Review for FE Exam: Fluids

3/22/2011
 Hyunse Yoon, Ph.D.

(hyun-se-yoon@uiowa.edu or hyn@engineering.uiowa.edu)
Postdoctoral Research Scholar
Department of Mechanical Engineering, University of Iowa
IIHR-Hydroscience \& Engineering, University of Iowa

EXAM SPECIFICATIONS

Fundamentals of Engineering (FE) Examination

Effective April 2010

- The FE examination is an 8-hour supplied-reference examination: 120 questions in the 4-hour morning session and 60 questions in the 4 -hour afternoon session.
- The afternoon session is administered in the following seven modules-Chemical, Civil, Electrical, Environmental, Industrial, Mechanical, and Other Disciplines.
- Examinees work all questions in the morning session and all questions in the afternoon module.
- The FE examination uses both the International System of Units (SI) and the US Customary System (USCS).
- Beginning with the April 2010 examination, the General module was renamed Other Disciplines. The module was renamed to better describe it to the examinees for whom it is intended. No other changes were made to the FE exam specifications for April 2010.

Topic Area

SESSION	FLUIDS TOPICS		
MORNING	A. Flow measurement B. Fluid properties C. Fluid statics D. Energy, impulse, and momentum equations E. Pipe and other internal flow		
AFTERNOON	CHEMICAL ENGINEERING MODULE	MECHANICAL ENGINEERING MODULE	OTHER DISCIPLINES MODULE
	A. Bernoulli equation and mechanical energy balance B. Hydrostatic pressure C. Dimensionless numbers (e.g., Reynolds number) D. Laminar and turbulent flow E. Velocity head F. Friction losses (e.g., pipe, valves, fittings) G. Pipe networks H. Compressible and incompressible flow I. Flow measurement (e.g., orifices, Venturi meters) J. Pumps, turbines, and compressors K. Non-Newtonian flow L. Flow through packed beds	A. Fluid statics B. Incompressible flow C. Fluid transport system (e.g., pipes, ducts, series/parallel operations) D. Fluid mechanics: incompressible (e.g., turbines, pumps, hydraulic motors) E. Compressible flow F. Fluid machines: compressible (e.g., turbines, compressors, fans) G. Operating characteristics (e.g., fan laws, performance curves, efficiencies, work/power equations) H. Lift/drag I. Impulse/momentum	A. Basic hydraulics (e.g., Manning equation, Bernoulli theorem, open-channel flow, pipe flow) B. Laminar and turbulent flow C. Friction losses (e.g., pipes, valves, fittings) D. Flow measurement E. Dimensionless numbers (e.g., Reynolds number) F. Fluid transport systems (e.g., pipes, ducts, series/parallel operations) G. Pumps, turbines, and compressors H. Lift/drag

1) FE Supplied-Reference Handbook

\$13.95
ISBN: 978-1-932613-59-9

- This is the official reference material used in the FE exam room. Review it prior to exam day and familiarize yourself with the charts, formulas, tables, and other reference information provided. Note that personal copies will not be allowed in the exam room. New copies will be supplied at the exam site. 8th edition, 2nd revision © 2011
- Use the reference and review materials sold by CEE's ASCE student chapter. This year, the CEE department will again reimburse any CEE students who are registered for the FE exam for related study materials (not exam fees). The department can afford to pay for the cost of reference and review books up to $\sim \$ 60$. Bring your original receipt to the department administrative assistant, Angie Schenkel.

2) 57:020 Fluids Class Lecture Note: http://www.engineering.uiowa.edu/~fluids
Realistic
practice for
the general
sections of the
FE exam

Second Edition

Michael R. Lindeburg, PE

Hornbuckle

NCEES
The exclusive
developer
of the
FE exam

Fundamentals of Ensineering
General Engineering
Sample Questions \& Solutions

Contents:

1) Fluids properties: Density, specific volume, specific weight, and specific gravity
2) Stress, pressure, and viscosity
3) Surface tension and capillarity
4) The pressure field in a static liquid
5) Manometers
6) Forces on submerged surfaces and the center of pressure
7) Archimedes principle and buoyancy
8) One-dimensional flows
9) The field equation (Bernoulli equation)
10) Fluids measurements (Pitot tube, Venturi meter, and orifices)
11) Hydraulic Grade Line (HGL) and Energy Line (EL)
12) Reynolds number
13) Drag force on immersed bodies
14) Aerodynamics
15) Fluid flow (Pipe flow; Energy equation)
16) The impulse-momentum principle (Linear momentum equation)
17) Dimensional homogeneity and dimensional analysis and similitude
18) Open-channel flow

DENSITY, SPECIFIC VOLUME, SPECIFIC

WEIGHT, AND SPECIFIC GRAVITY
The definitions of density, specific volume, specific weight, and specific gravity follow:

$$
\begin{array}{ll}
\rho=\operatorname{limit}_{\Delta V \rightarrow 0} & \Delta m / \Delta V \\
\gamma=\operatorname{limit}_{\Delta V \rightarrow 0} & \Delta W / \Delta V \\
\gamma=\operatorname{limit}_{\Delta V \rightarrow 0} & g \cdot \Delta m / \Delta V=\rho g
\end{array}
$$

also $S G=\gamma / \gamma_{w}=\rho / \rho_{w}$, where
$\rho \quad=$ density (also called mass density),
$\Delta m=$ mass of infinitesimal volume,
$\Delta V=$ volume of infinitesimal object considered,
$\gamma \quad=$ specific weight,
$=\rho g$,
$\Delta W=$ weight of an infinitesimal volume,
$S G=$ specific gravity,
$\rho_{w} \quad=$ density of water at standard conditions
$=1,000 \mathrm{~kg} / \mathrm{m}^{3}\left(62.43 \mathrm{lbm} / \mathrm{ft}^{3}\right)$, and
$\gamma_{\omega}=$ specific weight of water at standard conditions,
$=9,810 \mathrm{~N} / \mathrm{m}^{3}\left(62.4 \mathrm{lbf} / \mathrm{ft}^{3}\right)$, and
$=9,810 \mathrm{~kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}^{2}\right)$.

The density of a fluid is defined as its mass per unit volume.

The specific volume is the volume per unit mass and is therefore the reciprocal of the density.

$$
v=\frac{1}{\rho}
$$

Specific weight is weight per unit volume;

$$
\gamma=\rho g
$$

Specific gravity is the ratio of fluid density to the density of water at a certain temperature.

$$
S G=\frac{\rho}{\rho_{\mathrm{H}_{2} \mathrm{O} @ 4^{\circ} \mathrm{C}}}
$$

STRESS, PRESSURE, AND VISCOSITY

Stress is defined as

$$
\tau(1)=\operatorname{limit}_{\Delta A \rightarrow 0} \Delta F / \Delta A, \text { where }
$$

$\tau(1)=$ surface stress vector at point 1 ,
$\Delta F=$ force acting on infinitesimal area ΔA, and
$\Delta A=$ infinitesimal area at point 1.

$$
\tau_{n}=-P
$$

$$
\tau_{t}=\mu(d \mathrm{v} / d y) \text { (one-dimensional; i.e., } y \text {), where }
$$

τ_{n} and $\tau_{t}=$ the normal and tangential stress components at point 1,
$P \quad=$ the pressure at point 1,
$\mu \quad=$ absolute dynamic viscosity of the fluid $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}[\mathrm{lbm} /(\mathrm{ft}-\mathrm{sec})]$,
$d \mathrm{v}=$ differential velocity,
dy = differential distance, normal to boundary.
$\mathrm{v} \quad=$ velocity at boundary condition, and
$y \quad=$ normal distance, measured from boundary.
$v \quad=$ kinematic viscosity; $\mathrm{m}^{2} / \mathrm{s}\left(\mathrm{ft}^{2} / \mathrm{sec}\right)$

$$
\text { where } v=\mu / \rho
$$

For a thin Newtonian fluid film and a linear velocity profile,

$$
\mathrm{v}(y)=\mathrm{v} y / \delta ; d \mathrm{v} / d y=\mathrm{v} / \delta \text {, where }
$$

$\mathrm{v} \quad=$ velocity of plate on film and
$\delta \quad=$ thickness of fluid film.
For a power law (non-Newtonian) fluid

$$
\tau_{t}=K(d \mathrm{v} / d y)^{n} \text {, where }
$$

$K=$ consistency index, and
$n \quad=$ power law index.

$$
n<1 \equiv \text { pseudo plastic }
$$

$$
n>1 \equiv \text { dilatant }
$$

Newtonian vs. Non-Newtonian Fluids

Dilatant:
Newtonian:
$\tau \uparrow d u / d y \uparrow$
Pseudo plastic:
$\tau \propto d u / d y$
$\tau \downarrow d u / d y \uparrow$

Rate of shearing strain, $\frac{d u}{d v}$

$$
\tau \propto \frac{d u}{d y}
$$

$\mu=$ slope

$$
\tau \propto\left(\frac{d u}{d y}\right)^{n}
$$

$n>1$ slope increases with increasing τ (shear thickening)
$n<1$ slope decreases with increasing τ (shear thinning) Ex) blood, paint, liquid plastic
4. The figure shows the relationship between shear stress and velocity gradient for two fluids, A and B. Which of the following is a true statement?

O A. Absolute viscosity of A is greater than that of B
O B. Absolute viscosity of A is less than that of B
OC. Kinematic viscosity of A is greater than that of B
O D. Kinematic viscosity of A is less than that of B

Hint: By definition, absolute viscosity $=\frac{\text { shear stress }}{\text { velocity gradient }}$
Thus, slope of the lines in the plot is absolute viscosity.
Kinematic viscosity = absolute viscosity/density.
Solution: Since the slope of the line for A is greater than that for B , viscosity of A is greater than that of B .
Therefore, the key is (A).
48. Which of the following statements is true of viscosity?
(A) It is the ratio of inertial to viscous force.
(B) It always has a large effect on the value of the friction factor.
(C) It is the ratio of the shear stress to the rate of shear deformation.
(D) It is usually low when turbulent forces predominato

$$
\tau_{\mathrm{t}}=\mu\left(\frac{d v}{d y}\right)
$$

where $\tau_{t}=$ shear stress and
$\frac{d v}{d y}=$ rate of shear deformation
Hence, μ is the ratio of shear stress to the rate of shear deformation.
THE CORRECT ANSWER IS: (C)

SURFACE TENSION AND CAPILLARITY

Surface tension σ is the force per unit contact length

$$
\sigma=F / L \text {, where }
$$

$\sigma=$ surface tension, force/length,
$F \quad=$ surface force at the interface, and
$L \quad=$ length of interface.
The capillary rise h is approximated by

$$
h=(4 \sigma \cos \beta) /(\gamma d) \text {, where }
$$

$h \quad=$ the height of the liquid in the vertical tube,
$\sigma \quad=$ the surface tension,
$\beta=$ the angle made by the liquid with the wetted tube wall,
$\gamma \quad=$ specific weight of the liquid, and
$d \quad=$ the diameter of the capillary tube.

8. A clean glass tube is to be selected in the design of a manometer to measure the pressure of kerosene. Specific gravity of kerosene $=0.82$ and surface tension of kerosene $=0.025 \mathrm{~N} / \mathrm{m}$. If the capillary rise is to be limited to 1 mm , the smallest diameter (cm) of the glass tube should be most nearly
○A. 1.25
○В. 1.50
-C. 1.75
○D. 2.00
[国] The capillary rise, $\quad h=\frac{4 \sigma \cos \beta}{\gamma d}$
where, $s=$ surface tension of the fluid; $b=$ angle of contact $g=$ specific weight of the fluid; $d=$ diameter of tube.
$=\frac{4(0.025 \mathrm{~N} / \mathrm{m})(\cos 0)}{\left(0.82 \times 9.8 \mathrm{kN} / \mathrm{m}^{3} \times 1,000 \mathrm{~N} / \mathrm{kN}\right)(1 / 1,000 \mathrm{~m})}=0.0124 \mathrm{~m}=1.24 \mathrm{~cm}$ n data,

Therefore, the key is (A).

98. When a thin-bore, hollow glass tube is inserted into a container of mercury, the surface of the mercury in the tube
(A) is level with the surface of the mercury in the container
(B) is below the container surface due to cohesion
(C) is below the container surface due to adhesion
(D) is above the container surface due to cohesion
99. Cohesive forces dominate in mercury. This depresses the mercury level in the tube.

Answer is B.

THE PRESSURE FIELD IN A STATIC LIQUID

The difference in pressure between two different points is

$$
P_{2}-P_{1}=-\gamma\left(z_{2}-z_{1}\right)=-\gamma h=-\rho g h
$$

For a simple manometer,

$$
P_{o}=P_{2}+\gamma_{2} z_{2}-\gamma_{1} z_{1}
$$

Absolute pressure $=$ atmospheric pressure + gage pressure reading
Absolute pressure $=$ atmospheric pressure - vacuum gage pressure reading

- Bober, W. \& R.A. Kenyon, Fluid Mechanics, Wiley, New York, 1980. Diagrams reprinted by permission of William Bober \& Richard A. Kenyon.

Absolute zero reference

$\rho=$ constant for liquid

$$
\mathrm{p}_{2}-\mathrm{p}_{1}=-\gamma\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)
$$

Manometers

For a simple manometer,

$$
\begin{aligned}
& p_{0}=p_{2}+\gamma_{2} h_{2}-\gamma_{1} h_{1}=p_{2}+g\left(\rho_{2} h_{2}-\rho_{1} h_{1}\right) \\
& \text { If } h_{1}=h_{2}=h \\
& p_{0}=p_{2}+\left(\gamma_{2}-\gamma_{1}\right) h=p_{2}+\left(\rho_{2}-\rho_{1}\right) g h
\end{aligned}
$$

Note that the difference between the two densities is used.
Another device that works on the same principle as the manometer is the simple barometer.

$$
p_{\mathrm{atm}}=p_{A}=p_{v}+\gamma h=p_{B}+\gamma h=p_{B}+\rho \mathrm{g} h
$$

$p_{v}=$ vapor pressure of the barometer fluid

$$
\begin{aligned}
& \downarrow: \text { add } \gamma h \\
& \text { Jump across: no change } \\
& \uparrow: \text { subtract } \nprec
\end{aligned}
$$

101. A vacuum pump is used to drain a basement of $20^{\circ} \mathrm{C}$ water. The vapor pressure of water at this temperature is 2.34 kPa . The pump is incapable of lifting water higher than 10.5 m . The atmospheric pressure is most nearly
(A) 100 kPa
(B) 150 kPa
(C) 210 kPa
(D) 270 kPa

$$
\begin{aligned}
p_{a}= & p_{v}+\rho g h \\
= & 2.34 \mathrm{kPa}+\frac{\left(998 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(10.5 \mathrm{~m})}{1000 \frac{\mathrm{~Pa}}{\mathrm{kPa}}} \\
& =105.1 \mathrm{kPa} \quad(100 \mathrm{kPa})
\end{aligned}
$$

Answer is A.

Manometry

FIGURE 2.9 Piezometer tube.

FIGURE 2.10 Simple U-tube manometer.

$$
p_{A}+\gamma_{1} h_{1}-\gamma_{2} h_{2}-\gamma_{3} h_{3}=p_{B}
$$

$$
\therefore p_{A}-p_{B}=\gamma_{2} h_{2}+\gamma_{3} h_{3}-\gamma_{1} h_{1}
$$

$$
\rightarrow p_{A}-p_{B} \approx \gamma_{2} h_{2}
$$

FIGURE 2.11 Differential U-tube manometer.

$$
\begin{gathered}
p_{A}+\gamma_{1} h_{1}-\gamma_{2} \ell_{2} \sin \theta-\gamma_{3} h_{3}=p_{B} \\
\therefore p_{A}-p_{B}=\gamma_{2} \ell_{2} \sin \theta+\gamma_{3} h_{3}-\gamma_{1} h_{1} \\
\rightarrow p_{A}-p_{B} \approx \gamma_{2} \ell_{2} \sin \theta
\end{gathered}
$$

FIGURE 2.12 Inclined-tube manometer.

Note

FORCES ON SUBMERGED SURFACES AND THE CENTER OF PRESSURE

Forces on a submerged plane wall. (a) Submerged plane surface (b) Pressure distribution.

The pressure on a point at a distance Z^{\prime} below the surface is

$$
p=p_{o}+\gamma Z^{\prime}, \text { for } Z^{\prime} \geq 0
$$

If the tank were open to the atmosphere, the effects of p_{o} could be ignored.
The coordinates of the center of pressure $(C P)$ are
$y^{*}=\left(\gamma I y_{c} z_{c} \sin \alpha\right) /\left(p_{c} A\right)$ and
$z^{*}=\left(\gamma I y_{c} \sin \alpha\right) /\left(p_{c} A\right)$, where
$y^{*}=$ the y-distance from the centroid (C) of area (A) to the center of pressure,
$z^{*}=$ the z-distance from the centroid (C) of area (A) to the center of pressure,
$I_{y_{c}}$ and $I_{y_{c} z_{c}}=$ the moment and product of inertia of the area,
$p_{c}=$ the pressure at the centroid of area (A), and
$Z_{c}=$ the slant distance from the water surface to the centroid (C) of area (A).

If the free surface is open to the atmosphere, then $p_{o}=0$ and $p_{c}=\gamma Z_{c} \sin \alpha$.

$$
y^{*}=I_{y_{c} z_{c}} /\left(A Z_{c}\right) \text { and } z^{*}=I_{y_{c}} /\left(A Z_{c}\right)
$$

The force on a rectangular plate can be computed as

$$
\boldsymbol{F}=\left[p_{1} A_{\mathrm{v}}+\left(p_{2}-p_{1}\right) A_{\mathrm{v}} / 2\right] \mathbf{i}+V_{f} \boldsymbol{\gamma}_{f} \mathbf{j} \text {, where }
$$

$\boldsymbol{F}=$ force on the plate,
$p_{1}=$ pressure at the top edge of the plate area,
$p_{2}=$ pressure at the bottom edge of the plate area,
$A_{\mathrm{v}}=$ vertical projection of the plate area,
$V_{f}=$ volume of column of fluid above plate, and
$\gamma_{f}=$ specific weight of the fluid.

Hydrostatic Force on a Plane Surface

$$
\mathrm{F}=\overline{\mathrm{p}} \mathrm{~A}=\underbrace{\gamma \sin \alpha \overline{\mathrm{y}} \mathrm{~A}}_{\overline{\mathrm{p}}=\text { pressure at centroid of } \mathrm{A}}
$$

Magnitude of resultant hydrostatic force on plane surface is product of pressure at centroid of area and area of surface.

Center of Pressure

Center of pressure is in general below centroid since pressure increases with depth. Center of pressure is determined by equating the moments of the resultant and distributed forces about any arbitrary axis.

$$
\mathrm{y}_{\mathrm{cp}}=\overline{\mathrm{y}}+\frac{\overline{\mathrm{I}}}{\overline{\mathrm{y} A}}
$$

y_{cp} is below centroid by $\overline{\mathrm{I}} / \mathrm{yA}$

$$
\mathrm{x}_{\mathrm{cp}}=\frac{\overline{\mathrm{I}}_{\mathrm{xy}}}{\mathrm{yA}}+\overline{\mathrm{x}}
$$

$$
\begin{array}{|}
y_{R}=\frac{I_{x c}}{y_{c} A}+y_{c} \\
x_{R}=\frac{I_{x y c}}{y_{c} A}+x_{c}
\end{array}
$$

For plane surfaces with symmetry about an axis normal to $0-0, \overline{\mathrm{I}}_{\mathrm{xy}}=0$ and $\mathrm{x}_{\mathrm{cp}}=\overline{\mathrm{x}}$.

(a) Rectangle

(c) Semicircle

$$
\begin{aligned}
& A=b a \\
& I_{x c}=\frac{1}{12} b a^{3} \\
& I_{y c}=\frac{1}{12} a b^{3} \\
& I_{x y c}=0
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{\pi R^{2}}{2} \\
& I_{x c}=0.1098 R^{4} \\
& I_{y c}=0.3927 R^{4} \\
& I_{x y c}=0
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{\pi R^{2}}{4} \\
& I_{x c}=I_{y c}=0.05488 R^{4} \\
& I_{x \overline{ }}=-0.01647 R^{4}
\end{aligned}
$$

(e) Quarter circle

$$
\begin{aligned}
& A=\pi R^{2} \\
& I_{x x}=I_{y c}=\frac{\pi R^{4}}{4} \\
& I_{x y c}=0
\end{aligned}
$$

(b) Circle
(d) Triangle

FIGURE 2.18 Geometric properties of some common shapes.

Hydrostatic Forces on Curved Surfaces

Horizontal Components

The horizontal component of force acting on a curved surface is equal to the force acting on a vertical projection of that surface including both magnitude and line of action.

Vertical Components

The vertical component of force acting on a curved surface is equal to the net weight of the column of fluid above the curved surface with line of action through the centroid of that fluid volume.

(b)

(c)

(d)

FIGURE 2.23 Hydrostatic force on a curved surface.
47. The rectangular homogeneous gate shown below is 3.00 m high $\times 1.00 \mathrm{~m}$ wide and has a frictionless hinge at the bottom. If the fluid on the left side of the gate has a density of $1,600 \mathrm{~kg} / \mathrm{m}^{3}$, the magnitude of the force $\mathbf{F}(\mathrm{kN})$ required to keep the gate closed is most nearly:

The mean pressure of the fluid acting on the gate is evaluated at the mean height, and the center of pressure is $2 / 3$ of the height from the top; thus, the total force of the fluid is:

$$
\mathrm{F}_{\mathrm{f}}=\rho \mathrm{g} \frac{\mathrm{H}}{2}(\mathrm{H})=1,600(9.807) \frac{3}{2}(3)=70,610 \mathrm{~N}
$$

and its point of application is 1.00 m above the hinge. A moment balance about the hinge gives:

$$
\begin{aligned}
& \mathrm{F}(3)-\mathrm{F}_{\mathrm{f}}(1)=0 \\
& \mathrm{~F}=\frac{\mathrm{F}_{\mathrm{f}}}{3}=\frac{70,610}{3}=23,537 \mathrm{~N}
\end{aligned}
$$

THE CORRECT ANSWER IS: (C)
37. What is most nearly the total force acting on a 1 m wide section of the curved surface?

(A) 120 kN
(B) 160 kN
(C) 220 kN
(D) 250 kN

The average depth is

$$
\begin{aligned}
\bar{h} & =\left(\frac{1}{2}\right)\left(h_{1}+h_{2}\right)=\left(\frac{1}{2}\right)(4 \mathrm{~m}+7 \mathrm{~m}) \\
& =5.5 \mathrm{~m} \\
\bar{p} & =\rho g \bar{h}=\left(1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(5.5 \mathrm{~m}) \\
& =53955 \mathrm{~N} / \mathrm{m}^{2} \\
F_{x} & =\bar{p} A=\left(53955 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\right)(3 \mathrm{~m})(1 \mathrm{~m}) \\
& =161865 \mathrm{~N} \\
F_{y} & =(3 \mathrm{~m})(4 \mathrm{~m})(1 \mathrm{~m})\left(1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \\
& =117720 \mathrm{~N} \\
W & =\left(\frac{\pi(3 \mathrm{~m})^{2}}{4}\right)(1 \mathrm{~m})\left(1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \\
& =69342 \mathrm{~N} \\
F & =\sqrt{F_{x}^{2}+\left(F_{y}+W\right)^{2}} \\
& =\sqrt{(161865 \mathrm{~N})^{2}+(117720 \mathrm{~N}+69342 \mathrm{~N})} \\
& =247300 \mathrm{~N}(250 \mathrm{kN})
\end{aligned}
$$

Answer is D.

ARCHIMEDES PRINCIPLE AND BUOYANCY

1. The buoyant force exerted on a submerged or floating body is equal to the weight of the fluid displaced by the body.
2. A floating body displaces a weight of fluid equal to its own weight; i.e., a floating body is in equilibrium.

The center of buoyancy is located at the centroid of the displaced fluid volume.

In the case of a body lying at the interface of two immiscible fluids, the buoyant force equals the sum of the weights of the fluids displaced by the body.
96. A 24 cm long rod floats vertically in water. It has a $1 \mathrm{~cm}^{2}$ cross section and a specific gravity of 0.6 . Most nearly, what length, L, is submerged?

(A) 9.6 cm
(B) 14 cm
(C) 18 cm
(D) 19 cm
96. $\quad \rho_{\text {water }} L=\rho_{\text {rod }}(24 \mathrm{~cm})$

$$
\begin{aligned}
L & =\left(\frac{\rho_{\text {rod }}}{\rho_{\text {water }}}\right)(24 \mathrm{~cm})=(\mathrm{SG})(24 \mathrm{~cm}) \\
& =(0.6)(24 \mathrm{~cm}) \\
& =14.4 \mathrm{~cm} \quad(14 \mathrm{~cm})
\end{aligned}
$$

Answer is B
19. An open separation tank contains brine to a depth of 2 m and a $3-\mathrm{m}$ layer of oil on top of the brine. A uniform sphere is floating with at the brine-oil interface with 80% of its volume submerged in brine. Density of brine is $1,030 \mathrm{~kg} / \mathrm{m}^{3}$ and the density of oil is $880 \mathrm{~kg} / \mathrm{m}^{3}$. The density of the sphere $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ is most nearly
-A. 825
○В. 910
C. 955

○. 1,000

Hint When abody is at the intraface of two fluids, the bnoyancy farce equals the sum of the weights of the volumes of the flui ds displaced by the bodyHint When a body is at the inturface of two fluids, the buoyancy farce
At equilitrium, the wright of the body equals the total boyyancy forre.

Solution: Let V be the valume of the sphere, V_{d} be the displaced volume, and γ the specific weight of the fluid $=\rho \mathrm{g}$
Bacyancy forre dete to brine, $F_{b}=V_{d} \gamma=(80 \%$ of $V)\left(1,030 \mathrm{~kg} / \mathrm{m}^{3} \times g\right)$
Buayancy force det to oil, $F_{0}=V_{d} \gamma=(20 \%$ of $V)\left(880 \mathrm{~kg}_{\mathrm{g}}{ }^{3} \times \mathrm{g}\right)$
Wight of sphere, $\mathbf{W}=\mathbf{V}_{\gamma}=\mathbf{V}_{\rho}$
Equating \mathbf{W} to $\left(F_{\mathbf{b}}+F_{0}\right)$.
$V \rho=(80 \%$ of $V)\left(1,030 \mathrm{lq}_{\mathrm{f}} \mathrm{m}^{3} \mathrm{xg}\right)+(20 \%$ of $V)\left(880 \mathrm{lq}_{\mathrm{f}}{ }^{3} \times \mathrm{g}\right)$
$\rho=0.8\left(1,030 \mathrm{~kg}^{3}\right)+0.2\left(880 \mathrm{~kg} \mathrm{~m}^{3}\right)=1,000 \mathrm{~kg} / \mathrm{m}^{3}$
Therefare, thekey is (D).

ONE-DIMENSIONAL FLOWS

The Continuity Equation

So long as the flow Q is continuous, the continuity equation, as applied to one-dimensional flows, states that the flow passing two points (1 and 2) in a stream is equal at each point, $A_{1} \mathrm{v}_{1}=A_{2} \mathrm{v}_{2}$.
$Q=A \mathrm{v}$
$\dot{m}=\rho Q=\rho A \mathrm{v}$, where
$Q=$ volumetric flow rate,
$\dot{m}=$ mass flow rate,
$A=$ cross section of area of flow,
$\mathrm{v}=$ average flow velocity, and
$\rho=$ the fluid density.
For steady, one-dimensional flow, \dot{m} is a constant. If, in addition, the density is constant, then Q is constant.

Questions 18-19: The level in a retention basin is normally controlled with a pipe as shown in the figure below. The pipe has an I.D. of 30 cm . The equivalent length of the pipe (including the elbows, entrance effect, and discharge) is 6.0 m . Relative roughness is 0.0005 . The fluid has the following properties:

$$
\begin{aligned}
& \rho=998 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mu=0.00100 \mathrm{~kg} /(\mathrm{m} \cdot \mathrm{~s})
\end{aligned}
$$

18. Assuming a flow of $40 \mathrm{~m}^{3} / \mathrm{min}$, the velocity $(\mathrm{m} / \mathrm{s})$ through the pipe is most nearly:
(A) 9.4
(B) 2.4
(C) 1.4
(D) 0.047

Volume flow rate $=$ area \times velocity
$\mathrm{Q}=\mathrm{Av}$
$\mathrm{v}=\frac{\mathrm{Q}}{\mathrm{A}}$
$\left(\frac{40 \mathrm{~m}^{3}}{\min }\right)\left(\frac{\mathrm{min}}{60 \mathrm{~s}}\right)\left(\frac{1}{\pi(0.15)^{2} \mathrm{~m}^{2}}\right)=9.4 \mathrm{~m} / \mathrm{s}$
THE CORRECT ANSWER IS: (A)

The Field Equation is derived when the energy equation is applied to one-dimensional flows. Assuming no friction losses and that no pump or turbine exists between sections 1 and 2 in the system,
$\frac{P_{2}}{\gamma}+\frac{\mathrm{v}_{2}^{2}}{2 g}+z_{2}=\frac{P_{1}}{\gamma}+\frac{\mathrm{v}_{1}^{2}}{2 g}+z_{1}$ or $\frac{P_{2}}{\rho}+\frac{\mathrm{v}_{2}^{2}}{2}+z_{2} g=\frac{P_{1}}{\rho}+\frac{\mathrm{v}_{1}^{2}}{2}+z_{1} g$, where
$P_{1}, P_{2}=$ pressure at sections 1 and 2,
$\mathrm{v}_{1}, \mathrm{v}_{2}=$ average velocity of the fluid at the sections,
$z_{1}, z_{2}=$ the vertical distance from a datum to the sections (the potential energy),
$\gamma \quad=$ the specific weight of the fluid (ρg), and
$g \quad=$ the acceleration of gravity.

FLUID MEASUREMENTS

The Pitot Tube - From the stagnation pressure equation for an incompressible fluid,

$$
\mathrm{v}=\sqrt{(2 / \rho)\left(p_{0}-p_{s}\right)}=\sqrt{2 g\left(p_{0}-p_{s}\right) / \gamma}, \text { where }
$$

$\mathrm{v}=$ the velocity of the fluid,
$p_{0}=$ the stagnation pressure, and
$p_{s}=$ the static pressure of the fluid at the elevation where the measurement is taken.

For a compressible fluid, use the above incompressible fluid equation if the Mach number ≤ 0.3.

Bernoulli equation

$$
\frac{p}{\gamma}+\frac{V^{2}}{2 g}+z=\text { constant }
$$

along a streamline.

$$
\begin{aligned}
& \text { Pressure head: } \frac{p}{\gamma} \\
& \text { Velocity head: } \frac{V^{2}}{2 g}
\end{aligned}
$$

Elevation head: z
The Bernoulli equation states that the sum of the pressure head, the velocity head, and the elevation head is constant along a streamline.

Static, Stagnation, Dynamic, and Total Pressure

$$
p+\frac{1}{2} \rho V^{2}+\gamma z=p_{T}=\text { constant }
$$

along a streamline.

Static pressure: p

Dynamic pressure: $\frac{1}{2} \rho V^{2}$
Hydrostatic pressure: γZ
Total pressure: $p_{T}=p+\frac{1}{2} \rho V^{2}+\gamma z$

$$
\frac{p_{s}}{\gamma}+\frac{V^{2}}{2 g}+d=\frac{p_{0}}{\gamma}+\frac{0^{2}}{2 g}+d
$$

or

$$
\begin{gathered}
\frac{V^{2}}{2 g}=\frac{p_{0}-p_{s}}{\gamma} \\
\therefore V=\sqrt{\frac{2 g}{\gamma}\left(p_{0}-p_{s}\right)}=\sqrt{\frac{2}{\rho}\left(p_{0}-p_{s}\right)}
\end{gathered}
$$

Note $p_{s}=\gamma d$ and $p_{0}=\gamma(d+\ell)$, and $p_{0}-p_{s}=\gamma \ell$. Thus,

$$
V=\sqrt{2 g \ell}
$$

- $d=$ Depth of Pitot Tube below free surface
- $\ell=$ Water column height above free surface in the Pitot Tube
3.67 The specific gravity of the manometer fluid shown in Fig. P3.67 is 1.07 . Determine the volume flowrate, Q, if the flow is inviscid and incompressible and the flowing fluid is (a) water, (b) gasoline, or (c) air at standard conditions.

FIGURE P3.67

$$
\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2} \quad \text { where } \quad z_{1}=z_{2} \text { and } V_{2}=0
$$

Thus,

$$
\begin{align*}
& V_{1}=\sqrt{2 g \frac{\left(p_{2}-p_{1}\right)}{\gamma}} \tag{I}\\
& \text { But } \\
& p_{1}+\gamma l+\gamma_{m} h=p_{2}+\gamma(l+h)
\end{align*}
$$

$$
{ }^{\text {or }} p_{2}-p_{1}=\left(\gamma_{m}-\gamma\right) h \text { so that Eq. (1) becomes }
$$

$$
V_{2}=\sqrt{2 g=\left(\gamma_{m}-\gamma\right) n}=\sqrt{2\left(9.81 \frac{m}{s^{2}}\right)\left(\frac{1.07\left(9.8 \times 10^{3} \frac{N^{3}}{m^{3}}\right)}{\gamma}-1\right)(0.02 \mathrm{~m})}
$$

$$
\begin{aligned}
& \text { Thus, } \\
& Q=A_{1} V_{1}=\frac{\pi}{4} D_{1}^{2} V_{1}=\frac{\pi}{4}(0.09 m)^{2} \sqrt{2(9.81)\left(\frac{10.49 \times 10^{3}}{\gamma}-1\right)(0.02)}
\end{aligned}
$$

$$
Q=3.99 \times 10^{-3} \sqrt{\frac{10.49}{\gamma}-1} \frac{m^{3}}{s} \text { where } \gamma \sim \frac{k N}{m^{3}}
$$

For the given fluids this gives:
(a)

fluid	$\gamma, \frac{\mathrm{kN}}{\mathrm{m}^{3}}$	$Q, \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
water	9.80	1.06×10^{-3}
gasoline	6.67	3.02×10^{-3}
air	12×10^{-3}	0.118

43. Water is flowing through a pipe. A pitot-static gauge registers 0.076 m of mercury ($\rho_{m}=13580 \mathrm{~kg} / \mathrm{m}^{3}$).
The velocity of water in the pipe is most nearly
(A) $1.3 \mathrm{~m} / \mathrm{s}$
(B) $2.2 \mathrm{~m} / \mathrm{s}$
(C) $3.8 \mathrm{~m} / \mathrm{s}$
(D) $4.3 \mathrm{~m} / \mathrm{s}$
44. Use the equation for finding the velocity in a pitotstatic gauge.

$$
\begin{aligned}
\mathrm{v} & =\sqrt{\frac{2 g h\left(\rho_{m}-\rho\right)}{\rho}} \\
& =\sqrt{\begin{array}{r}
(2)\left(\begin{array}{l}
\left.9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(0.076 \mathrm{~m}) \\
\times\left(13580 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}-1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)
\end{array}\right. \\
\frac{1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}{}
\end{array}} \\
& =4.33 \mathrm{~m} / \mathrm{s} \quad(4.3 \mathrm{~m} / \mathrm{s})
\end{aligned}
$$

Answer is D.
51. The pitot tube shown below is placed at a point where the velocity is $2.0 \mathrm{~m} / \mathrm{s}$. The specific gravity of the fluid is 2.0 , and the upper portion of the manometer contains air. The reading $\mathrm{h}(\mathrm{m})$ on the manometer is most nearly:

(A) 20.0
(B) 10.0
(C) 0.40
(D) 0.20
$\frac{\rho v^{2}}{2}=\operatorname{gh}\left(\rho-\rho_{\text {air }}\right)$
$\therefore \mathrm{h}=\frac{\rho \mathrm{v}^{2}}{2 \mathrm{~g}\left(\rho-\rho_{\text {air }}\right)} \approx \frac{\mathrm{v}^{2}}{2 \mathrm{~g}} \approx \frac{(2)^{2}}{(2)(9.8)} \approx 0.204 \mathrm{~m}$

THE CORRECT ANSWER IS: (D)

39. A static pressure gauge and mercury manometer are connected to a 50.8 cm pipeline flowing full of water. One cubic centimeter of mercury has a mass of 0.1336 N . What is most nearly the velocity at the center of the pipeline?

(A) $0.66 \mathrm{~m} / \mathrm{s}$
(B) $0.79 \mathrm{~m} / \mathrm{s}$
(C) $4.5 \mathrm{~m} / \mathrm{s}$
(D) $5.7 \mathrm{~m} / \mathrm{s}$
40. The static pressure is

$$
\begin{aligned}
p_{s}= & (60.96 \mathrm{~cm})\left(1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right) \\
& +10342 \mathrm{~Pa} \\
= & 16322 \mathrm{~Pa}
\end{aligned}
$$

The stagnation pressure is

$$
\begin{aligned}
p_{0}= & \left(0.1336 \frac{\mathrm{~N}}{\mathrm{~cm}^{3}}\right)(25.4 \mathrm{~cm})\left(100 \frac{\mathrm{~cm}}{\mathrm{~m}}\right)^{2} \\
& -\left(9810 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}\right)\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)(50.8 \mathrm{~cm}+25.4 \mathrm{~cm}) \\
= & 26459 \mathrm{~Pa} \\
\mathrm{v} & =\sqrt{\frac{(2)\left(p_{0}-p_{s}\right)}{\rho}} \\
= & \sqrt{\frac{(2)(26459 \mathrm{~Pa}-16322 \mathrm{~Pa})}{1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}} \\
= & 4.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Answer is C.

Venturi Meters

$Q=\frac{C_{\mathrm{v}} A_{2}}{\sqrt{1-\left(A_{2} / A_{1}\right)^{2}}} \sqrt{2 g\left(\frac{p_{1}}{\gamma}+z_{1}-\frac{p_{2}}{\gamma}-z_{2}\right)}$, where
$C_{\mathrm{v}}=$ the coefficient of velocity, and
$\gamma=\rho \mathrm{g}$.
The above equation is for incompressible fluids.
-

We assume the flow is horizontal $\left(z_{1}=z_{2}\right)$, steady, inviscid, and incompressible between points (1) and (2). The Bernoulli equation becomes

$$
p_{1}+\frac{1}{2} \rho V_{1}^{2}=p_{2}+\frac{1}{2} \rho V_{2}^{2}
$$

(The effect of nonhorizontal flow can be incorporated easily by including the change in elevation, $z_{1} " z_{2}$, in the Bernoulli equation.)

The flowrate varies as the square root of the pressure difference across the flow meter.

If we assume the velocity profiles are uniform at sections (1) and (2), the continuity equation (Eq. 3.19) can be written as

$$
Q=A_{1} V_{1}=A_{2} V_{2}
$$

where A_{2} is the small $\left(A_{2}<A_{1}\right)$ flow area at section (2). Combination of these two equations results in the following theoretical flowrate

$$
\begin{equation*}
Q=A_{2} \sqrt{\frac{2\left(p_{1}-p_{2}\right)}{\rho\left[1-\left(A_{2} / A_{1}\right)^{2}\right]}} \tag{3.20}
\end{equation*}
$$

Thus, as shown by the figure in the margin, for a given flow geometry $\left(A_{1}\right.$ and $\left.A_{2}\right)$ the flowrate can be determined if the pressure difference, $p_{1} " p_{2}$, is measured. The actual measured flowrate, $Q_{\text {actual }}$, will be smaller than this theoretical result because of various differences between the "real world" and the assumptions used in the derivation of Eq. 3.20. These differences (which are quite consistent and may be as small as 1 to 2% or as large as 40%, depending on the geometry used) can be accounted for by using an empirically obtained discharge coefficient as discussed in Section 8.6.1.

If the differences in velocity are considerable, the differences in pressure can also be considerable. For flows of gases, this may introduce compressibility effects as discussed in Section 3.8 and Chapter 11. For flows of liquids, this may result in cavitation, a potentially dangerous situation that results when the liquid pressure is reduced to the vapor pressure and the liquid "boils."

Cavitation occurs when the pressure is reduced to the vapor pressure

As discussed in Chapter 1, the vapor pressure, p_{y}, is the pressure at which vapor bubbles form in a liquid. It is the pressure at which the liquid starts to boil. Obviously this pressure depends on the type of liquid and its temperature. For example, water, which boils at $212^{\circ} \mathrm{F}$ at standard atmospheric pressure, 14.7 psia , boils at $80^{\circ} \mathrm{F}$ if the pressure is 0.507 psia . That is, $p_{\nu}=0.507 \mathrm{psia}$ at $80^{\circ} \mathrm{F}$ and $p_{\nu}=14.7 \mathrm{psia}$ at $212{ }^{\circ} \mathrm{F}$. (See Tables B. 1 and B.2.)
38. A perfect venturi with a throat diameter of 1.8 cm is placed horizontally in a pipe with a 5 cm inside diameter. Eight kg of water flow through the pipe each second. What is most nearly the difference between the pipe and venturi throat static pressures?
(A) 30 kPa
(B) 490 kPa
(C) 640 kPa
(D) 970 kPa

$$
\text { 38. } \begin{aligned}
A_{1} & =\frac{\pi d_{1}^{2}}{4}=\frac{\pi\left((5 \mathrm{~cm})\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)\right)^{2}}{4} \\
& =0.001963 \mathrm{~m}^{2} \\
A_{2} & =\frac{\pi d_{2}^{2}}{4}=\frac{\pi\left((1.8 \mathrm{~cm})\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)\right)^{2}}{4} \\
& =2.545 \times 10^{-4} \mathrm{~m}^{2} \\
\mathrm{v}_{1} & =\frac{\dot{m}}{\rho A_{1}}=\frac{8.0 \frac{\mathrm{~kg}}{\mathrm{~s}}}{\left(1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(0.001963 \mathrm{~m}^{2}\right)} \\
& =4.07 \mathrm{~m} / \mathrm{s} \\
\mathrm{v}_{2} & =\frac{\dot{m}}{\rho A_{2}}=\frac{\left(1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(2.545 \times 10^{-4} \mathrm{~m}^{2}\right)}{8.0 \frac{\mathrm{~kg}}{\mathrm{~s}}} \\
& =31.43 \mathrm{~m} / \mathrm{s} \\
p_{1}-p_{2} & =\left(\frac{\rho}{2}\right)\left(\mathrm{v}_{2}^{2}-\mathrm{v}_{1}^{2}\right) \\
& =\left(\frac{1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}{2}\right)\left(\left(31.43 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-\left(4.075 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}\right) \\
& \times\left(\frac{1 \mathrm{kPa}}{1000 \mathrm{~Pa}}\right) \\
= & 486 \mathrm{kPa}(490 \mathrm{kPa})
\end{aligned}
$$

38. A venturi meter installed in a pipe with a 38.1 cm diameter has a throat diameter of 21.24 cm . The static gage pressure upstream of the venturi is 172.4 kPa . The average fluid velocity in the pipe is $7.62 \mathrm{~m} / \mathrm{s}$. The fluid flowing is water. If cavitation is just beginning at the throat of the venturi, what is most nearly the absolute vapor pressure of the water at the throat?
(A) 2.2 kPa
(B) 49 kPa
(C) 270 kPa
(D) 290 kPa

$$
\left.\begin{array}{rl}
38.7 \\
p_{1}-p_{\mathrm{atm}} & =172.4 \mathrm{kPa} \\
p_{1} & =273.7 \mathrm{kPa} \\
\mathrm{v}_{1} A_{1} & =\mathrm{v}_{2} A_{2} \\
\mathrm{v}_{2} & =\mathrm{v}_{1}\left(\frac{A_{1}}{A_{2}}\right)=\mathrm{v}_{1}\left(\frac{D_{1}}{D_{2}}\right)^{2} \\
p_{1}+\frac{\rho \mathrm{v}_{1}^{2}}{2}= & p_{2}+\frac{\rho \mathrm{v}_{2}^{2}}{2} \\
p_{2}= & p_{1}+\left(\frac{\rho \mathrm{v}_{1}^{2}}{2}\right)\left(1-\left(\frac{D_{1}}{D_{2}}\right)^{4}\right) \\
p_{1}= & 273.7 \mathrm{kPa} \\
p_{2}= & 273.7 \mathrm{kPa}+\left(\frac{\mathrm{kPa}}{\mathrm{~m}^{2}}\right)\left(7.62 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \\
\mathrm{~m}^{3}
\end{array}\right)
$$

Cavitation is impending; $p_{\text {vapor }}=p_{2}$.
Answer is A.

Answer is B.

Orifices The cross-sectional area at the vena contracta A_{2} is characterized by a coefficient of contraction C_{c} and given by $C_{c} A$.
-

$$
Q=C A_{0} \sqrt{2 g\left(\frac{p_{1}}{\gamma}+z_{1}-\frac{p_{2}}{\gamma}-z_{2}\right)}
$$

where C, the coefficient of the meter (orifice coefficient), is given by

$$
C=\frac{C_{\mathrm{v}} C_{c}}{\sqrt{1-C_{c}^{2}\left(A_{0} / A_{1}\right)^{2}}}
$$

ORIFICES AND THEIR NOMINAL COEFFICIENTS					
	SHARP EDGED	ROUNDED	SHORT TUBE	BORDA	

For incompressible flow through a horizontal orifice meter installation

$$
Q=C A_{0} \sqrt{\frac{2}{\rho}\left(p_{1}-p_{2}\right)}
$$

If the exit is not a smooth, well-contoured nozzle, but rather a flat plate as shown in Fig. 3.13 , the diameter of the
jet, d_{j}, will be less than the diameter of the hole, d_{h}. This phenomenon, called a vena contracta effect, is a result of the inability of the fluid to turn the sharp 90° corner indicated by the dotted lines in the figure.

FIGURE 3.13 Vena contracta effect for a sharp-edged orifice.

Since the streamlines in the exit plane are curved ($\mathcal{R}<!$), the pressure across them is not constant. It would take an infinite pressure gradient across the streamlines to cause the fluid to turn a "sharp" corner $(\mathcal{R}=0)$. The highest pressure occurs along the centerline at (2) and the lowest pressure, $p_{1}=p_{3}=0$, is at the edge of the jet. Thus, the assumption of uniform velocity with straight streamlines and constant pressure is not valid at the exit plane. It is valid, however, in the plane of the vena contracta, section $a-a$. The uniform velocity assumption is valid at this section provided $d_{j} \ll h$, as is discussed for the flow from the nozzle shown in Fig. 3.12.

The diameter of a fluid jet is often smaller than
that of the hole from which it flows.
The vena contracta effect is a function of the geometry of the outlet. Some typical configurations are shown in Ig. 3.14 along with typical values of the experimentally obtained contraction coefficient, $C_{c}=A_{j} / A_{h}$, where A_{j} and A_{h} are the areas of the jet at the vena contracta and the area of the hole, respectively.
99. Where does the vena contracta caused by a sharpedged hydraulic orifice usually occur?
(A) at the centerline of the orifice
(B) at a distance of about 10% of the orifice diameter upstream from the plane of the orifice
(C) at a distance within 10% of the orifice diameter downstream from the plane of the orifice
(D) at a distance equal to about one-half the orifice diameter downstream from the plane of the orifice

Answer is D.

Submerged Orifice operating under steady-flow conditions:

- Q

in which the product of C_{c} and C_{v} is defined as the coefficient of discharge of the orifice.

Orifice Discharging Freely into Atmosphere

-

$$
Q=C A_{0} \sqrt{2 g h}
$$

in which h is measured from the liquid surface to the centroid of the orifice opening.

Note:

$$
\frac{p_{\not}^{4}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}^{\nearrow}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}
$$

or

$$
\frac{V_{2}^{2}}{2 g}=z_{1}-z_{2}=h
$$

where $z_{1}-z_{2}=h$. Thus,

$$
V_{2}=\sqrt{2 g h}
$$

HYDRAULIC GRADIENT (GRADE LINE)

The hydraulic gradient (grade line) is defined as an imaginary line above a pipe so that the vertical distance from the pipe axis to the line represents the pressure head at that point. If a row of piezometers were placed at intervals along the pipe, the grade line would join the water levels in the piezometer water columns.

ENERGY LINE (BERNOULLI EQUATION)

The Bernoulli equation states that the sum of the pressure, velocity, and elevation heads is constant. The energy line is this sum or the "total head line" above a horizontal datum. The difference between the hydraulic grade line and the energy line is the $\mathrm{v}^{2} / 2 g$ term.

$$
\frac{p}{\gamma}+\frac{V^{2}}{2 g}+z=\text { constant on a streamline }=H
$$

FIGURE 3.21 Representation of the energy line and the hydraulic grade line.
25. The figure shows a horizontal pipeline with a sudden enlargement. The energy grade line and the hydraulic grade line under a certain flow of an incompressible fluid are also shown. The ratio of the diameter downstream to the diameter upstream of the enlargement is most nearly

OA. 1.26
OB. 1.50 国
OC. 1.68 Hint: The vertical distance between the energy grade line and the hydraulic grade line is the velocity head, $\mathrm{U}^{2} / 2 \mathrm{~g}$.
D. 2.50 From continuity equation, $\mathrm{Q}=\mathrm{A}_{1} \mathrm{U}_{1}=\mathrm{A}_{2} \mathrm{U}_{2}$ where, A_{1} and U_{1} are the area and velocity upstream of the enlargement and
A_{2} and U_{2} are the area and velocity downstream of the enlargement.

Therefore, the key is (A).
26. The figure shows a horizontal pipeline with a sudden enlargement. The energy grade line and the
hydraulic grade line under a certain flow of an incompressible fluid of specific weight $10 \mathrm{kN} / \mathrm{m}^{3}$ are also shown. The pressure change due to the enlargement is most nearly

A. an increase of 3 kPa
B. a decrease of 3 kPa
C. an increase of 30 kPa

OD. a decrease of 30 kPa

国
Hint: The energy grade line indicates no energy loss.
The decrease in velocity head (from 5 m to 2 m) is converted to an increase of pressure head.

Solution: Velocity head upstream of enlargement $=5 \mathrm{~m}$
Velocity head downstream of enlargement $=2 \mathrm{~m}$
Decrease in velocity head $=5 \mathrm{~m}-2 \mathrm{~m}=3 \mathrm{~m}$
Hence increase in pressure head $=3 \mathrm{~m}$
Or, increase in pressure $=\gamma \mathrm{h}=\left(10 \mathrm{kN} / \mathrm{m}^{3}\right)(3 \mathrm{~m})=30 \mathrm{kPa}$

REYNOLDS NUMBER

$\operatorname{Re}=v D \rho / \mu=v D / v$
$\operatorname{Re}^{\prime}=\frac{\mathrm{v}^{(2-n)} D^{n} \rho}{K\left(\frac{3 n+1}{4 n}\right)^{n} 8^{(n-1)}}$, where
$\rho=$ the mass density,
$D=$ the diameter of the pipe, dimension of the fluid streamline, or characteristic length.
$\mu=$ the dynamic viscosity,
$v=$ the kinematic viscosity,
$\operatorname{Re}=$ the Reynolds number (Newtonian fluid),
$\mathrm{Re}^{\prime}=$ the Reynolds number (Power law fluid), and K and n are defined in the Stress, Pressure, and Viscosity section.

The critical Reynolds number $(\mathrm{Re})_{c}$ is defined to be the minimum Reynolds number at which a flow will turn turbulent.

Flow through a pipe is generally characterized as laminar for $\operatorname{Re}<2,100$ and fully turbulent for $\operatorname{Re}>10,000$, and transitional flow for $2,100<\operatorname{Re}<10,000$.

$$
R e=\frac{F_{I}}{F_{V}}=\frac{m a}{\tau A} \sim \frac{\left(\rho L^{3}\right)\left(\frac{V^{2}}{L}\right)}{\left(\mu \frac{V}{L}\right)\left(L^{2}\right)}=\frac{\rho V L}{\mu}=\frac{V L}{v}
$$

31. Ethyl alcohol (specific gravity $=0.79$ and viscosity $=1.19 \times 10^{-3} \mathrm{~Pa}-\mathrm{s}$) is flowing through a $25-\mathrm{cm}$ diameter, horizontal pipeline. When the flow rate is $0.5 \mathrm{~m}^{3} / \mathrm{min}$, the Reynolds Number is most nearly
○A. 28,158

- B. 31,424

○С. 35,597
OD. 42,632

> 国 Hint Reynolds Number, Re, can be found from: $\operatorname{Re}=\frac{\rho U D}{\mu}$
where, U can be found from the contimity equation- $Q=U A$.

$$
\begin{aligned}
& \qquad U=\frac{Q}{A}=\frac{Q}{\frac{\pi}{4} D^{2}}=\frac{\left(0.5 \mathrm{~m}^{3} / \mathrm{min}\right)(1 \mathrm{~min} / 60 \mathrm{~s})}{\frac{\pi}{4}\left(\frac{25}{100}\right)^{2}}=0.17 \mathrm{~m} / \mathrm{s} \\
& \text { Solution From continnity equation, } \\
& \text { Hence, Reynolds Number }=\frac{\left(0.79 \times 998 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.17 \mathrm{~m} / \mathrm{s})\left(\frac{25}{100} \mathrm{~m}\right)}{1.19 \times 10^{-3}}=28,158 \\
& \text { Therefore, the key is (A). }
\end{aligned}
$$

96. The transition between laminar and turbulent flow usually occurs at a Reynolds number of approximately
(A) 900
(B) 1200
(C) 1500
(D) 2100

Answer is D.

The drag force F_{D} on objects immersed in a large body of flowing fluid or objects moving through a stagnant fluid is

$$
F_{D}=\frac{C_{D} \rho v^{2} A}{2} \text {, where }
$$

$C_{D}=$ the drag coefficient,
$\mathrm{v}=$ the velocity $(\mathrm{m} / \mathrm{s})$ of the flowing fluid or moving object, and
$A=$ the projected area $\left(\mathrm{m}^{2}\right)$ of blunt objects such as spheres, ellipsoids, disks, and plates, cylinders, ellipses, and air foils with axes perpendicular to the flow.

For flat plates placed parallel with the flow

$C_{D}=1.33 / \operatorname{Re}^{0.5}\left(10^{4}<\operatorname{Re}<5 \times 10^{5}\right)$
$C_{D}=0.031 / \operatorname{Re}^{1 / 7}\left(10^{6}<\operatorname{Re}<10^{9}\right)$
The characteristic length in the Reynolds Number (Re) is the length of the plate parallel with the flow. For blunt objects, the characteristic length is the largest linear dimension (diameter of cylinder, sphere, disk, etc.) which is perpendicular to the flow.

DRAG COEFFICIENT FOR SPHERES, DISKS, AND CYLINDERS

67. The drag coefficient for a car with a frontal area of $28 \mathrm{ft}^{2}$ is 0.32 . Assuming the density of air to be 2.4×10^{-3} slugs $/ \mathrm{ft}^{3}$, the drag force (lb) on this car when driven at 60 mph against a head wind of 20 mph is most nearly
○A. 37
○B. 83
OC. 148
OD. 185
(产) Drag force $=\frac{C_{D} \rho A U^{2}}{2}$
Hint $D_{\text {rag }}$ farce $=2 \quad$ where, C_{D} is the coefficient of drag, ρ is the density of air, A is the frontal area, and U is the relative velocity
Soution Relative $\mathbf{x}(0.32)\left(2.4 \times 10^{-3}\right)\left(27 \mathrm{ft}^{2}\right)(117.3 \mathrm{ft} / \mathrm{s})^{2} \mathrm{ft} / \mathrm{s}$
Hence drag farce $=\square 2$
Therfare, the key is (C)
68. The drag coefficient for a car with a frontal area of $26 \mathrm{ft}^{2}$ is being measured in a $8 \mathrm{ft} x 8 \mathrm{ft}$ wind tunnel. The density of air under the test conditions is $2.4 \times 10^{-3} \mathrm{slugs} / \mathrm{ft}^{3}$, When the air flow rate is, $500,000 \mathrm{ft}^{3} / \mathrm{min}$, the drag force on the car was measured to be 170 lb . The drag coefficient under the test conditions is most nearly
○A. 0.28
○B. 0.30
OC. 0.32
D. 0.34

围 $\frac{C_{D} \rho A U^{2}}{2}$
Hint: Drag force $=$
the relative velocity. Find U from continnity equation $U=Q / A_{\text {tunnel }}$
Solution: From continnity $\frac{2 \times \text { Drag force }}{\rho A U^{2}}, \mathbf{0} \frac{2 \times(170 \mathrm{lb})}{\left(2.4 \times 10^{-3}\right)\left(26 \mathrm{ft}^{2}\right)(130 \mathrm{ft} / \mathrm{s})^{2}}=0.321$
Hence, drag coefficient $=\frac{(2)}{}=0$.

Therefore, the key is (C).

AERODYNAMICS

Airfoil Theory

The lift force on an airfoil is given by

$$
F_{L}=\frac{C_{L} \rho v^{2} A_{P}}{2}
$$

$C_{L}=$ the lift coefficient
$\mathrm{v}=$ velocity (m / s) of the undisturbed fluid and
$A_{P}=$ the projected area of the airfoil as seen from above (plan area). This same area is used in defining the drag coefficient for an airfoil.

The lift coefficient can be approximated by the equation
$C_{L}=2 \pi k_{1} \sin (\alpha+\beta)$ which is valid for small values of α and β.
$k_{1}=$ a constant of proportionality
$\alpha=$ angle of attack (angle between chord of airfoil and direction of flow)
$\beta=$ negative of angle of attack for zero lift.

The drag coefficient may be approximated by
$C_{D}=C_{D \infty}+\frac{C_{L}^{2}}{\pi A R}$
$C_{D \infty}=$ infinite span drag coefficient

$$
A R=\frac{b^{2}}{A_{p}}=\frac{A_{p}}{c^{2}}
$$

The aerodynamic moment is given by
$M=\frac{C_{M}{\rho v^{2}}^{2} A_{p}}{2}$
where the moment is taken about the front quarter point of the airfoil.
$C_{M}=$ moment coefficient
$A_{p}=$ plan area
$c=$ chord length
$b=$ span length

FLUID FLOW

The velocity distribution for laminar flow in circular tubes or between planes is

$$
\mathrm{v}(r)=\mathrm{v}_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right] \text {, where }
$$

$r=$ the distance (m) from the centerline,
$R=$ the radius (m) of the tube or half the distance between the parallel planes,
$\mathrm{v}=$ the local velocity $(\mathrm{m} / \mathrm{s})$ at r, and
$\mathrm{v}_{\text {max }}=$ the velocity $(\mathrm{m} / \mathrm{s})$ at the centerline of the duct.
$\mathrm{v}_{\text {max }}=1.18 \overline{\mathrm{v}}$, for fully turbulent flow
$\mathrm{v}_{\max }=2 \overline{\mathrm{v}}$, for circular tubes in laminar flow and
$\mathrm{v}_{\text {max }}=1.5 \overline{\mathrm{v}}$, for parallel planes in laminar flow, where
$\overline{\mathrm{v}}=$ the average velocity $(\mathrm{m} / \mathrm{s})$ in the duct.
The shear stress distribution is

$$
\frac{\tau}{\tau_{w}}=\frac{r}{R}, \text { where }
$$

τ and τ_{w} are the shear stresses at radii r and R respectively.

$$
\begin{gathered}
v(r)=v_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right] \\
\tau=\mu \frac{d v}{d r}=\mu\left[-2 \frac{r}{R^{2}}\right]=-\frac{2 \mu}{R}\left(\frac{r}{R}\right)
\end{gathered}
$$

$$
\therefore \frac{\tau}{\tau_{w}}=\frac{r}{R}
$$

where

$$
\tau_{w}=\left.\tau\right|_{r=R}=-\frac{2 \mu}{R}
$$

Laminar flow: Turbulent flow:

21. When a Newtonian fluid flows under steady, laminar condition through a circular pipe of constant diameter, which of the following is NOT a correct conclusion?
OA. The shear stress at the centerline of the pipe is zero
OB. The maximum velocity at a section is twice the average velocity at that section
OC. The velocity will decrease along the length of the pipe
OD. The velocity gradient at the centerline of the pipe is zero

鹵

Hint: Under laminar flow in circular pipes, the velocity distribution is parabolic and symmetrical about the centerline. In addition, the continuity equation also applies.

Solution: Due to the symmetrical velocity distribution, velocity gradient at the centerline is zero.
Hence, the shear stress at the centerline is also zero.
From the parabolic velocity distribution, $\mathrm{V}_{\max }=2 \mathrm{~V}_{\text {ave }}$
Since the pipe diameter is constant, by continuity equation- $\mathrm{Q}=\mathrm{AV}$, velocity should remain constant along the length of the pipe.
Therefore, the key is (C).
22. A Newtonian fluid flows under steady, laminar conditions through a circular pipe of diameter 0.16 m at a volumetric rate of $0.05 \mathrm{~m}^{3} / \mathrm{s}$. Under these conditions, the maximum local velocity $(\mathrm{m} / \mathrm{s})$ at a section is most nearly
○A. 2.0
B. 2.5
С. 3.0
D. 5.0

Hint: Under laminar flow in circular pipes, the velocity distribution is parabolic and symmetrical about the centerline.
In such cases, the maximum velocity at a section is double the average velocity at that section.
Solution: Average velocity at any section $=\mathrm{Q} / \mathrm{A}=\mathrm{Q} /[\mathrm{pD} 2 / 4]$
In this case, average velocity $=(0.05 \mathrm{~m} 3 / \mathrm{s}) /[\mathrm{p}(0.16 \mathrm{~m}) 2 / 4]=2.5 \mathrm{~m} / \mathrm{s}$
Hence the maximum velocity $=2 \times 2.5 \mathrm{~m} / \mathrm{s}=5.0 \mathrm{~m} / \mathrm{s}$
Therefore, the key is (D).

STEADY, INCOMPRESSIBLE FLOW IN CONDUITS AND PIPES
The energy equation for incompressible flow is

$$
\begin{aligned}
& \frac{p_{1}}{\gamma}+z_{1}+\frac{\mathrm{v}_{1}^{2}}{2 g}=\frac{p_{2}}{\gamma}+z_{2}+\frac{\mathrm{v}_{2}^{2}}{2 g}+h_{f} \text { or } \\
& \frac{p_{1}}{\rho g}+z_{1}+\frac{\mathrm{v}_{1}^{2}}{2 g}=\frac{p_{2}}{\rho g}+z_{2}+\frac{\mathrm{v}_{2}^{2}}{2 g}+h_{f}
\end{aligned}
$$

$h_{f}=$ the head loss, considered a friction effect, and all remaining terms are defined above.
If the cross-sectional area and the elevation of the pipe are the same at both sections (1 and 2), then $z_{1}=z_{2}$ and $\mathrm{v}_{1}=\mathrm{v}_{2}$.
The pressure drop $p_{1}-p_{2}$ is given by the following:

$$
p_{1}-p_{2}=\gamma h_{f}=\rho g h_{f}
$$

The Darcy-Weisbach equation is

$$
h_{f}=f \frac{L}{D} \frac{\mathrm{v}^{2}}{2 g} \text {, where }
$$

$f=f(\operatorname{Re}, e / D)$, the Moody or Darcy friction factor,
$D=$ diameter of the pipe,
$L=$ length over which the pressure drop occurs,
$e=$ roughness factor for the pipe, and all other symbols are defined as before
An alternative formulation employed by chemical engineers is

$$
h_{f}=\left(4 f_{\text {Fanning }}\right) \frac{L \mathrm{v}^{2}}{D 2 g}=\frac{2 f_{\text {Fanning }} L \mathrm{v}^{2}}{D g}
$$

Fanning friction factor, $f_{\text {Fanning }}=\frac{f}{4}$
A chart that gives f versus Re for various values of e / D, known as a Moody or Stanton diagram, is available at the end of this section.

Friction Factor for Laminar Flow

The equation for Q in terms of the pressure drop Δp_{f} is the Hagen-Poiseuille equation. This relation is valid only for flow in the laminar region.

$$
Q=\frac{\pi R^{4} \Delta p_{f}}{8 \mu L}=\frac{\pi D^{4} \Delta p_{f}}{128 \mu L}
$$

$$
\begin{gathered}
V=\frac{Q}{A}=\frac{\Delta p_{f} D^{2}}{32 \mu L} \\
\Delta p_{f}=64\left(\frac{\mu}{\rho V D}\right)\left(\frac{L}{D}\right)\left(\frac{\rho V^{2}}{2}\right)=\rho g \underbrace{\left(\frac{64}{R e}\right)\left(\frac{L}{D}\right)\left(\frac{V^{2}}{2 g}\right)}_{h_{f}} \\
\therefore f=\frac{64}{R e}
\end{gathered}
$$

93. When a liquid flows under pressure through a pipe, the head loss due to surface friction with the pipe is $h_{L}=f(L / D)\left(\mathrm{v}^{2} / 2 g\right)$. Which of the following statements is false?
(A) The equation is valid for laminar as well as turbulent flow.
(B) The variable D is the depth of flow in the pipe.
(C) The friction factor, f, is a function of a Reynolds number.
(D) The head loss, h_{L}, is expressed in units of distance.

The variable D is the pipe diameter.

Answer is B.

Questions 18-19: The level in a retention basin is normally controlled with a pipe as shown in the figure below. The pipe has an I.D. of 30 cm . The equivalent length of the pipe (including the elbows, entrance effect, and discharge) is 6.0 m . Relative roughness is 0.0005 . The fluid has the following properties:

$$
\begin{aligned}
& \rho=998 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mu=0.00100 \mathrm{~kg} /(\mathrm{m} \cdot \mathrm{~s})
\end{aligned}
$$

19. Assuming a Reynolds number of 200,000 , the Moody friction factor f is most nearly:
(A) 0.017
(B) 0.019
(C) 0.022
(D) 0.032

From the Moody (Stanton) diagram in the Fluid Mechanics section of the FE Reference Handbook with $\frac{\mathrm{e}}{\mathrm{D}}=0.0005$ and $\mathrm{Re}=2 \times 10^{5}$
Then, f is 0.019
THE CORRECT ANSWER IS: (B)

Minor Losses in Pipe Fittings, Contractions, and

 ExpansionsHead losses also occur as the fluid flows through pipe fittings (i.e., elbows, valves, couplings, etc.) and sudden pipe contractions and expansions.
$\frac{p_{1}}{\gamma}+z_{1}+\frac{\mathrm{v}_{1}^{2}}{2 g}=\frac{p_{2}}{\gamma}+z_{2}+\frac{\mathrm{v}_{2}^{2}}{2 g}+h_{f}+h_{f, \text { fititing }}$
$\frac{p_{1}}{\rho g}+z_{1}+\frac{\mathrm{v}_{1}^{2}}{2 g}=\frac{p_{2}}{\rho g}+z_{2}+\frac{\mathrm{v}_{2}^{2}}{2 g}+h_{f}+h_{f, \text { fitting }}$, where
$h_{f, \text { fiting }}=C \frac{\mathrm{v}^{2}}{2 g}$, and $\frac{\mathrm{v}^{2}}{2 g}=1$ velocity head
Specific fittings have characteristic values of C, which will be provided in the problem statement. A generally accepted nominal value for head loss in well-streamlined gradual contractions is

$$
h_{f, \text { fitting }}=0.04 \mathrm{v}^{2} / 2 g
$$

The head loss at either an entrance or exit of a pipe from or to a reservoir is also given by the $h_{f \text { f fitting }}$ equation. Values for C for various cases are shown as follows.

PUMP POWER EQUATION

$\dot{W}=Q \gamma h / \eta=Q \rho g h / \eta$, where
$Q=$ volumetric flow ($\mathrm{m}^{3} / \mathrm{s}$ or cfs),
$h=$ head (m or ft) the fluid has to be lifted,
$\eta=$ efficiency, and
$\dot{W}=$ power (watts or ft-lbf/sec).
For additional information on pumps refer to the MECHANICAL ENGINEERING section of this handbook.

For a flow from (1) to (2),

$$
\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}+h_{p}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{t}+h_{f}+h_{f, f i t t i n g}
$$

where,
h_{p} : pump head
h_{t} : turbine head
$h_{f}=f \frac{L}{D} \frac{V^{2}}{2 g}$: head loss (note $V=$ flow velocity through pipe)
$h_{f, \text { fitting }}$: minor loss

Pump power:

$$
W_{p}=\dot{m} g h_{p}=\rho Q g h_{p}=\gamma Q h_{p}
$$

for a pump efficiency η,

$$
\dot{W}_{p}=\frac{\gamma Q h_{p}}{\eta}
$$

Turbine power:

$$
\dot{W}_{t}=\dot{m} g h_{t}=\rho Q g h_{t}=\gamma Q h_{t}
$$

Questions 20-21: The figure below represents a water-flow system in which water is pumped from the lake to the storage tank and also flows from the lake through the turbine. Darcy friction factors are given for the pipe flows:

$$
\mathrm{f}=\mathrm{h}_{\mathrm{f}} \frac{\mathrm{D}}{\mathrm{~L}} \frac{2 \mathrm{~g}}{\mathrm{~V}^{2}} \text { (Fanning friction factors are one-fourth as large.) }
$$

NOT TO SCALE
21. The pump is 80% efficient and is to pump water to the tank at the rate of $0.5 \mathrm{~m}^{3} / \mathrm{min}$ at a time when the tank is filled to the level shown. The pipe system from B to E is equivalent to 100 m of $75-\mathrm{mm}$-diameter pipe with a Darcy friction factor of 0,02 . The power (W) delivered to the pump is most nearly:
(A) 490
(B) 1,250
(C) 1,560
(D) 93,900

$$
\begin{aligned}
\mathrm{V} & =\mathrm{Q} / \mathrm{A}=\frac{0.5 \frac{\mathrm{~m}^{3}}{\mathrm{~min}} \frac{\mathrm{~min}}{60 \mathrm{~s}}}{\pi \frac{(0.075 \mathrm{~m})^{2}}{4}}=1.89 \mathrm{~m} / \mathrm{s} \\
\mathrm{~h}_{\mathrm{L}} & =\mathrm{f} \frac{\mathrm{~L}}{\mathrm{D}} \frac{\mathrm{v}^{2}}{2 \mathrm{~g}}=0.02 \frac{100 \mathrm{~m}}{0.075 \mathrm{~m}} \frac{(1.89 \mathrm{~m} / \mathrm{s})^{2}}{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
& =4.8 \mathrm{~m} \\
\mathrm{P} & =\frac{\gamma \mathrm{Qh}}{\mathrm{e}}
\end{aligned}
$$

$$
=\frac{\left(1,000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)\left(0.5 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}\right)\left(\frac{\mathrm{min}}{60 \mathrm{~s}}\right)(10.5+4.8 \mathrm{~m})}{0.8}
$$

$$
=1,563 \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{3}}
$$

$$
=1,563 \mathrm{~W}
$$

THE CORRECT ANSWER IS: (C)

1. Pump flow (1) to (2)

$$
\frac{p \nmid r}{\gamma}+\frac{V_{1}^{2}}{\not q g}+z_{1}+h_{p}=\frac{p_{f}^{1}}{\gamma}+\frac{V_{2}^{2}}{\not \partial g}+z_{2}+\not h_{t}+h_{f}+h_{f} / \text { fitting }
$$

or

$$
h_{p}=h_{f}+\left(z_{2}-z_{1}\right)=f \frac{L}{D} \frac{V^{2}}{2 g}+\left(z_{2}-z_{1}\right)
$$

Thus,

$$
\dot{W}_{p}=\frac{\gamma Q h_{p}}{\eta}
$$

2. Turbine flow (1) to (3)

$$
\frac{p \wedge}{\gamma}+\frac{V_{7}^{2}}{\not 2 g}+z_{1}+\not p_{p}=\frac{p_{7}}{\not r}+\frac{V_{3}^{2}}{\not q g}+z_{3}+h_{t}+h_{f}+h_{\text {fitting }}
$$

or

$$
h_{t}=\left(z_{1}-z_{3}\right)-h_{f}=\left(z_{1}-z_{3}\right)-f \frac{L}{D} \frac{V^{2}}{2 g}
$$

Thus,

$$
\dot{W}_{t}=\gamma Q h_{t}
$$

MULTIPATH PIPELINE PROBLEMS
-

The same head loss occurs in each branch as in the combination of the two. The following equations may be solved simultaneously for v_{A} and v_{B} :

$$
\begin{aligned}
& h_{L}=f_{A} \frac{L_{A}}{D_{A}} \frac{\mathrm{v}_{A}^{2}}{2 g}=f_{B} \frac{L_{B}}{D_{B}} \frac{\mathrm{v}_{B}^{2}}{2 g} \\
& \left(\pi D^{2} / 4\right)_{\mathrm{v}}=\left(\pi D_{A}^{2} / 4\right) \mathrm{v}_{A}+\left(\pi D_{B}^{2} / 4\right) \mathrm{v}_{B}
\end{aligned}
$$

The flow Q can be divided into Q_{A} and Q_{B} when the pipe characteristics are known.
52. The figure below shows a branched pipe network. A pressure gage just upstream of A reads 60 psi and a pressure gage just downstream of D reads 54 psi . The flow rates, diameters, the friction factors, and the lengths of the two branches are as follows:

Which of the following is a true conclusion?
A. Pressure drop in branch $\mathrm{ACD}=4 \mathrm{psi}$
B. Pressure drop in branch $\mathrm{ABD}=2$ psi
C. Pressure drop in branch $\mathrm{ACD}=$ Pressure drop in branch $\mathrm{ABD}=6 \mathrm{psi}$
D. Pressure drop in branch $\mathrm{ACD}=$ Pressure drop in branch $\mathrm{ABD}=3 \mathrm{psi}$

.

Hint: In branched pipe network such as the one shown, the head loss is the same in each branch

Solution: Pressure drop in branch $\mathrm{ABD}=60 \mathrm{psi}-54 \mathrm{psi}=6 \mathrm{psi}$
Pressure drop in branch $\mathrm{ACD}=60 \mathrm{psi}-54 \mathrm{psi}=6 \mathrm{psi}$
Hence pressure drop in $\mathrm{ABD}=$ pressure drop in $\mathrm{ACD}=6 \mathrm{psi}$.

Therefore, the key is (C).

Flow in Noncircular Conduits

Analysis of flow in conduits having a noncircular cross section uses the hydraulic radius R_{H}, or the hydraulic diameter D_{H}, as follows

$$
R_{H}=\frac{\text { cross-sectional area }}{\text { wetted perimeter }}=\frac{D_{H}}{4}
$$

95. What is most nearly the hydraulic radius of an equilateral triangle (vertex down) open channel flowing at full capacity with a maximum depth of 3 m ?
(A) 0.60 m
(B) 0.65 m
(C) 0.70 m
(D) 0.75 m
96. $3 \mathrm{~m} \tan 30^{\circ}=$

$$
s=\frac{3 \mathrm{~m}}{\cos 30^{\circ}}=3.464 \mathrm{~m}
$$

$$
\begin{aligned}
\begin{aligned}
& \text { area in flow } \\
& \text { at full capacity }=\left(\frac{1}{2}\right)(3.464 \mathrm{~m})(3 \mathrm{~m})=5.196 \mathrm{~m}^{2} \\
& r_{h}=\frac{\text { area in flow }}{\text { wetted perimeter }}=\frac{5.196 \mathrm{~m}^{2}}{(2)(3.464 \mathrm{~m})} \\
&=0.75 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

Answer is D
66. The hydraulic diameter of a circualr sewer flowing half-full is equal to

OA. half its diameter
OB. its diameter
OC. double its diameter
D. π times its diameter
[7]
$\quad D_{h}=4\left(\frac{\text { Wetted per }}{\text { Wint: Hydraulic diameter, Dh is defined as }} \quad D_{h}=4\left(\frac{1 / 2\left(\pi D^{2} / 4\right)}{1 / 2(\pi D)}\right)=D\right.$

Therefore, the key is (B).

THE IMPULSE-MOMENTUM PRINCIPLE

The resultant force in a given direction acting on the fluid equals the rate of change of momentum of the fluid.

$$
\Sigma \boldsymbol{F}=Q_{2} \rho_{2} \mathrm{v}_{2}-Q_{1} \rho_{1} \mathrm{v}_{1}, \text { where }
$$

$\Sigma \boldsymbol{F} \quad=$ the resultant of all external forces acting on the control volume,
$Q_{1} \rho_{1} \mathrm{v}_{1}=$ the rate of momentum of the fluid flow entering the control volume in the same direction of the force, and
$Q_{2} \rho_{2} \mathrm{v}_{2}=$ the rate of momentum of the fluid flow leaving the control volume in the same direction of the force.

For a control volume that is fixed (and thus inertial) and nondeforming,

$$
\frac{\partial}{\partial t} \int_{\mathrm{cv}} \mathrm{~V} \rho d \mathrm{~V}^{2}+\int_{\mathrm{cs}} \mathrm{~V} \rho \mathbf{V} \cdot \hat{\mathbf{n}} d A=\sum \mathbf{F}_{\substack{\text { contents of the } \\ \text { control volume }}}
$$

1D Momentum flux

$\int_{C S} \underline{V} \rho \underline{V} \cdot \underline{n} d A=\sum\left(\dot{m}_{i} \underline{V}_{i}\right)_{o u t}-\sum\left(\dot{m}_{i} \underline{V}_{i}\right)_{i n}$
Where $\underline{V}_{i}, \rho_{i}$ are assumed uniform over discrete inlets and outlets

$$
\dot{m}_{i}=\rho_{i} V_{n i} A_{i}
$$

steady flow

$$
\underbrace{\sum \underline{F}}_{\begin{array}{l}
\text { net force } \\
\text { on } C V
\end{array}}=\underbrace{\sum\left(\dot{m}_{i} \underline{V}_{i}\right)_{\text {out }}}_{\begin{array}{l}
\text { outlet momentum } \\
\text { flux }
\end{array}}-\underbrace{\sum\left(\dot{m}_{i} \underline{V}_{i}\right)_{\text {in }}}_{\begin{array}{l}
\text { inlet momentum } \\
\text { flux }
\end{array}}
$$

Pipe Bends, Enlargements, and Contractions

The force exerted by a flowing fluid on a bend, enlargement, or contraction in a pipe line may be computed using the impulse-momentum principle.

$p_{1} A_{1}-p_{2} A_{2} \cos \alpha-\boldsymbol{F}_{x}=Q \rho\left(\mathrm{v}_{2} \cos \alpha-\mathrm{v}_{1}\right)$
$\boldsymbol{F}_{y}-W-p_{2} A_{2} \sin \alpha=Q \rho\left(\mathrm{v}_{2} \sin \alpha-0\right)$, where
$\boldsymbol{F}=$ the force exerted by the bend on the fluid (the force exerted by the fluid on the bend is equal in magnitude and opposite in sign), \boldsymbol{F}_{x} and \boldsymbol{F}_{y} are the x-component and y-component of the force,
$p=$ the internal pressure in the pipe line,
$A=$ the cross-sectional area of the pipe line,
$W=$ the weight of the fluid,
$\mathrm{v}=$ the velocity of the fluid flow,
$\alpha=$ the angle the pipe bend makes with the horizontal,
$\rho=$ the density of the fluid, and
$Q=$ the quantity of fluid flow.

$$
\sum \underline{F}=\sum \dot{m}_{o u t} \underline{V}_{o u t}-\sum \dot{m}_{i n} \underline{V}_{i n}
$$

x-direction:

$$
\begin{gathered}
\sum F_{x}=\sum \dot{m}_{\text {out }} V_{x_{\text {out }}}-\sum \dot{m}_{\text {in }} V_{x_{\text {in }}} \\
-F_{x}+p_{1} A_{1}-p_{2} A_{2} \cos \alpha=(\rho Q)\left(v_{2} \cos \alpha\right)-(\rho Q)\left(v_{1}\right) \\
\therefore F_{x}=p_{1} A_{1}-p_{2} A_{2} \cos \alpha+Q \rho\left(v_{1}-v_{2} \cos \alpha\right)
\end{gathered}
$$

y-direction:

$$
\begin{gathered}
\sum F_{y}=\sum \dot{m}_{\text {out }} V_{y_{\text {out }}}-\sum \dot{m}_{\text {in }} V_{y_{\text {in }}} \\
F_{y}-W-p_{2} A_{2} \sin \alpha=(\rho Q)\left(v_{2} \sin \alpha\right)-(\rho Q)(0) \\
\therefore F_{y}=W+p_{2} A_{2} \sin \alpha+Q \rho v_{2} \sin \alpha
\end{gathered}
$$

where,

$$
Q=A_{1} v_{1}=V_{2} v_{2}
$$

Deflectors and Blades

Fixed Blade
-

Moving Blade

- FINAL DIRECTION OF

$\mathrm{v}=$ the velocity of the blade.

IE Impulse Turbine

$$
\dot{W}=Q \rho\left(\mathrm{v}_{1}-\mathrm{v}\right)(1-\cos \alpha) \mathrm{v} \text {, where }
$$

$\dot{W}=$ power of the turbine.

$$
\dot{W}_{\max }=Q \rho\left(\mathrm{v}_{1}^{2} / 4\right)(1-\cos \alpha)
$$

When $\alpha=180^{\circ}$,

$$
\dot{W}_{\text {max }}=\left(Q \rho \mathrm{v}_{1}^{2}\right) / 2=\left(Q \gamma \mathrm{v}_{1}^{2}\right) / 2 g
$$

= $=$ Jet Propulsion

Bernoulli equation between (1) and (2):

$$
\frac{p \neq 1}{\gamma}+\frac{V_{1}^{4}}{2 g}+z_{1}=\frac{p_{2}^{4}}{h_{\gamma}}+\frac{V_{2}^{2}}{2 g}+z_{2}
$$

or

$$
\frac{V_{2}^{2}}{2 g}=z_{1}-z_{2}=h
$$

Thus

$$
V_{2}=\sqrt{2 g h}
$$

49. A horizontal jet of water (density $=1,000 \mathrm{~kg} / \mathrm{m}^{3}$) is deflected perpendicularly to the original jet stream by a plate as shown below.

The magnitude of force $\mathbf{F}(\mathrm{kN})$ required to hold the plate in place is most nearly:
(A) 4.5
(B) 9.0
(C) 45.0
(D) 90.0
$\mathrm{Q}=\mathrm{A}_{1} \mathrm{~V}_{1}=\left(0.01 \mathrm{~m}^{2}\right)(30 \mathrm{~m} / \mathrm{s})$
$=0.3 \mathrm{~m}^{3} / \mathrm{s}$
Since the water jet is deflected perpendicularly, the force F must deflect the total horizontal momentum of the water.
$\mathrm{F}=\rho \mathrm{QV}=\left(1,000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(0.3 \mathrm{~m}^{3} / \mathrm{s}\right)(30 \mathrm{~m} / \mathrm{s})=9,000 \mathrm{~N}=9.0 \mathrm{kN}$

THE CORRECT ANSWER IS: (B)

36. Approximately what depth of water, h, will produce a horizontal force of 2.5 N against the $2 \mathrm{~cm} \times 2 \mathrm{~cm}$ plate?

(A) 0.91 m
(B) 1.6 m
(C) 32 m
(D) 65 m
37. From the impulse-momentum theorem,

$$
F=\dot{m} \Delta \mathrm{v}=\rho \mathrm{v} A \mathrm{v}=\mathrm{v}^{2} A \rho
$$

v^{2} is found from

$$
\begin{aligned}
\rho g h & =\frac{\rho \mathrm{v}^{2}}{2} \\
\mathrm{v}^{2} & =2 g h
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
h & =\frac{\mathrm{v}^{2}}{2 g}=\frac{\frac{F}{A \rho}}{2 g}=\frac{F}{2 g A \rho} \\
& =\frac{2.5 \mathrm{~N}}{(2)\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \pi\left(\frac{0.01}{2} \mathrm{~m}\right)^{2}\left(1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)} \\
& =1.62 \mathrm{~m} \quad(1.6 \mathrm{~m})
\end{aligned}
$$

Answer is B.

DIMENSIONAL HOMOGENEITY AND

DIMENSIONAL ANALYSIS

Equations that are in a form that do not depend on the fundamental units of measurement are called dimensionally homogeneous equations. A special form of the dimensionally homogeneous equation is one that involves only dimensionless groups of terms.
Buckingham's Theorem: The number of independent dimensionless groups that may be employed to describe a phenomenon known to involve n variables is equal to the number ($n-\bar{r}$), where \bar{r} is the number of basic dimensions (i.e., $\mathrm{M}, \mathrm{L}, \mathrm{T}$) needed to express the variables dimensionally.
42. Which of the following is a non-dimensional grouping where, F is a force; ϱ is the density; A is the area; and U is a velocity?
○A. $\frac{F}{\rho A U}$
B. $\frac{F}{\rho A U^{2}}$
C. $\frac{F}{\rho A^{2} U}$
D. $\frac{F}{\rho^{2} A U}$

Hint: Since none of them is a standard non-dimensional number, check if any of them can be reduced to a familiar expression. Solution: Recalling the result for drag or lift: $\mathrm{F}=\mathrm{C}_{\mathrm{D}}\left(\rho \mathrm{AU}^{2}\right) / 2$, we can deduce that $\frac{F}{\rho A U^{2}}$ must be non-dimensional. Therefore, the key is (B).

- Dimensional equation

$$
D=f(d, V, \rho, \mu)
$$

- Buckingham's Pi Theorem:

$$
D \doteq M L T^{-1}, d \doteq L, V \doteq L T^{-1}, \rho \doteq M L^{-3}, \mu \doteq M L^{-1} T^{-1}
$$

Thus,

$$
\begin{aligned}
& n=5(D, d, V, \rho, \mu) \\
& r=3(M, L, T) \\
& \therefore k=n-r=2 \text { Pi parameters }
\end{aligned}
$$

$$
\Pi_{1}=\frac{D}{\rho U^{2} D^{2}}\left(\text { or } \frac{D}{\frac{1}{2} \rho U^{2} A}\right)=C_{D}
$$

$$
\Pi_{2}=\frac{\rho U D}{\mu}=R e
$$

- Dimensionally homogeneous equation:

$$
C_{D}=f(R e)
$$

- \quad Similitude (Model test):

If

$$
\text { Re } e_{\text {model }}=\text { Re proto type }
$$

Then

$$
C_{D \text { proto type }}=C_{D \text { model }}
$$

SIMILITUDE

In order to use a model to simulate the conditions of the prototype, the model must be geometrically, kinematically, and dynamically similar to the prototype system.
To obtain dynamic similarity between two flow pictures, all independent force ratios that can be written must be the same in both the model and the prototype. Thus, dynamic similarity between two flow pictures (when all possible forces are acting) is expressed in the five simultaneous equations below.

$$
\begin{aligned}
& {\left[\frac{F_{I}}{F_{p}}\right]_{p}=\left[\frac{F_{I}}{F_{p}}\right]_{m}=\left[\frac{\rho \mathrm{v}^{2}}{p}\right]_{p}=\left[\frac{\rho \mathrm{v}^{2}}{p}\right]_{m}} \\
& {\left[\frac{F_{I}}{F_{v}}\right]_{p}=\left[\frac{F_{I}}{F_{v}}\right]_{m}=\left[\frac{\mathrm{vl} \mathrm{\rho}}{\mu}\right]_{p}=\left[\frac{\mathrm{vl} \mathrm{\rho}}{\mu}\right]_{m}=[\mathrm{Re}]_{p}=[\mathrm{Re}]_{m}} \\
& {\left[\frac{F_{I}}{F_{G}}\right]_{p}=\left[\frac{F_{t}}{F_{G}}\right]_{m}=\left[\frac{\mathrm{v}^{2}}{l g}\right]_{p}=\left[\frac{\mathrm{v}^{2}}{l g}\right]_{m}=[\mathrm{Fr}]_{p}=[\mathrm{Fr}]_{m}} \\
& {\left[\frac{F_{I}}{F_{E}}\right]_{p}=\left[\frac{F_{I}}{F_{E}}\right]_{m}=\left[\frac{\rho \mathrm{v}^{2}}{E_{v}}\right]_{p}=\left[\frac{\rho \mathrm{v}^{2}}{E_{v}}\right]_{m}=[\mathrm{Ca}]_{p}=[\mathrm{Ca}]_{m}} \\
& {\left[\frac{F_{I}}{F_{T}}\right]_{p}=\left[\frac{F_{I}}{F_{T}}\right]_{m}=\left[\frac{\rho / \mathrm{v}^{2}}{\sigma}\right]_{p}=\left[\frac{\left[\rho \mathrm{v}^{2}\right.}{\sigma}\right]_{m}=[\mathrm{We}]_{p}=[\mathrm{We}]_{m}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } \\
& \text { the subscripts } p \text { and } m \text { stand for prototype and model } \\
& \text { respectively, and } \\
& F_{I}=\text { inertia force, } \\
& F_{P}=\text { pressure force, } \\
& F_{V}=\text { viscous force, } \\
& F_{G}=\text { gravity force, } \\
& F_{E}=\text { elastic force, } \\
& F_{T}=\text { surface tension force, } \\
& \mathrm{Re}=\text { Reynolds number, } \\
& \mathrm{We}=\text { Weber number, } \\
& \mathrm{Ca}=\text { Cauchy number, } \\
& \mathrm{Fr}=\text { Froude number, } \\
& l=\text { characteristic length, } \\
& \mathrm{v}=\text { velocity, } \\
& \rho=\text { density, } \\
& \begin{array}{l}
\sigma \\
E_{v}
\end{array}=\text { surface tension, bulk modulus, } \\
& \mu=\text { dynamic viscosity, } \\
& p \\
& g=\text { pressure, and } \\
& g=\text { acceleration of gravity }
\end{aligned}
$$

95. The velocity at a point on a model of a spillway for a dam is $5 \mathrm{~m} / \mathrm{s}$. If the length-to-scale ratio is $15: 1$, what is most nearly the velocity at the corresponding point on the actual dam? (Assume similar conditions.)
(A) $6.7 \mathrm{~m} / \mathrm{s}$
(B) $7.5 \mathrm{~m} / \mathrm{s}$
(C) $15 \mathrm{~m} / \mathrm{s}$
(D) $19 \mathrm{~m} / \mathrm{s}$
96. Inertial and gravitational forces dominate for a spillway. The Froude numbers must be equal.

$$
\begin{aligned}
\left(N_{\mathrm{Fr}}\right)_{\mathrm{dam}} & =\left(N_{\mathrm{Fr}}\right)_{\text {model }} \\
\left(\frac{\mathrm{v}}{\sqrt{g L}}\right)_{\text {dam }} & =\left(\frac{\mathrm{v}}{\sqrt{g L}}\right)_{\text {model }} \\
\mathrm{v}_{\text {dam }} & =\mathrm{v}_{\text {model }} \sqrt{\frac{L_{\text {dam }}}{L_{\text {model }}}}=\left(5 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \sqrt{\frac{15}{1}} \\
& =19.36 \mathrm{~m} / \mathrm{s} \quad(19 \mathrm{~m} / \mathrm{s})
\end{aligned}
$$

Answer is D.
93. A venturi meter is used to measure air velocity. A one-fifth scale model of the venturi meter is built, and water is used as the test fluid. Viscosity of the air is $1.82 \times 10^{-5} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$. Viscosity of the water is $9.82 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$. What will be the approximate ratio of the model to the actual velocities observed?
(A) 0.32
(B) 3.1
(C) 11
(D) 54
93. Use of a venturi meter implies pipe flow, which means

$$
\left(N_{\mathrm{Re}}\right)_{\text {actual }}=\left(N_{\mathrm{Re}}\right)_{\text {model }}
$$

The units given for the viscosity are for absolute viscos ity, not kinematic viscosity.

$$
\begin{aligned}
& \frac{\rho_{\text {air }} \mathrm{v}_{\text {actual }} L_{\text {actual }}}{\mu_{\text {air }}}=\frac{\rho_{\text {water }} \mathrm{v}_{\text {model }} L_{\text {model }}}{\mu_{\text {water }}} \\
& \frac{\mathrm{v}_{\text {model }}}{\mathrm{v}_{\text {actual }}}=\left(\frac{\mu_{\text {water }}}{\mu_{\text {air }}}\right)\left(\frac{\rho_{\text {air }}}{\rho_{\text {water }}}\right)\left(\frac{L_{\text {actual }}}{L_{\text {model }}}\right) \\
&=\left(\frac{9.82 \times 10^{-4} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}}{1.82 \times 10^{-5} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}}\right)\left(\frac{1.20 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}{1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}\right)\left(\frac{5}{1}\right) \\
&=0.3237 \quad(0.32)
\end{aligned}
$$

Answer is A.

OPEN-CHANNEL FLOW AND/OR PIPE FLOW

Manning's Equation

$\mathrm{v}=(k / n) R^{2 / 3} S^{1 / 2}$, where
$k=1$ for SI units,
$k=1.486$ for USCS units,
$\mathrm{v}=$ velocity $(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{sec})$,
$n=$ roughness coefficient,
$R_{H}=$ hydraulic radius (m, ft), and
$S=$ slope of energy grade line $(\mathrm{m} / \mathrm{m}, \mathrm{ft} / \mathrm{ft})$.
Also see Hydraulic Elements Graph for Circular Sewers in the CIVIL ENGINEERING section.

Hazen-Williams Equation

$$
\mathrm{v}=k_{1} C R_{H}^{0.63} S^{0.54}, \text { where }
$$

$C=$ roughness coefficient,
$k_{1}=0.849$ for SI units, and
$k_{1}=1.318$ for USCS units.
Other terms defined as above.

WEIR FORMULAS

See the CIVIL ENGINEERING section.
43. A rectangular channel ($n=0.013, s=0.004$) has a depth of 3 m . The width of the channel is 5 m . The velocity of water in the channel is most nearly
(A) $1 \mathrm{~m} / \mathrm{s}$
(B) $6 \mathrm{~m} / \mathrm{s}$
(C) $15 \mathrm{~m} / \mathrm{s}$
(D) $90 \mathrm{~m} / \mathrm{s}$

First, find the area of the channel.

$$
\begin{aligned}
A & =d w=(3 \mathrm{~m})(5 \mathrm{~m}) \\
& =15 \mathrm{~m}^{2}
\end{aligned}
$$

Find the hydraulic radius.

$$
\begin{aligned}
R & =\frac{d w}{w+2 d} \\
& =\frac{(3 \mathrm{~m})(5 \mathrm{~m})}{5 \mathrm{~m}+(2)(3 \mathrm{~m})} \\
& =1.36 \mathrm{~m}
\end{aligned}
$$

Use Manning's equation.

$$
\begin{aligned}
Q & =\left(\frac{1}{n}\right) A R^{2 / 3} \sqrt{S} \\
& =\left(\frac{1}{0.013}\right)\left(15 \mathrm{~m}^{2}\right)(1.36 \mathrm{~m})^{2 / 3} \sqrt{0.004} \\
& =89.59 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Use the continuity equation and solve for v .

$$
\begin{aligned}
Q & =\mathrm{v} A \\
\mathrm{v} & =\frac{Q}{A}=\frac{89.59 \mathrm{~m}^{3} / \mathrm{s}}{15 \mathrm{~m}^{2}} \\
& =5.97 \mathrm{~m} / \mathrm{s} \quad(6 \mathrm{~m} / \mathrm{s})
\end{aligned}
$$

Answer is B.

GOOD LUCK!

