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EXAM SPECIFICATIONS

Fundamentals of Engineering (FE) Examination

Effective April 2010

The FE examination is an 8-hour supplied-reference examination: 120 questions in the 4-hour morning
session and 60 questions in the 4-hour afternoon session.

The afternoon session is administered in the following seven modules—Chemical, Civil, Electrical,
Environmental, Industrial, Mechanical, and Other Disciplines.

Examinees work all questions in the morning session and all questions in the afternoon module.

The FE examination uses both the International System of Units (SI) and the US Customary System (USCS).

Beginning with the April 2010 examination, the General module was renamed Other Disciplines. The module
was renamed to better describe it to the examinees for whom it is intended. No other changes were made to

the FE exam specifications for April 2010.

Topic Area
SESSION FLUIDS TOPICS
MORNING A. Flow measurement

B. Fluid properties

C. Fluid statics

D. Energy, impulse, and momentum equations

E. Pipe and other internal flow

AFTERNOON CHEMICAL ENGINEERING MODULE MECHANICAL ENGINEERING MODULE OTHER DISCIPLINES MODULE

A. Bernoulli equation and mechanical energy A. Fluid statics A. Basic hydraulics (e.g., Manning equation,
balance B. Incompressible flow Bernoulli theorem, open-channel flow, pipe

B. Hydrostatic pressure C. Fluid transport system (e.g., pipes, ducts, flow)

C. Dimensionless numbers (e.g., Reynolds series/parallel operations) B. Laminar and turbulent flow
number) D. Fluid mechanics: incompressible (e.g., C. Friction losses (e.g., pipes, valves, fittings)

D. Laminar and turbulent flow turbines, pumps, hydraulic motors) D. Flow measurement

E. Velocity head E. Compressible flow E. Dimensionless numbers (e.g., Reynolds

F.  Friction losses (e.g., pipe, valves, fittings) F.  Fluid machines: compressible (e.g., turbines, number)

G. Pipe networks compressors, fans) F.  Fluid transport systems (e.qg., pipes, ducts,

H. Compressible and incompressible flow G. Operating characteristics (e.g., fan laws, series/parallel operations)

. Flow measurement (e.qg., orifices, Venturi performance curves, efficiencies, work/power | G. Pumps, turbines, and compressors
meters) equations) H. Lift/drag

J. Pumps, turbines, and compressors H. Lift/drag

K. Non-Newtonian flow . Impulse/momentum

L. Flow through packed beds




1) FE Supplied-Reference Handbook

* This is the official reference material used in the FE exam room.
Review it prior to exam day and familiarize yourself with the charts,
formulas, tables, and other reference information provided. Note
that personal copies will not be allowed in the exam room. New
copies will be supplied at the exam site. 8th edition, 2nd revision
©2011

* Use the reference and review materials sold by CEE's ASCE student
chapter. This year, the CEE department will again reimburse any CEE
students who are registered for the FE exam for related study
materials (not exam fees). The department can afford to pay for the
cost of reference and review books up to ~$60. Bring your original

$13.95 receipt to the department administrative assistant, Angie Schenkel.
ISBN: 978-1-932613-59-9

2) 57:020 Fluids Class Lecture Note: http://www.engineering.uiowa.edu/~fluids
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DENSITY, SPECIFIC VOLUME, SPECIFIC

“=% WEIGHT, AND SPECIFIC GRAVITY

The definitions of density, specific volume, specific weight,
and specific gravity follow:

0 =A11Vrrl1t0 Am/AV
Y = limit AW /AV
AV =0
v =A1}/n11t0 g*Am/AV = pg

also SG =v/vy,,= p/p,,, where

o = density (also called mass density),
Am = mass of infinitesimal volume,
AV = volume of infinitesimal object considered,
Y = specific weight,
=Pg

AW = weight of an infinitesimal volume,

SG = specific gravity,

p,, = density of water at standard conditions
= 1,000 kg/m? (62.43 1bm/ft*), and
Yo = specific weight of water at standard conditions,

= 9,810 N/m? (62.4 Ibf/ft}), and
= 9,810 kg/(m?es?).

The density of a fluid is defined as its mass per unit volume.

The specific volume is the volume per unit mass and is therefore
the reciprocal of the density.

Specific weight is weight per unit volume;

v =pg

Specific gravity is the ratio of fluid density to the density of
water at a certain temperature.

SG=—L
Pujo@e - c



STRESS, PRESSURE, AND VISCOSITY
Stress is defined as

(1) = limit AF/AA, where
A =0

7(1) = surface stress vector at point 1,

AF = force acting on infinitesimal area A4, and
AA = infinitesimal area at point 1.
T, =-P
T, = W(dv/dy) (one-dimensional; i.e., y), where
T,and T, = the normal and tangential stress components at
point 1,
P = the pressure at point 1,
u = absolute dynamic viscosity of the fluid

Nes/m? [Ibm/(ft-sec)],
dv = differential velocity,

dy = differential distance, normal to boundary.
Y = velocity at boundary condition, and
y = normal distance, measured from boundary.
v = kinematic viscosity; m*/s (ft*/sec)

where v = Wp

For a thin Newtonian fluid film and a linear velocity profile,
v(y) = vyld; dvldy = vId, where
\ = velocity of plate on film and
) = thickness of fluid film.
For a power law (non-Newtonian) fluid
T,= K (dv/dy)", where
K = consistency index, and
n = power law index.
n < 1 = pseudo plastic
n> 1 =dilatant

Newtonian vs. Non-Newtonian Fluids

Crude oil (60 “F)

Water (60 °F)

Shearing

Water (100 “F)

Air (60 "F)

Rate of shearing strain, v

o( du
T &
M = slope

Shearing stress, v

Dilatant: N dudy N
Newtonian: T o< du/dy
Pseudo plastic: N\ dudy N

Bingham plastic

Shear thinning —s,

Newtonian

=—— Shear thickening

. du
Rate of shearing strain, dy

« (du)"
T dy

n > 1 slope increases with
increasing 7
(shear thickening)

n <1 slope decreases with
increasing 7
(shear thinning)

Ex) blood, paint, lig-

uid plastic



4. The figure shows the relationship between shear stress and velocity gradient for two fluids, A and B. Which of the following is a true statement?

Shear stress
Fy

A B QO A. Absolute viscosity of A is greater than that of B
O B. Absolute viscosity of A is less than that of B
O (. Kinematic viscosity of A is greater than that of B
O D. Kinematic viscosity of A is less than that of B

, >
Welocity gradient
shear stress

Hint: By definition, absolute viscosity ~ VElOCITy gradient
Thus, slope of the lines in the plot is absolute viscosity.
Kinematic viscosity = absolute viscosity/density.

Solution: Since the slope of the line for A is greater than that for B, viscosity of A is greater than that of B.

Therefore, the key is (A).

48.  Which of the following statements is true of viscosity?

(A) Itis the ratio of inertial to viscous force.
(B) It always has a large effect on the value of the friction factor.

(C)  Itisthe ratio of the shear stress to the rate of shear deformation.

dv
T = H[E]

where 1, = shear stress and

(D)  Itis usually low when turbulent forces predominat=

av :
— =rate of shear deformation
Hence, p is the ratio of shear stress to the rate of shear deformation.

THE CORRECT ANSWER 1S: (C)



SURFACE TENSION AND CAPILLARITY 8. A clean glass tube is to be selected in the design of a manometer to measure the pressure of kerosene.

Specific gravity of kerosene = 0.82 and surface tension of kerosene = 0.025 N/m. If the capillary rise

- Surf ace tension o is the force per unit contact 1ength is to be limited to 1 mm, the smallest diameter (cm) of the glass tube should be most nearly
o = F/L, where OA.1.25
o = surface tension, force/length, OB. 1.50
F = surface force at the interface, and 0C. 175
L = length of interface. OD. 2.00

The capillary rise h is approximated by

h = (46 cos B)/yd), where _ 4ccosf
h = the height of the liquid in the vertical tube, int The cagillary i A
. rise, i
o = thesurface tension, where, s = surfice tension of the fluid: b= mmgle of contact; g = specific weight of the fluid; d= diameter of tube.
B = the angle made by the liquid with the wetted tube : " 400,025 N o) (cos 0
wall, o W M)Acos =0.0124m=124cmmdata,

= specific weight of the liquid, and (0-82x9.8&V /™ >1,000 N/ &V](1/1,000 )

= the diameter of the capillary tube.

v
d

Therefore, the key is (A).

98. When a thin-bore, hollow glass tube is inserted
into a container of mercury, the surface of the mercury
in the tube

2rRo (A) is level with the surface of the mercury in the
container

(B) 1is below the container surface due to cohesion

(C) 1is below the container surface due to adhesion

(D) is above the container surface due to cohesion

'ﬂrREh

—| 2R |— 98. Cohesive forces dominate in mercury. This de-
(a) (b) () presses the mercury level in the tube.

Answer is B.

0 < 90°, Wetting 6 > 90°, Non-wetting
e.g., Water, 6 = 0° e.g.. Mercury, 6=130°




THE PRESSURE FIELD IN A STATIC LIQUID

Az

Z3

The difference in pressure between two different points is
P,— P, = (z,—z)) =—Yh=—pgh
For a simple manometer,
P, =Pyt 1,5-72
Absolute pressure = atmospheric pressure + gage pressure
reading
Absolute pressure = atmospheric pressure — vacuum gage
pressure reading

+ Bober, W. & R.A. Kenyon, Fluid Mechanics, Wiley, New York, 1980. Diagrams reprinted by permission
of William Bober & Richard A. Kenyon.

Pressure

1
CE
Gage pressure @ 1

Local atmosphearic
| pressure reference

G é ¢ Gage pressure @ 2

Absolule pressure (suction er vacuum)

@1
| Absolute pressure
@2

Absolute zero reference

3_10 = —pg=—y p = constant for liquid
Z

Ap =—YAz
P, =P = _V(Zz _Zl)

10



Manometers
LU ¢

Po

FLUID 1

,—FLUID 2

71 p1
T2
7

For a simple manometer,
Po= Dyt Yoy = Yih = Pyt g (Py hy—py 1Y)
Ifth,=h,=h
Po=Pr T (h=YDh =p,+ (p,—py)gh

Note that the difference between the two densities is used.

Another device that works on the same principle as the
manometer is the simple barometer.

Paim = P4 =P, T Yh =pp+Yh =pp+ pgh

o

p, = vapor pressure of the barometer fluid

o———— NN

Jump across
IpPy—ffr————>——1=2P;

Jump across
= e o e e = = = 20 Py

P -
Jump across
Iy Py —Hf—————

d:add

Jump across: no change
T subtract yh

101

+ A vacuum pump is used to drain a basement of

20°C water. The vapor pressure of water at this tem-
perature is 2.34 kPa. The pump is incapable of lifting
water higher than 10.5 m. The atmospheric pressure is

IMos

P

t nearly

(A) 100 kPa
(B) 150 kPa
(C) 210 kPa
(D) 270 kPa

e = Pu pgn
]TlE ( SQ) )

= 2.34 kPa + (

Pa
1000 iPa

=105.1kPa (100 kPa)

Answer is A.

11



Manometry

Open Open

" ' pa—Vvihy =0 pa +vihi —y2h; =0

4 o —- 1)

FIGURE 2.9 Piezometer tube.

S Pa =Y2hy — vy

Y Pa =Yy

= pa = V2h,

FIGURE 2.10 Simple U-tube manometer.

Pa +Yihy —v2hy —y3hs = pg
Pa+Yihy — V22 sin6 —ysh; = pg

S Pa—Pg = V2hy +¥3hs —yily
(5) + By “Pa—Pp = V2t2sin€ +yzhs —yihy
- Pa— D ® V2hy |

h

) A = Pa— Pp = V2t2sin0

FIGURE 2.12 Inclined-tube manometer.

FIGURE 2.11 Differential U-tube manometer.

Note
—:when 3 % << 7 12
e.g.) gas vs. liquid




FORCES ON SUBMERGED SURFACES AND THE

CENTER OF PRESSURE
¢ PRESSURE
Po , DISTRIBUTION
X ON WALL
n_o
df O /
AREA A dA Z
A% X
(a)

Forces on a submerged plane wall. (a) Submerged plane surface.
(b) Pressure distribution.

The pressure on a point at a distance Z’ below the surface is
p=p,tYZ, forZ >0

If the tank were open to the atmosphere, the effects of p, could
be ignored.
The coordinates of the center of pressure (CP) are

y* =l Ve Z, sinot)/(p, A) and

z¥ = (ylycsinoc ) (p, A), where

y* = the y-distance from the centroid (C) of area (4) to the
center of pressure,
z* = the z-distance from the centroid (C) of area (A4) to the

center of pressure,

1 y'and I,.= the moment and product of inertia of the area,

p. = the pressure at the centroid of area (4), and
Z, = the slant distance from the water surface to the
centroid (C) of area (4).

uuuuuuuuuuuu

Po B

i
. z,Z
! SECTION B-B

If the free surface is open to the atmosphere, then
p,= 0and p, = yZ_sino.

y¥=1,, AAZ)and z* = I, (AZ,)

YeZe

The force on a rectangular plate can be computed as

F
Py

F=[pd,+(p,—p)A,/2]i + V,y,j, where

force on the plate,

pressure at the top edge of the plate area,
pressure at the bottom edge of the plate area,
vertical projection of the plate area,

volume of column of fluid above plate, and

specific weight of the fluid.

13



Hydrostatic Force on a Plane Surface

dp _
dz v
Ap =—YyAz

FIGURE 3. 10
Distribution of
hydrosialic pressure on 4
plane surface.

(X,y) = centroid of A
(XensYen) = center of pressure

/

y

Free surface

Resultant
force:

F =Pcg

y 4

Y 4
& Side view

A /‘\\

View C-C

~dA = dx dy

Plan view of arbitrary plane surface

F= I_)A =ysino y A
| —

Fo= kA

p= pressure at centroid of A

Magnitude of resultant hydrostatic force on plane surface is

product of pressure at centroid of area and area of surface.

Center of Pressure

Center of pressure is in general below centroid since
pressure increases with depth. Center of pressure is
determined by equating the moments of the resultant and

distributed forces about any arbitrary axis.

L _ e
ycp y yA yﬂﬂ
Yep is below centroid by 1/yA
X _Iﬂ+§ . fxgc
cp yA :JER— _:p‘_ﬂ | :-'fﬂ

For plane surfaces with symmetry about an axis normal to

0-0, Iy =0 and X, = X.

14



i) Rectangle

R R

i) Semicircle

a
2
e

I = lzb.:ﬁ
a
2 e 0

he= gpab’

.'IF='D

0 Circle
= ZE?

A=

I, =0.10988"

I, =0.3927R"

.Fmtﬂ I

. R

£ J
b |
(d) Triangle
_xk®
ik 4

I, =1, =0.05488R"

I, =-0.01647R*

(e} Quarter circle

FIGURE 2.18 Geometric properties of some common shapes.
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Hvdrostatic Forces on Curved Surfaces

Horizontal Components
The horizontal component of force acting on a curved
surface 1s equal to the force acting on a vertical projection
of that surface including both magnitude and line of action.

Vertical Components
The vertical component of force acting on a curved surface
is equal to the net weight of the column of fluid above the
curved surface with line of action through the centroid of | ? |
that fluid volume.

(b)

FIGURE 2.23 Hydrostatic force on a curved surface.

16



47.  The rectangular homogeneous gate shown below is 3.00 m high x 1.00 m wide
and has a frictionless hinge at the bottom. If the fluid on the left side of the gate
has a density of 1,600 kg/m’, the magnitude of the force F (kN) required to keep
the gate closed is most nearly:

3.00 m

L
FRICTIONLESS
(A) 0 HINGE
B 22
© 24
(D) 220

The mean pressure of the fluid acting on the gate is evaluated at the mean height, and the center of
pressure is 2/3 of the height from the top; thus, the total force of the fluid is:

Fr = pg-l;-(H) =1 600(9.807)%(3) =70,610N

and its point of application is 1.00 m above the hinge. A moment balance about the hinge gives:

FG)-Fp(1)=0

F=F_f=m_’61_g=23,537N 3 A=ba
3 3 2
‘@—ax I.= 1]'2 ba®
THE CORRECT ANSWER IS: (C) | 5 Lo Lla?
¥ e Eu 1
————

YM, = 0:

Fxa — Fgx (g) =0

37. What is most nearly the total force acting on a
1 m wide section of the curved surface?

v |
= water at 20°C
7m
F,

(A) 120 kN * 4
(B) 160 kN
(C) 220 kN
(D) 250 kN F,

The average depth is

h=(1)(h+he)=(3) (4 m+7m)
=55m

_ kg
= 1000 — 1 — ] (5.5
P ( -~ 9 8 m)
53955 N/m?

F,D=33A=(5395 Ez) (3 m)(1 m)

= 161865 N

Fy:(3m(4m(1m)( ) 981m)
=117720 N

W= (”(34"1)2) a )(1000 kf) (9 81 —)
= 69342 N

F= [ (R + W)

= /(161865 N)2 + (117720 N + 69342 N)
= 247300 N (250 kN)

Answer is D.

17



ARCHIMEDES PRINCIPLE AND BUOYANCY 96. A 24 cm long rod floats vertically in water. It has

1. The buoyant force exerted on a submerged or floatin a1 om? cross section and a specific gravity of 0.6. Most
' oy . . g. g nearly, what length, L, is submerged?
body is equal to the weight of the fluid displaced by the
body. -1
2. Afloating body displaces a weight of fluid equal to its v H l
own weight; i.e., a floating body is in equilibrium. = 9
cm
The center of buoyancy is located at the centroid of the L
displaced fluid volume. IR
96. wal ar-L = Pro 24
In the case of a body lying at the interface of two immiscible (A) 9.6 cm Pt ? dF o)
fluids, the buoyant force equals the sum of the weights of the Eg% ig Z:;l L= (ﬁjﬁ) (24 cm) = (SG)(24 cm)
fluids displaced by the body. (D) 19 cm — (0.6)(24 cm)

=144 em (14 cm)
Answer is B.

19. An open separation tank contains brine to a depth of 2 m and a 3-m layer of oil on top of the brine.
A uniform sphere is floating with at the brine-oil interface with 80% of its volume submerged in

brine. Density of brine is 1,030 kg/m3 and the density of oil is 880 kg/mS3. The density of the sphere
(kg/m3) is most nearly
DA. 825

OB. 910
0O C. 955
OD. 1,000

|.7‘
Fint When abody s 2 the intrrface of two fiuids, the buoyancy farce equals the sum of the weights of the valumes of the fiui ds displaced by the body.

At equilibrinm, the weight ofthe body equals the total buoyancy force.

FB = rg¥ V= Smeerged Volume Salution” Let V be the valume: of the sphere, V 4 be the displaced valume, and 7 the specific weight of the flid = p g
Buayancy foree due to brine, F = ¥y 7 = (81% of V) ( 1030 kg/m’ x g)

Line of action is through centroid of M = center of Buaymcy foree due o oilF o= V1= (20% of V) (380 kyfm? x )

buoyancy tng W G F,

Vp= (80% of V) ( L050 kg/m3 x g) + (20% of V) ( 880 kp/m3 x g)
p=108(1,30kg/m?) + 02 (880 kgfm3) = 1,000 kgfm?

Therefore, the key s (D).

18



ONE-DIMENSIONAL FLOWS Questions 18-19: The level in a retention basin is normally controlled with a pipe as
shown in the figure below. The pipe has an I.D. of 30 cm. The equivalent length of the
pipe (including the elbows, entrance effect, and discharge) is 6.0 m. Relative roughness is

The Continuity Equation

So long as the flow Q is continuous, the continuity equation, 0.0005. The fluid has the following properties:
as applied to one-dimensional flows, states that the flow
passing two points (1 and 2) in a stream is equal at each point, p =998 kg/m’
AV, = Ay, p=0.00100 kg/(m-s)
0 =4v
m = pQ = pAv, where — OVERFLOW
. 2.0
Q = volumetric flow rate, ¥ " NORMAL
m = mass flow rate, 0 ﬂ LEVEL
A = cross section of area of flow,
v = average flow velocity, and
p = the fluid density.

) ) ) ) 18.  Assuming a flow of 40 m*/min, the velocity (m/s) through the pipe is most nearly:
For steady, one-dimensional flow, 7z is a constant. If, in

addition, the density is constant, then Q is constant. (A) 94
(B) 24
© 14
(D)  0.047

Volume flow rate = area x velocity

Q=Av

v=—

A

[MJH(TT]’

THE CORRECT ANSWER IS: (A)

19



The Field Equation is derived when the energy equation is Bernoulli equation
swin applied to one-dimensional flows. Assuming no friction losses p V2

—+—+z = constant

and that no pump or turbine exists between sections 1 and 2 in ¥ 2
the System along a streamline.
9
14
2 2 Pressure head: =
L .
v g hf g Velocity head: —
2 2 =
P2 V2 Pl Vl Elevation head: z
t5 t5g=5+5+28 where
Y Y The Bernoulli equation states that the sum of the pressure head, the velocity

. head, and the elevation head is constant along a streamline.
P,, P,= pressure at sections 1 and 2,

V|, V, = average velocity of the fluid at the sections, Static, Stagnation, Dynamic, and Total Pressure

1
z,,z, = the vertical distance from a datum to the sections p+5pV?+yz=pr = constant
(the potential energy), along a streamline.
Y = the specific weight of the fluid (pg), and Static pressure: p
g = the acceleration of gravity.

p L1 2
Dynamic pressure: 2pV

Hydrostatic pressure: yz

FLUID MEASUREMENTS Total pressure: py = p +%pV2 +yz
The Pitot Tube — From the stagnation pressure equation for

fundamentals
of engineering

an incompressible fluid,

v=/(2/0)(po — p,) = /2g(po — p,)/1. Where

. . ps V2 po  0?
v = the velocity of the fluid, ot d= T ot d
p, = the stagnation pressure, and
p, = the static pressure of the fluid at the elevation where or
the measurement is taken. 2 _
Ve po—ps
[ ] : -] 5.
2g 14
vt [ 29 2
2 “V=|—=(@o—ps) = |=(po—ps)
v 4 P
0 Note p; = yd and py = y(d + ), and py — ps = y£. Thus,
Ps
v
1 V=.2gf
\ 4’:’%
Ps Po e d = Depth of Pitot Tube below free surface

. . . . . £ = Water column height above free surface in the Pitot Tub
For a compressible fluid, use the above incompressible fluid * Fercolimn elght above free suriace I the POt THbe

equation if the Mach number < 0.3.



3.67 |

e, 0@ b

. x f 0.05m diameter
3.67  The specific gravity of the manometer fluid shown in - 1 [}
Fig. P3.67 is 1.07. Determine the volume flowrate, Q, if the

flow is inviscid and incompressible and the flowing fluid is "T_ - I~ T
(a) water, (b) gasoline, or (c) air at standard conditions. 10 mm ﬂnm =h
— . S . - ”‘m .

~ FIGURE P3.67

2,
fogen -4

;""Z.z where z, =2, and V=

Thus,
v, = /23 (o f’: "
But
£ ¥l +mh = £ +Y(L+h)
o;ﬂz-'f’, = -¥)h so that Ej () becomgs
'\/: ]/2_? Mh =12 (981%) (ﬂ(’—;ﬂ@ I)(OOZm)
r
Thus, I
Q=AY = Z0*, = Llooam’ |2 (.80(F -1)(ea2)
or

3
Q = 3,99 x/0° Mb',w -l = where Jﬂp%
For the given flvids this gives:

kN 3

flvid ‘ &y l Q,%
(@ water 280 /06 XJo~
(b gaso/ine 6.47 3.02 x /073

©  air J2x)63 0.118

43. Water is flowing through a pipe. A pitot-static
gauge registers 0.076 m of mercury (p,,, =13 580 kg/m?).
The velocity of water in the pipe is most nearly

(A) 1.3 m/s
(B) 2.2 m/s
(C) 3.8m/s
(D) 4.3 m/s

43. Use the equation for finding the velocity in a pitot-
static gauge.

2gh(pm — p)
P

@) (9 81 ) (0.076 m)

(13 580 E ~ 1000 kg)

kg

1000 —=

=433m/s {4.3 m/s)

Answer is D.

21



51.  The pitot tube shown below is placed at a point where the velocity is 2.0 m/s. The
specific gravity of the fluid is 2.0, and the upper portion of the manometer con-
tains air. The reading h (m) on the manometer is most nearly:

(A) 200

B) 10.0

€ 040
(D) 0.20

2
v
'pT = gh(p _pair)
2 2

pv v (2)2
h= r—r ~0.204 m
2g(p—pair) 22 (2)(9.8)

THE CORRECT ANSWER IS: (D)

39. A static pressure gauge and mercury manometer
are connected to a 50.8 cm pipeline flowing full of water.
One cubic centimeter of mercury has a mass of 0.1336 N.
What is most nearly the velocity at the center of the

pipeline?

10342 Pa ?——-
60.96 cm

C—
flow ——- TTE T R T T 50.8 cm

— . ~

50.8 cm

25.4 cm water

mercury
(A) 0.66 m/s
B) 0.79
Ecg 4.5 m"jf 39. The static pressure is
(D) 5.7 m/s
kg m? 1m
Ps = (60.96 cm) (1000 F) (9.81 =) (M)
+ 10342 Pa
= 16322 Pa

The stagnation pressure is
N cm 2
o = (0.1336 chS) (26.4 cm) (100 E)

- (9810 E) ( Lm ) (50.8 cm + 25.4 cm)

m? 100 cm

= 26459 Pa

(2)(po — ps)

V= -

P
B J (2)(26 459 Pa— 16322 Pa)

1000 k_gg
m

=4.5m/s

Answer is C,
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Venturi Meters

G4, b D
0=—F—7—=—= /2g(—+zl———zz,where
/1 — (4y4) i T

C, = the coefficient of velocity, and
Y = PE.

The above equation is for incompressible fluids.

We assume the flow is horizontal (2, = z;), steady, inviscid, and incompressible between points (1) and (2). The
Bernoulli equation becomes

1002 1 rrd

(The effect of nonhorizontal flow can be incorporated easily by including the change in elevation, Z; " 2, in the
Bernoulli equation.)

The flowrate varies as the square root of the
pressure difference across the flow meter.

If we assume the velocity profiles are uniform at sections (1) and (2), the continuity equation (Eq. 3.19) can be
written as

Q= ArF] = 430

where 45 is the small (.45 < 4;) flow area at section (2). Combination of these two equations results in the
following theoretical flowrate

Q=A2 2(}7] _pzj

p[1- zr 47

Thus, as shown by the figure in the margin, for a given flow geometry (4; and 4,) the flowrate can be

determined if the pressure difference, 7, " P, is measured. The actual measured flowrate, Qpqqq;, Will be smaller
than this theoretical result because of various differences between the “real world” and the assumptions used in
the derivation of Eq. 3.20. These differences (which are quite consistent and may be as small as 1 to 2% or as
large as 40%, depending on the geometry used) can be accounted for by using an empirically obtained discharge
coefficient as discussed in Section 8.6.1.

(3.20)

If the differences in velocity are considerable, the differences in pressure can also be considerable. For flows of
gases, this may introduce compressibility effects as discussed in Section 3.8 and Chapter 11. For flows of liquids,
this may result in cavifation, a potentially dangerous situation that results when the liquid pressure is reduced to
the vapor pressure and the liquid “boils.”

Cavitation occurs when the pressure is reduced
to the vapor pressure.

As discussed in Chapter 1, the vapor pressure, ', , is the pressure at which vapor bubbles form in a liquid. It is
the pressure at which the liquid starts to boil. Obviously this pressure depends on the type of liquid and its
temperature. For example, water, which boils at 212 °F at standard atmospheric pressure, 14.7 psia, boils at 80 °F
if the pressure is 0.507 psia. That is, », = 0.507 psia at 80 °F and », = 14.7 psia at 212 °F. (See Tables B.1 and
B2)
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38. A perfect venturi with a throat diameter of 1.8 cm
is placed horizontally in a pipe with a 5 ¢m inside di-
ameter. Bight kg of water flow through the pipe each
second. What is most nearly the difference between the
pipe and venturi throat static pressures?

(A) 30kPa
(B) 490 kPa
(C) 640 kPa
(D) 970 kPa
1m 2
as. 4 T _ ”((5 ) (100 cm))
Ty 4
= 0,001963 m?
1.8 cm) _Lm ’
A_wd%_ﬂ-(' 100 ¢m
T 4
= 2,545 x 1074 m?
kg
P 802
My kg
P (mou r—g) (0.001963 m?)
1
= 4.07 m/s
kg
o 80 2
g = —— =
pha (1000 5%) (2.545 x 10—% m?)
m
= 31.43 m/s
Il
P—pP2= (5) (Vg —Vg)
1000 <&

Tma ((31.43 “;‘)2 ~ (4075 ?)2)

» 1 kPa
1000 Pa

— 486 kPa (490 kPa)

Answer is B.

38. A venturi meter installed in a pipe with a 38.1 cm
diameter has a throat diameter of 21.24 em. The static
gage pressure upstream of the venturi is 172.4 kPa. The
average fluid velocity in the pipe is 7.62 m/s. The fluid
flowing is water. If cavitation is just beginning at the
throat of the venturi, what is most nearly the absolute
vapor pressure of the water at the throat?

(A) 2.2 kPa
(B) 49 kPa
(C) 270 kPe
(D) 290 kPe

P1 — Patm = 172.4 kPa

p1 = 273.7 kPa
VlA]:VQAQ
(MY (B
V2 = Vi Az =i Dy
JAS Y
m+ 2 =p2+ 5
2 4
V1 Dy
= J—— 11— —
nen+ () (-(3))
P1=273.7T kPa

(1000 :Tgs) (7.52 ?)2

2

5 (1 ( 38.1 cm )4) 1 kPa
91.94 em 000 Eﬂ
I

=215 kPa (2.2 kPa)

py = 273.7 kPa +

Cavitation is impending; pyaper = pP2.

Answer is A.
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Orifices The cross-sectional area at the vena contracta 4, is

characterized by a coefficient of contraction C_.and given by
C.A.
® D, Do D,

Q=CA0/2g(%+Zl—%—Zz)

where C, the coefficient of the meter (orifice coefficient), is

given by
C — CVCC
2 2
JU = C2 4o/ 4)
¢
ORIFICES AND THEIR NOMINAL COEFFICIENTS
SHARP
EDGED ROUNDED SHORT TUBE BORDA
= = = ~—
L — [ —— ———
c 0.61 0.98 0.80 0.51
c. | 062 1.00 1.00 0.52
c, | o098 0.98 0.80 0.98

For incompressible flow through a horizontal orifice meter

installation
0 = Cly [2(p, — 1)

If the exit is not a smooth, well-contoured nozzle, but rather a flat plate as shown in Fig. 3.13, the diameter of thi
jet, d, will be less than the diameter of the hole, d;,. This phenomenon, called a vena contracta effect, is a result

of the inability of the fluid to turn the sharp 90° corner indicated by the dotted lines in the figure.

FIGURE 3.13 Vena contracta effect for a sharp-edged orifice.

Since the streamlines in the exit plane are curved (g <! ), the pressure across them is not constant. It would
take an infinite pressure gradient across the streamlines to cause the fluid to turn a “sharp” corner (& = 0). The
highest pressure occurs along the centerline at (2) and the lowest pressure, #; = 2+ = 0, is at the edge of the jet.
Thus, the assumption of uniform velocity with straight streamlines and constant pressure is not valid at the exit
plane. It is valid, however, in the plane of the vena contracta, section a—a. The uniform velocity assumption is
valid at this section provided d/ =% h, as is discussed for the flow from the nozzle shown in Fig. 3.12.

The diameter of a fluid jet is often smaller than
that of the hole from which it flows.

The vena contracta effect is a function of the geometry of the outlet. Some typical configurations are shown in
Fig. 3.14 along with typical values of the experimentally obtained contraction coefficient, , = Aj/A » Where 4;

and A, are the areas of the jet at the vena contracta and the area of the hole, respectively.

99. Where does the vena contracta caused by a sharp-
edged hydraulic orifice usually occur?

(A) at the centerline of the orifice

(B) at a distance of about 10% of the orifice diam-
eter upstream from the plane of the orifice

(C) at a distance within 10% of the orifice diameter
downstream from the plane of the orifice

(D) at a distance equal to about one-half the orifice
diameter downstream from the plane of the
orifice

Answer is D.
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Submerged Orifice operating under steady-flow conditions:

Orifice Discharging Freely into Atmosphere
. Q

¥

Atm %

11S) i&

Aof] Az

Q = CAO / Zgh
in which the product of C.and C, is defined as the coefficient in which /4 is measured from the liquid surface to the centroid
of discharge of the orifice.

of the orifice opening.

Note: Note:
f V. p, V7 Fa% V2
tFEtz=—+—+2z, 7 I AR S T,
Y /g Y 29 Yy Ag Y 2g
or or
7 P2 2
= = — _ —h,—h V.
29 (24 — 23) Y 1y 2 2 zZ1—z,=h

2g

where z; — z, = h; and p; = yh,. Thus,

Vo =+/2g(hy — hy)

where z; — z; = h. Thus,

V2 = 4/ Zgh
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25. The figure shows a horizontal pipeline with a sudden enlargement. The energy grade line and the
hydraulic grade line under a certain flow of an incompressible fluid are also shown. The ratio of the
diameter downstream to the diameter upstream of the enlarpement is most nearly

HYDRAULIC GRADIENT (GRADE LINE)
The hydraulic gradient (grade line) is defined as an imaginary

. . . . A am 2m
line above a pipe so that the vertical distance from the pipe _ Hydrauic arade line
axis to the line represents the pressure head at that point. If a

~Energy grade line

row of piezometers were placed at intervals along the pipe, the
. . . . . [
grade line would join the water levels in the piezometer water
columns. OA.126
OB. 150
OcC.168 Hint: The vertical distance between the energy grade line and the hydraulic grade line is the velocity head, U%/2g.
ENERGY LINE (BERNOULLI EQUATION) OD.250 From continuity equation, Q = Ay Uy = Ay Uz where, Ay and Uy are the area and velocity upstream of the enlargement and

The Bernoulli equation states that the sum of the pressure,

A and U, are the area and velocity downstream of the enlargement.

velocity, and elevation heads is constant. The energy line is L'F : —
. « C . g L U= J2{981mfs? ) (5 m) =9.90m/s

this sum or the “total head line” above a horizontal datum. The Zi=ppromthe P e s e ’9' e :

. . . -g ’ AT ) [T A e T e U Ll -
difference between the hydraulic grade line and the energy giving [— D; ]C; - [3 D: \,c 626m

A ) 5 From continuity equation, givlng
line is the v-/2g term.

Therefore, the key is (A).
2
% | ‘T‘ {z = constant on a streamline = & ] o )
} 2 4 26. The figure shows a horizontal pipeline with a sudden enlargement. The energy grade line and the

hydraulic grade line under a certain flow of an incompressible fluid of specific weight 10 KN/m? are
also shown. The pressure change due to the enlargement is most nearly

;~ Energy grade line

] 5m 2m
Hydraulic X
grade line (HGL) — Hydraulic grade line
o ﬂ
S

O A. an increase of 3 kPa Hint: The energy grade line indicates no energy loss.

OB. a decrease of 3 kPa The decrease in velocity head (from 5 m to 2 m) is converted to an increase of pressure head.
OC. an increase of 30 kPa

(OD. a decrease of 30 kPa

Solution: Velocity head upstream of enlargement = 5 m
Velocity head downstream of enlargement = 2 m

Decrease in velocity head=5m - 2m=3m

Hence increase in pressure head=3 m

Or, increase in pressure=yh= (10 kN/m3) (3 m) = 30 kPa

Datum

Stagnation

FIGURE 3.21 Representation of the energy line and the hydraulic grade line. Therefore, the key is (C).
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REYNOLDS NUMBER
Re = vDp/u = vD/v
(2 =n)pyn
Re' = v Dn O where
K(3n + 1) gl =1
4n
p = the mass density,

D = the diameter of the pipe, dimension of the fluid
streamline, or characteristic length.
= the dynamic viscosity,
v = the kinematic viscosity,
Re = the Reynolds number (Newtonian fluid),
Re’ = the Reynolds number (Power law fluid), and

K and n are defined in the Stress, Pressure, and Viscosity
section.

The critical Reynolds number (Re)_ is defined to be the
minimum Reynolds number at which a flow will turn
turbulent.

Flow through a pipe is generally characterized as laminar
for Re < 2,100 and fully turbulent for Re > 10,000, and
transitional flow for 2,100 < Re < 10,000.

Re

V2
_F_ma (PL) () _pVL VL

F, 1A (”%) (12) o v

31. Ethyl alcohol (specific gravity = 0.79 and viscosity = 1.19x10°3 Pa-s) is flowing through a 25-cm
diameter, horizontal pipeline. When the flow rate is 0.5 m3/min, the Reynolds Number is most nearly

O A. 28,158
OB. 31,424
0 C. 35,597
OD. 42,632
)
Hint: Reynolds Number, Re, can be found from:
Re = pUD
u
where, U can be fonnd from the continnity equation— Q =UA.

0. . 10 . (0.5 mfmin Y1 min /60 s)

Solution: From continnity equation,

: - " LI
(0.79x998 kefm*X0.17 mfs )1'0—_0 m|

I

25Y)

100/

Hence, Reynolds Number & 1.19x107

Therefore, the key is (A).

96. The transition between laminar and turbulent flow
usually occurs at a Reynolds number of approximately

(A) 900
(B) 1200
(C) 1500
(D) 2100

Answer is D.

= 28158

= 0.17 mfs
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DRAG COEFFICIENT ), =

The drag force F';,on objects immersed in a large body of
flowing fluid or objects moving through a stagnant fluid is

_ Cpovid

p >

, Where

C, = the drag coefficient,

v = the velocity (m/s) of the flowing fluid or moving
object, and
A = the projected area (m®) of blunt objects such as

spheres, ellipsoids, disks, and plates, cylinders,
ellipses, and air foils with axes perpendicular to the
flow.

For flat plates placed parallel with the flow
C,=1.33/Re™ (10*<Re <5 x 10%)
C,=0.031/Re"7 (10°< Re < 107)

The characteristic length in the Reynolds Number (Re) is the
length of the plate parallel with the flow. For blunt objects, the
characteristic length is the largest linear dimension (diameter
of cylinder, sphere, disk, etc.) which is perpendicular to the

flow.
DRAG COEFFICIENT FOR SPHERES, DISKS, AND CYLINDERS

100,000 [ ¥

10,000

1,004

L 24 ;
Cp= =2 Re< I
D Re &
17
S
3
< N
N *
A
- r\ T sprrﬁnmé
I A 1 *\
I I[ |
~~ N ‘_ [._msr(_: C}:,
S
| Rl -
N CYLINDERS O—I_—)
]
s
AN JI
I T
~1] S L
M=t Lo Ll === A
== N,
it

a.001 001 01 10 10 100 1,000 10,000 100,000 1,000,000

REYNOLDS NUMBER Re = DI\J_P

67. The drag coefficient for a car with a frontal area of 28 ft2 is 0.32. Assuming the density of air to be

2.4x1073 slugs/ft3, the drag force (Ib) on this car when driven at 60 mph against a head wind of 20
mph is most nearly

0OA. 37

0B. 83

OC. 148

OD. 185

CpopAU?
Hint Drag force = 2 where, Cpy is the coefficient of drag; pis the density of air; A is the frontal area; and Uis the relative velocity_

Sclmtion: Refative < 0-32)( 24107 )(27 /(1173 f2 :I:m.s

Hence drag force= - =1481Tb_
Therd'are, the key is (C).

68. The drag coefficient for a car with a frontal area of 26 ft2 is being measured in a 8 ft x 8ft wind

tunnel. The density of air under the test conditions is 2.4x1073 slugs/ft3, When the air flow rate is,
500,000 ft3/min, the drag force on the car was measured to be 170 Ib. The drag coefficient under the
test conditions is most nearly

OA.0.28

OB.0.30
0C.032
OD.0.34

B CppAU?
Hint: Drag force = 2 where, Cpy is the coefficient of drag; p is the density of air; A is the frontal area; and U is

the relative velocity. Find U from continmity equation: U = Q/A 0

2% Dy : 2%(17015) "
Sotution: From contimmity = agj:o’fe)’o T g e ~=0321
Hence, drag coefficient = 240" _ % J(26 f2°)(130 f2/s)
Therefore, the key is (C).
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AERODYNAMICS
Airfoil Theory
The lift force on an airfoil is given by

_G .OVzAP

1 7

C, = the lift coefficient

v = velocity (m/s) of the undisturbed fluid and

A, = the projected area of the airfoil as seen from above
(plan area). This same area is used in defining the drag
coefficient for an airfoil.

The lift coefficient can be approximated by the equation
¢

2mk,sin(o + B) which is valid for small values of o
and f.
k, = aconstant of proportionality

= angle of attack (angle between chord of airfoil and
direction of flow)

B = negative of angle of attack for zero lift.

uuuuuuuuuuuu

The drag coefficient may be approximated by
Cl

CD:CDoo‘i'm

Cp., = infinite span drag coefficient

2 4
AR:ﬁ—=—§
P C

The aerodynamic moment is given by

M Cy ov’4 o€
where the moment is taken about the front quarter point of the
airfoil.

C,, = moment coefficient
4, = plan area

¢ = chord length

b = span length

AERODYNAMIC MOMENT CENTER

2777 CAMBER LINE
= g I,,, g
|2 277 ,,
At N

L7 7RG54L

CHORD
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fundamentals
of engineering

FLUID FLOW
The velocity distribution for laminar flow in circular tubes
or between planes is

V(V) = Vmax

1 — (L)z], where

R
r = the distance (m) from the centerline,
R = the radius (m) of the tube or half the distance between
the parallel planes,
v = the local velocity (m/s) at », and
V..~ the velocity (m/s) at the centerline of the duct.
Vo= 1.18v, for fully turbulent flow
Vinax ™ 2v, for circular tubes in laminar flow and
Vo= 1.5V, for parallel planes in laminar flow, where
v = the average velocity (m/s) in the duct.

The shear stress distribution is

T r h
_— - r
T, =R where

T and 7, are the shear stresses at radii » and R respectively.

where

v(r) = Vmax [1 - (Tﬁ)z]

=)~
|
I

lo— Y —o o |je—v=y

T =T 2‘“’ Shear stress distribution within the fluid in a pipe (laminar or turbulent flow) and
w r=R R typical velocity profiles.

Laminar flow: Turbulent flow:

¢
U 4- ~

S A=W AR

21. When a Newtonian fluid flows under steady, laminar condition through a circular pipe of constant
diameter, which of the following is NOT a correct conclusion?

() A. The shear stress at the centerline of the pipe is zero

OB. The maximum velocity at a section is twice the average velocity at that section
(O C. The velocity will decrease along the length of the pipe

OD. The velocity gradient at the centerline of the pipe is zero

"
Hint: Under laminar flow {n circular pipes, the velocity distribution is parabolic and symmetrical about the centerline.
In addition, the continuity equation also applies.

Solution: Due to the symmetrical velocity distribution, velocity gradient at the centerline is zero.
Hence, the shear stress at the centerline is also zero.
From the parabolic velocity distribution, V. =2V, ..

Since the pipe diameter is constant, by continuity equation- () = AV, velocity should remain constant along the length of the pipe.

Therefore, the key is (C).

22. A Newtonian fluid flows under steady, laminar conditions through a circular pipe of diameter 0.16 m

at a volumetric rate of 0.05 m3/s. Under these conditions, the maximum local velocity (m/s) at a
section is most nearly
DA.20

OB.25
0C.30
OD.5.0
Hint: Under laminar flow in circular pipes, the velocity distribution is parabolic and symmetrical about the centerline.

In such cases, the maximum velocity at a section is double the average velocity at that section.

Solution: Average velocity at any section= Q/A= (Q/[pD2/4]

In this case, average veloclty= {0.05 m3/s)/[p (0.16 m)2/4]= 2.5 m/s
Hence the maximum velocity= 2 x 2.5 m/s= 5.0 m/s

Therefore, the key is (D).
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STEADY, INCOMPRESSIBLE FLOW IN CONDUITS sées,  Friction Factor for Laminar Flow

AND PIPES The equation for Q in terms of the pressure drop Ap,is the
The energy equation for incompressible flow is Hagen-Poiseuille equation. This relation is valid only for flow
5 5 in the laminar region.
Py Vi P, Va g 4 4
p V2 » V2 8wl 128pL
1 1 2 2
L+t ="245+52+h
og "1 T 2g T pg " PT2g T o ap Dt
v===
h, = the head loss, considered a friction effect, and all A 32l
remaining terms are defined above. A 64( " ) (L) (,ovﬂ) (64) (L) (VZ)
. . . Py = —_— =] = — (=)=
If the cross-sectional arca and the elevation of the pipe are the PYD/AD/A 2 ARe f 29)
same at both sections (1 and 2), then z, = z,and v, = v, '
64
The pressure drop p, — p, is given by the following: “f = e
P\—Py=Yh,=pgh,
0.10
0.09
The Darcy-Weisbach equation is 0.08 N
2 0.07 N s 0.05
— L T S MAR B A e 0.04
hf = fD 2g° where 0.06 \ SNl = 0.03
\ SR N
f = f(Re, e/D), the Moody or Darcy friction factor, .84 o VST B 2:5
el N ,
D = diameter of the pipe, R 00s \ ST N o oy sors ©
. \ i . o
L = length over which the pressure drop occurs, bt \ Y S~ L] 0008 o
- 0006 2%
e = roughness factor for the pipe, and all other symbols g 003 \ ] % 0004 &
are defined as before. z s 2
= | N e is . <
An alternative formulation employed by chemical engineers is 'g ) \\\::\\ 3 -
o .02 + \\:\O = X E
s s EE fh NSt o
h,=(4 f VLY~ _ ZFanning M '<Z_: R T T—— 0.0004
f _< Fanning }ng - Dg % oots SWOOTH PIPE =L -
. o 7 = A ( R T 0.0002
Fanning friction factor, fruning = T é AR (™ imAREN | ¢ TURBUEN ™~ :‘:\“ 000010
0.010 N T 0.00005
A chart that gives fversus Re for various values of e/D, known 0.009 S
as a Moodly or Stanton diagram, is available at the end of this 0.008. N =Ll 0.00001
03 2 3 5 104 2 3 5 105 2 8 5 106 2 3 5 107 2 3 5 108

section. REYNOLDS NUMBER, Re = %
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93. When a liquid flows under pressure through a pipe,
the head loss due to surface friction with the pipe is
hy = f(L/D)(v*/2g). Which of the following state-
ments is false?
(A) The equation is valid for laminar as well as
turbulent flow.
(B) The variable D is the depth of flow in the pipe.
(C) The friction factor, f, is a function of a Rey-
nolds number.
(D) The head loss, hr, is expressed in units of
distance.

The variable D is the pipe diameter.

Answer is B.

Questions 18-19: The level in a retention basin is normally controlled with a pipe as
shown in the figure below. The pipe has an 1.D. of 30 cm. The equivalent Iength of the
pipe (including the elbows, entrance effect, and discharge) is 6.0 m. Relative roughness is
0.0005. The fluid has the following properties:

p =998 kg/m’
1= 0.00100 kg/(m-s)

7 OVERFLOW
20m

- NORMAL
F‘ LEVEL

(

/

19.  Assuming a Reynolds number of 200,000, the Moody friction factor fis most nearly:

(A)  0.017
B) 0019
© 0022
D) 0.032

From the Moody (Stanton) diagram in the Fluid Mechanics section of the FE Reference Handbook
with %:0,0005 and Re =2 x 10°

Then, fis 0.019

THE CORRECT ANSWER TS: (B)
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Minor Losses in Pipe Fittings, Contractions, and
Expansions

Head losses also occur as the fluid flows through pipe
fittings (i.e., elbows, valves, couplings, etc.) and sudden pipe
contractions and expansions.

2 2
\%
%+Zl+2é z2+22+2g+h/+hfﬁttmg
P vi _p V3
pgl tat 2(; pé Tt 2g + hf + hfﬁttmga where

v2 2
hy fitting = cx 27 and Vg 1 velocity head
Specific fittings have characteristic values of C, which will
be provided in the problem statement. A generally accepted
nominal value for head loss in well-streamlined gradual
contractions is

h

!/ fiting — 0.04 v¥/ 2g

The head loss at either an entrance or exit of a pipe from or to
a reservoir is also given by the %, 4. equation. Values for C
for various cases are shown as follows.

vV— vV— V—= V—>
SHARP EXIT PROTRUDING SHARP ROUND

C=1.0 PIPE ENTRANCE ENTRANCE ENTRANCE
C=08 C=05 C=01



uuuuuuuuuuuu

PUMP POWER EQUATION
W = Ovh/m = Qpgh/m, where

O = volumetric flow (m%/ or cfs),

h = head (m or ft) the fluid has to be lifted,
n = efficiency, and

W = power (watts or ft-Ibf/sec).

For additional information on pumps refer to the

MECHANICAL ENGINEERING section of this handbook.

For a flow from (1) to (2),

p, V2 p. VI
Y Tag Tt = gyt B T he T iy + By piccing

where,
hy: pump head
he: turbine head
he = fi%: head loss (note V = flow velocity through pipe)

R¢ firting: Minor loss

Pump power:
W, = thgh, = pQgh, = yQh,

for a pump efficiency 7,

Turbine power:

W, = mgh, = pQgh, = yQh,
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Questions 20-21: The figure below represents a water-flow system in which water is
pumped from the lake to the storage tank and also flows from the lake through the fur-
bine. Darcy friction factors are given for the pipe flows:

f=hy % (Fanning friction factors are one-fourth as large.)

e

Specific weight of water 9,800 N/m?
Atmospheric pressure 1.01 x 10° N/m’

"
R I R

—
S

LAKE 15.0m

HOT TO SCALE

1.

The pump is 0% efficient and is to pump water to the tank at the rate of 0.5 m’/min
at a time when the tank is filled to the level shown. The pipe system from B to E is
equivalent to 100 m of 75-mm-diameter pipe with a Darcy friction factor of 0,02,
The power (W) delivered to the pump is most neatly:

(A) 490
(B) 1,250
€ 1560
(D) 93,900
5..".”'3 min
_ _ min 60z
V=Q/A=—"""0 21 89 mfs
(0.075 m)
I i
4
N :fiv_?:w: 100m (1.89m/s)®
FTD2g T 0.075m 2(9.81 m/s?)
=4.8m
p -1ah
L
3 .
(1,00&%\1[9.313J 05" || T2 |(10.5+4.8m)
m®) e min || 60s
- 0.8
kgem’
=1,563—=5—
5
=1,563 W

THE CORRECT ANSWER I5: (C)
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1. Pump flow (1) to (2
/Z'/?Z‘+zl+h /ZZA_ZZ/-'_hf-H%:m]g
2
Thus,
. yQh,
Wp =
n
2. Turbine flow (1) to (3)

/ZZ[+21-|/%Z{+Zg+ht+hf+ymfmg

LV?

he = (z; — 73) — hf = (21— 73) — fﬁ@

or

Thus,

Wr =yQh;
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MULTIPATH PIPELINE PROBLEMS

L2}

The same head loss occurs in each branch as in the
combination of the two. The following equations may be
solved simultaneously for v, and vy:
L,v? L,v2
—f 44 _ ¢ BB
=11 D, 2g =t Dy 2g
(zD4)v = (xD%/4)v, + (xD3/4)vp

The flow Q can be divided into O, and O, when the pipe
characteristics are known.

52. The fipure below shows a branched pipe network. A pressure gage just upstream of A reads 60 psi
and a pressure gage just downstream of D reads 54 psi. The flow rates, diameters, the friction
factors, and the lengths of the two branches are as follows:

Branch ABD Branch ACD
Flow rate Q 2Q
Diameter D D
Length L L
C

s B N_
— — —

‘Which of the following is a true conclusion?
(O A. Pressure drop in branch ACD = 4 psi
(OB. Pressure drop in branch ABD = 2 psi
(O C. Pressure drop in branch ACD = Pressure drop in branch ABD = 6 psi

(OD. Pressure drop in branch ACD = Pressure drop in branch ABD = 3 psi
Hint: In branched pipe network such as the one shown, the head loss is the same in each branch.
Solution: Pressure drop in branch ABD = 60 psi - 54 psi =6 psi
Pressure drop in branch ACD = 60 psi - 54 psi = 6 psi

Hence pressure drop in ABD = pressure drop in ACD = 6 psi.

Therefore, the key is (C).
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Flow in Noncircular Conduits

Analysis of flow in conduits having a noncircular cross section
uses the hvdraulic radius Ry, or the hvdraulic diameter Dy, as
follows

R,, — cross-sectional area _ Dy
= L =
wetted perimeter 4

95. What is most nearly the hydraulic radius of an
equilateral triangle (vertex down) open channel flowing
at full capacity with a maximum depth of 3§ m?

(A) 0.60 m
(B) 0.65m

(C) 0.70 m ;.
(D) 0.75 m 95, 3;3;;0 =

3m
= —— = 3.464
§ = Cos30° m

area in flow

at full capacity (%) (3464 m)(3 m) = 5.196 m*

_ areainflow 5190 m?
"h = etted perimeter (2)(3.464 m)
=0.75 m

Answer is D.

66. The hydraulic diameter of a circualr sewer flowing half-full is equal to
O A. half its diameter
(OB. its diameter
(O C. double its diameter
(OD. nt times its diameter

D,- 4[ Arveaof flow
Hint: Hydraulic diameter, Dh is defined as

Wetted per’
D =4 —
’ 1/2(aD)
Solution: From the definition of Dy, for a sewer flowing half full, )

Therefore, the key is (B).

1/2(zD?/4)
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THE IMPULSE-MOMENTUM PRINCIPLE

. The resultant force in a given direction acting on the fluid

equals the rate of change of momentum of the fluid.

XF = Q,p,v,— O,p,v, Where

2F = the resultant of all external forces acting on the
control volume,

0,p,v, = the rate of momentum of the fluid flow entering the
control volume in the same direction of the force,
and

0,p,v, = the rate of momentum of the fluid flow leaving the
control volume in the same direction of the force.

For a control volume that is fixed (and thus inertial) and nondeforming,

{‘.] F ;
I . Vp d+* 4 VpV-ndA= ZFcht.ams of the

C cs

control volume

1D Momentum flux

I KPK.E dA - Z(rj/tlzr )OHF _Z(ﬁglzl )f.’i

S
Where 7., p,are assumed uniform over discrete inlets
and outlets

mf = in;n'Ai
steady flow
Fa— - our P m
—_— _ L
net force  outlet momentum inlet momentum
onCV Sflux Sflux
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Pipe Bends, Enlargements, and Contractions

The force exerted by a flowing fluid on a bend, enlargement,
or contraction in a pipe line may be computed using the
impulse-momentum principle.

v, Fo=p,A
2 y ;/oc 27
F, V2

X Voo vy
“
F v

X

PA,— pyA,cos o — Fx= 0p (v,cos 0L — V)
F,—W—p,4,sin o= Qp (v,sin o — 0), where
F = the force exerted by the bend on the fluid (the force
exerted by the fluid on the bend is equal in magnitude and
opposite in sign), F and F,are the x-component and
y-component of the force,

p = the internal pressure in the pipe line,

A = the cross-sectional area of the pipe line,

W= the weight of the fluid,

v = the velocity of the fluid flow,

o, = the angle the pipe bend makes with the horizontal,
p = the density of the fluid, and

Q = the quantity of fluid flow.

XE = YrioueVour — XiinVin
x-direction:

SFe = YiitoueViegue — SthinVei

—F + p14; — prAscosa = (pQ) (v, cosa) — (pQ)(vy)
~ Fe = p1Ay —prAzcosa + Qp(vy — vy cosa)

y-direction:

YF, = E'rhoutVyout — E'rhmVyin

Fy =W —pA; sina = (pQ) (v, sina) — (pQ)(0)
~ By =W + pyA;sina + Qpv; sina

where,

Q =Avy = Vv,
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Deflectors and Blades
Fixed Blade

° Vo

v
v 2 VoV,
Fe X
V.
FLF !

F ON BLADE y

—F = Op(v,cos 00— v))
F,= Op(v,sin o, - 0)

Moving Blade
® FINAL DIRECTION OF
JET RELATIVE TO BLADE 7/ Vi-v - Ell'\Fl{élEmON
Vi-v=u Va OF JET

RELATIVE TO BLADE Vp

Fx
F ON BLADE

v Vi

- Fx = Qp(va_ le)
=—-0p(v,—v)(1 —cos o)

F,=0p(vy,—v,)
=+ Op(v,— V) sin o, where

v = the velocity of the blade.

Impulse Turbine
o A

v2

W=Qyz—é
FOR o= 180°
W |//prax st FOR 0 < 180°
f_,vh "
2

W= Qp(v, — v)(1 — cosa)v, where

W = power of the turbine.

Wrax = Qp(vf/4)(1 — cosa)
When a = 180°,

Was = (00v1)12 = (OvV]) 122
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Jet Propulsion

S

Q0 A = <R Ny

Ly

1

)

— —|
Vq 0

¥ n |B -

+-PROPULSIVE ("A
FORCE 2

A C

V1"0 D

F=0p(v,-0)

F = 2yhA,, where

the propulsive force,

the specific weight of the fluid,

the height of the fluid above the outlet,
the area of the nozzle tip,

A, /2gh, and

/2gh.

Bernoulli equation between (1) and (2):

AL
+ +zy =7+ +—+2z
71,; g Tt N 290 77

or

Thus

43



49,

A horizontal jet of water (density = 1,000 kg/m®) is deflected perpendicularly to
the original jet stream by a plate as shown below.

ﬁ\_J ¥
FLOW ——»

JET AREA = 0.01 m? A\ Ny

JET SPEED =30 m/s PLATE

The magnitude of force F (kN) required to hold the plate in place is most nearly:

A 45
®) 90
€ 450
D 900

Q=A,V; =(0.01m?)(30 m/s)

=03m%/s

Since the water jet is deflected perpendicularly, the force F must deflect the total horizontal momen-
tum of the water.

F = pQV = (1,000 kg/m®) (0.3 m*/s) (30 nv/s) = 9,000 N = 9.0 kN

THE CORRECT ANSWER IS: (B)

36. Approximately what depth of water, h, will pro-
duce a horizontal force of 2.5 N against the 2 cm x 2 cm

plate?

A 4 orifice
= diameter
1em 2cm

___________ —a—— 26N |plate| [2cm

(A) 0.91m
(B) 1.6m
(C) 32 m
(D) 65 m

36. From the impulse-momentum theorem,
F =1Av = pvAv =v24Ap

v? is found from

pgh = L;g
v = 2gh
Therefore,
£
eV _Ap
2g 29  2gAp
_ 25N
= 2
) (9.81 ?2) x (% m) (1000 ;nk%)
=162m (1.6 m)

Answer is B.
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DIMENSIONAL HOMOGENEITY AND 42, Which of the following is a non-dimensional grouping where, F is a force; 0 1s the density; A is the

sunes. DIMENSIONAL ANALYSIS “‘SZ ﬂﬂdF Uis a velocity?
Equations that are in a form that do not depend on the ' il
fundamental units of measurement are called dimensionally OB. F
homogeneous equations. A special form of the dimensionally pAU?
homogeneous equation is one that involves only dimensionless oc. F
groups of terms. pEU
OD. L
Buckingham’s Theorem: The number of independent pAU
dimensionless groups that may be employed to describe a
phenomenon known to involve » variables is equal to the Hint: Since none of them is a standard non-dimensional number, check if any of them can be reduced to a familiar expression.
number (n — 7), where 7 is the number of basic dimensions _F_
(i.e., M, L, T) needed to express the variables dimensionally. Solution: Recalling the result for drag or lift: F = Cpy (pAU2)/2, we can deduce that #4L” must be non-dimensional.
Therefore, the key is (B).

e Dimensional equation: ¢ Dimensionally homogeneous equation:

D=f(dV.p.0) Cp = f(Re)

* Buckingham’s Pi Theorem:

Similitude (Model test):
D=MLT L d=LV=LTYp=ML® p=MLIT?

If
Thus.
n=5(D.d.V.p.y) Remodet = Reproto type
r=3(M.LT) Then
~ k =n—r = 2 Piparameters Cmem type = Cmode

Hl :L (OI‘ L) = CD

Iouta)
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EERSIERSIEREIERSTS

SIMILITUDE
In order to use a model to simulate the conditions of the
prototype, the model must be geometrically, kinematically,
and dynamically similar to the prototype system.

To obtain dynamic similarity between two flow pictures, all

independent force ratios that can be written must be the same
in both the model and the prototype. Thus, dynamic similarity

between two flow pictures (when all possible forces are

acting) is expressed in the five simultaneous equations below.

EIERCICRCICRETCRETC

_[pv?

_[pv?
], |
_[vo] _[vo
LK I g
-V7 V7
-Igl ]g
[pv?] _[ov?
E | |E

c

m

~[Re], =[Re],
=[Fr], =[Fe],

:[Ca]p :[Ca]m

m

pf] P ["f] ~[we], ~[we,

where
the subscripts p and m stand for prototype and model

respectively, and

FJ’
F, =

ma©o < ~

B~ —

= inertia force,

pressure force,
viscous force,

= gravity force,

= elastic force,

= surface tension force,
= Reynolds number,

= Weber number,

Cauchy number,
Froude number,

= characteristic length,

velocity,
density,

= surface tension,

bulk modulus,

= dynamic viscosity,
= pressure, and
acceleration of gravity.

95. The velocity at a point on a model of a spillway
for a dam is 5 m/s. If the length-to-scale ratio is 15:1,
what is most nearly the velocity at the corresponding
point on the actual dam? (Assume similar conditions.)

(A) 6.7 m/s
(B) 7.5 m/s 1
95. Inertial and gravitational forces dominate f
Eg; ;g m; B spillway. The Froudre K:.lm);elrs mL?;tebSe e:?ll;ll,a cene
m/s

(NEe)dam = (NFo)model
CIC

Ldam (5 1_11) 15
Linode s 1

=19.36 m/s (19 m/s)

Vdam = Vmodel

Answer is D.

93. A venturi meter is used to measure air velocity.
A one-fifth scale model of the venturi meter is built,
and water is used as the test fluid. Viscosity of the
air is 1.82 x 107° N-s/m?. Viscosity of the water is
9.82 x 107* N.s/m? What will be the approximate
ratio of the model to the actual velocities observed?

(A) 0.32

(B) 3.1 . N . .

(©) 11 93. Use of a venturi meter implies pipe flow, which
means

(D) 5 (NVRe)actual = (NRe)model

The units given for the viscosity are for absolute viscos-
ity, not kinematic viscosity.

PairVactual Lactual _ PwaterVmod cleodeE

Hair Hwater
Vinodel (.uwa,Lej) ( Pair ) (La.ctual)
Vactual h Hair Pwater Lnodel
N-s kg

-4

- 9.82 x 10 = 120 — (5)

= o | (2
182 10-% — | | 1000 =2

=0.3237 (0.32)

Answer is A.
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43. A rectangular channel (n = 0.013, s = 0.004) has

ﬁPEN-C,H ﬁNNF,jL FLOW AND/OR PIPE FLOW a depth of 3 m. The width of the channel is 5 m. The
anning’s Equation velocity of water in the channel is most nearly
v = (k/n)R*3S"?, where
k = 1 for SI units, (A) 1m/s
k= 1.486 for USCS units, (B) 6 m/s
v = velocity (m/s, ft/sec), (C) 15m/s
n = roughness coefficient, (D) 90 m/s
R,, = hydraulic radius (m, ft), and _
S = slope of energy grade line (m/m, ft/ft). First, find the area of the channel.

Also see Hydraulic Elements Graph for Circular Sewers in the A=dw=(3m)(5m)

CIVIL ENGINEERING section. =15 m?
Find the hydraulic radius.

_ dw
T w+2d
_ (3m)(m)
5m 4 (2)(3 m)
Hazen-Williams Equation =136 m
_ 0.63 c0.54
v =k CRii %%, where Use Manning’s equation.
C = roughness coefficient,
k, = 0.849 for SI units, and Q= (l) ARY3/S
T
k, = 1.318 for USCS units. f
Other terms defined as above. = (0‘013) (15 m*)(1.36 m)*/*/0.004
WEIR FORMULAS =89.50 m*/s
See the CIVIL ENGINEERING section. Use the continuity equation and solve for v.
Q=vA
v Q _ 8959 m%/s
A 15 m?

=597m/s (6 m/s)

Answer is B.
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