right)_{\text {in }} \\
F_{x}=\left(V_{2_{x}}\right)(\rho \underbrace{V_{2} A_{2}}_{=Q})-\left(V_{1_{x}}\right)(\rho \underbrace{V_{1} A_{1}}_{=Q}) \\
\therefore F_{x}=\rho Q\left(V_{2_{x}}-V_{1_{x}}\right)
\end{gathered}
$$

y-equation:

$$
\begin{gathered}
\sum F_{y}=\left(V_{y} \rho V A\right)_{\text {out }}-\left(V_{y} \rho V A\right)_{\text {in }} \\
F_{y}=\left(V_{2_{y}}\right)(\rho \underbrace{V_{2} A_{2}}_{=Q})-\left(V_{1_{y}}\right)(\rho \underbrace{V_{1} A_{1}}_{=Q}) \\
\therefore F_{y}=\rho Q\left(V_{2 y}-V_{1 y}\right)
\end{gathered}
$$

For the given geometry,

$$
V_{1_{x}}=V_{1} ; V_{1 y}=0 ; V_{2 x}=-V_{2} \cos \theta ; V_{2 y}=-V_{2} \sin \theta
$$

Note: F_{x} and F_{y} are the forces exerted by the vane on the fluid and $-F_{x}$ and $-F_{y}$ are the forces on the vane by the fluid (Newton's $3^{\text {rd }}$ law: Action and reaction)

P5.66-simplified) Air ($\rho=2.38 \times 10^{-3}$ slugs $/ \mathrm{ft}^{3}$) jet of velocity $\mathrm{V}=175 \mathrm{ft} / \mathrm{s}$ strikes a curved vane as shown below. Determine the horizontal component of the anchoring force to hold the vane fixed in place. Neglect the weight of the air and all friction.

x-momentum equation:

$$
F_{x}=\left(V_{x} \dot{m}\right)_{\text {out }}-\left(V_{x} \dot{m}\right)_{\text {in }}
$$

Since $V_{1}=V_{2}=V$ from the Bernoulli equation and $A_{1}=A_{2}=A\left(=\pi D^{2} / 4\right)$ from the continuity equation,

$$
F_{x}=(-V \cos \theta)(\rho V A)-(V)(\rho V A)=-\rho V^{2} A(1+\cos \theta)
$$

Thus,

$$
\begin{gathered}
F_{x}=-\left(2.38 \times 10^{-3}\right)(175)^{2}\left(\frac{\pi(2 / 12)^{2}}{4}\right)\left(1+\cos 30^{\circ}\right)=-2.97 \mathrm{lb} \\
\therefore F_{x}=2.97 \mathrm{lb} \text { (to the left) }
\end{gathered}
$$

3. Forces on Bends (Lecture note Ch5, page 16)

Consider the flow through a bend in a pipe. The flow is considered steady and uniform across the inlet and outlet sections. Of primary concern is the force required to hold the bend in place, i.e., the reaction forces R_{x} and R_{y} which can be determined by application of the momentum equation.

Continuity equation:

$$
\rho_{1} V_{1} A_{1}=\rho_{2} V_{2} A_{2}
$$

Since $\rho_{1}=\rho_{2}=\rho$ (i.e., incompressible),

$$
V_{1} A_{1}=V_{2} A_{2}=Q(=\text { constant })
$$

x-momentum equation:

$$
\begin{gathered}
\sum F_{x}=\left(V_{x} \dot{m}\right)_{\text {out }}-\left(V_{x} \dot{m}\right)_{\text {in }} \\
p_{1, \text { gage }} A_{1}-p_{2, \text { gage }} A_{2} \cos \theta+R_{x}=\left(V_{x_{2}}\right)(\rho \underbrace{V_{2} A_{2}}_{=Q})-\left(V_{x_{1}}\right)(\rho \underbrace{V_{1} A_{1}}_{=Q}) \\
\therefore R_{x}=\rho Q\left(V_{x_{2}}-V_{x_{1}}\right)-p_{1, \text { gage }} A_{1}+p_{2, \text { gage }} A_{2} \cos \theta
\end{gathered}
$$

y-momentum equation:

$$
\begin{gathered}
\sum F_{y}=\left(V_{y} \dot{m}\right)_{\text {out }}-\left(V_{y} \dot{m}\right)_{\text {in }} \\
-W_{f}-W_{b}+p_{2, \text { gage }} A_{2} \sin \theta+R_{y}=\left(V_{y_{2}}\right)(\rho \underbrace{V_{2} A_{2}}_{=Q})-\left(V_{y_{1}}\right)(\rho \underbrace{V_{1} A_{1}}_{=Q}) \\
\therefore R_{x}=\rho Q\left(V_{y_{2}}-V_{y_{1}}\right)-p_{2, \text { gage }} A_{2} \cos \theta+W_{f}+W_{b}
\end{gathered}
$$

For the given geometry,

$$
V_{1 x}=V_{1} ; V_{1 y}=0 ; V_{2 x}=V_{2} \cos \theta ; V_{2 y}=-V_{2} \sin \theta
$$

Example) Water at $20^{\circ} \mathrm{C}\left(\rho=998 \mathrm{~kg} / \mathrm{m}^{3}\right)$ flows steadily through a reducing pipe bend, as shown below. Known conditions are $p_{1}=350$ $\mathrm{kPa}, D_{1}=25 \mathrm{~cm}, V_{1}=2.2 \mathrm{~m} / \mathrm{s}, p_{2}=120 \mathrm{kPa}$, and $D_{2}=8 \mathrm{~cm}$. Neglecting bend and water weight, estimate the total force that must be resisted by the flange bolts.

x-momentum equation:

$$
\begin{gathered}
\sum F_{x}=\left(V_{x} \dot{m}\right)_{\text {out }}-\left(V_{x} \dot{m}\right)_{\text {in }} \\
p_{1, \text { gage }} A_{1}+p_{2, \text { gage }} A_{2}+F_{B}=\left(-V_{2}\right)\left(\dot{m}_{2}\right)-\left(V_{1}\right)\left(\dot{m}_{1}\right)
\end{gathered}
$$

where,

$$
\begin{gathered}
\dot{m}=\dot{m}_{2}=\dot{m}_{1}=\rho A_{1} V_{1}=(998)\left(\frac{\pi(0.25)^{2}}{4}\right)(2.2)=107.8 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
V_{2}=\left(\frac{A_{1}}{A_{2}}\right) V_{1}=\left(\frac{D_{1}}{D_{2}}\right)^{2} V_{1}=\left(\frac{0.25}{0.08}\right)^{2}(2.2)=21.5 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Thus,

$$
\begin{gathered}
F_{B}=-\dot{m}\left(V_{1}+V_{2}\right)-p_{1, \text { gage }} A_{1}-p_{2, \text { gage }} A_{2} \\
F_{B}=-(107.8)(2.2+21.5)\left(\frac{1}{1000}\right)-(250) \frac{\pi(0.25)^{2}}{4}-(20) \frac{\pi(0.08)^{2}}{4}=-14.9 \mathrm{kN} \\
\therefore F_{B}=14.9 \mathrm{kN} \text { (to the left) }
\end{gathered}
$$

4. Force on a rectangular sluice gate (Lecture note Ch5, page 17) The force on the fluid due to the gate is calculated from the x momentum equation:

x-momentum equation:

$$
\begin{gathered}
\sum F_{x}=\left(V_{x} \dot{m}\right)_{\text {out }}-\left(V_{x} \dot{m}\right)_{\text {in }} \\
F_{1}-F_{2}-F_{v}+F_{G W}=\left(V_{2}\right)(\rho \underbrace{V_{2} A_{2}}_{=Q})-\left(V_{1}\right)(\rho \underbrace{V_{1} A_{1}}_{=Q}) \\
F_{G W}=F_{2}-F_{1}+\underbrace{F_{v}}_{\approx 0}+\rho Q\left(V_{2}-V_{1}\right)
\end{gathered}
$$

where,

$$
\begin{gathered}
F_{1}=\overline{p_{1}} A_{1}=\gamma \bar{h} A_{1}=\gamma\left(\frac{y_{1}}{2}\right)\left(y_{1} b\right)=\frac{\gamma b}{2} y_{1}^{2} \\
F_{2}=\gamma\left(\frac{y_{2}}{2}\right)\left(y_{2} b\right)=\frac{\gamma b}{2} y_{2}^{2}
\end{gathered}
$$

Thus,

$$
F_{G W}=\frac{\gamma b}{2} y_{2}^{2}-\frac{\gamma b}{2} y_{1}^{2}+\rho Q\left(V_{2}-V_{1}\right)
$$

Note that

$$
\begin{aligned}
& V_{1}=\frac{Q}{A_{1}}=\frac{Q}{y_{1} b} \\
& V_{2}=\frac{Q}{A_{2}}=\frac{Q}{y_{2} b}
\end{aligned}
$$

Thus,

$$
F_{G W}=\frac{\gamma b}{2}\left(y_{2}^{2}-y_{1}^{2}\right)+\frac{\rho Q^{2}}{b}\left(\frac{1}{y_{2}}-\frac{1}{y_{1}}\right)
$$

P5.62-simplified) Determine the magnitude of the horizontal component of the anchoring force required to hold in place the sluice gate shown below.

Flow rate (per unit width, i.e., let $b=1 \mathrm{ft}$):

$$
Q=V_{1} A_{1}=(4)(10)(1)=40 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
$$

Gate force ($b=1 \mathrm{ft}$):

$$
F_{G W}=\frac{\gamma b}{2}\left(y_{2}^{2}-y_{1}^{2}\right)+\frac{\rho Q^{2}}{b}\left(\frac{1}{y_{2}}-\frac{1}{y_{1}}\right)
$$

or

$$
\begin{gathered}
F_{G W}=\frac{(62.4)(1)}{2}\left((1.5)^{2}-(10)^{2}\right)+\frac{(1.94)(40)}{1}\left(\frac{1}{1.5}-\frac{1}{10}\right)=-1290 \mathrm{lb} \\
\therefore F_{G W}=1,290 \mathrm{lb} / \mathrm{ft} \text { (to the left) }
\end{gathered}
$$

