Review for Exam3

12.9.2015

Hyunse Yoon, Ph.D.

Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa

Assistant Research Scientist IIHR-Hydroscience & Engineering, University of Iowa

Chapter 8

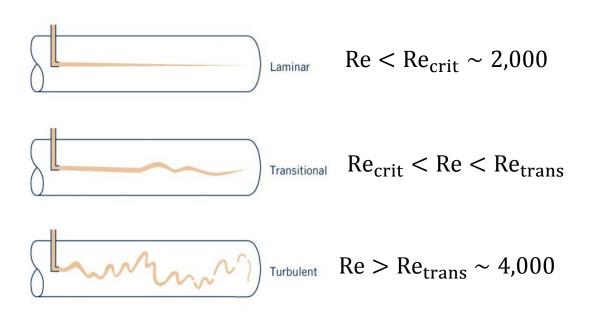
Flow in Conduits

- Internal flow: Confined by solid walls
- Basic piping problems:
 - Given the desired flow rate, what pressure drop (e.g., pump power) is needed to drive the flow?
 - Given the pressure drop (e.g., pump power) available, what flow rate will ensue?

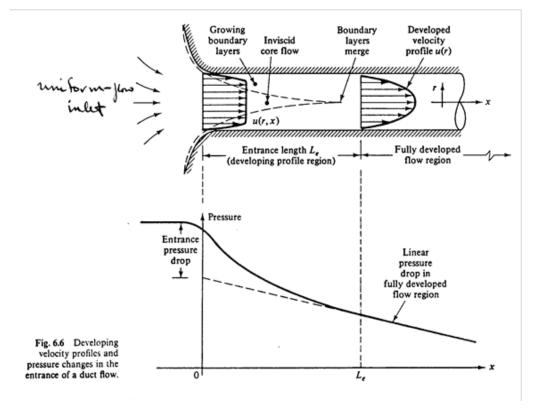
Pipe Flow: Laminar vs. Turbulent

• Reynolds number regimes

$$\operatorname{Re} = \frac{\rho V D}{\mu}$$



Entrance Region and Fully Developed



• Entrance Length, L_e :

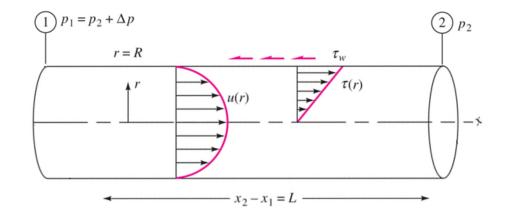
• Laminar flow: $L_e/D = 0.06Re$ ($L_{e,max} = 0.06Re_{crit} \sim 138D$)

• Turbulent flow: $L_e/D = 4.4 \text{Re}^{\frac{1}{6}}$ (20D < L_e < 30D for 10⁴ < Re < 10⁵)

Pressure Drop and Shear Stress

- Pressure drop, $\Delta p = p_1 p_2$, is needed to overcome viscous shear stress.
- Considering force balance,

$$p_1\left(\frac{\pi D^2}{4}\right) - p_2\left(\frac{\pi D^2}{4}\right) = \tau_w(\pi DL) \Rightarrow \Delta p = 4\tau_w \frac{L}{D}$$



Head Loss and Friction Factor

• Energy equation

$$h_L = \frac{p_1 - p_2}{\gamma} + \frac{\alpha_1 V_1^2 - \alpha_2 V_2^2}{2g} + (z_1 - z_2) = \frac{\Delta p}{\gamma}$$

$$\Delta p = 4\tau_w \frac{L}{D}$$
 from force balance and $\gamma = \rho g$

$$\therefore h_L = 4\tau_w \frac{L}{D} / \rho g = \left(\frac{8\tau_w}{\rho V^2}\right) \cdot \frac{L}{D} \frac{V^2}{2g} = f \frac{L}{D} \frac{V^2}{2g}$$

 \Rightarrow Darcy – Weisbach equation

• Friction factor

$$f \equiv \frac{8\tau_w}{\rho V^2}$$

Fully-developed Laminar Flow

• Exact solution,
$$u(r) = V_{\rm c} \left[1 - \left(\frac{r}{R}\right)^2 \right]$$

• Wall sear stress

$$\tau_w = -\mu \frac{du}{dr} \bigg|_{r=R} = \frac{8\mu V}{D}$$

where, V = Q/A

• Friction factor,

$$f = \frac{8\tau_w}{\rho V^2} = \frac{8}{\rho V^2} \cdot \frac{8\mu V}{D} = \frac{64}{\rho D V/\mu} = \frac{64}{\text{Re}}$$

Fully-developed Turbulent Flow

• Dimensional analysis

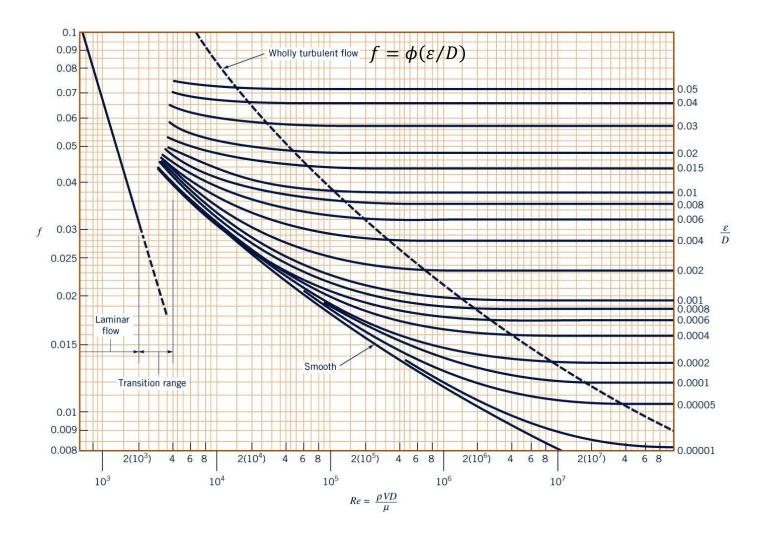
$$\tau_{w} = f(D, V, \mu, \rho, \varepsilon)$$

$$k - r = 6 - 3 = 3 \Pi's$$

$$\frac{\tau_{w}}{\rho V^{2}} = \phi\left(\frac{\rho VD}{\mu}, \frac{\varepsilon}{D}\right)$$

$$\therefore f = \phi(Re, \varepsilon/D)$$

Moody Chart



Moody Chart – Contd.

• Colebrook equation

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{\varepsilon/D}{3.7} + \frac{2.51}{Re\sqrt{f}}\right)$$

• Haaland equation

$$\frac{1}{\sqrt{f}} = -1.8 \log\left[\left(\frac{\varepsilon/D}{3.7}\right)^{1.1} + \frac{6.9}{Re}\right]$$

Minor Loss

- Loss of energy due to pipe system components (valves, bends, tees, and the like).
- Theoretical prediction is, as yet, almost impossible.
- Usually based on experimental data.

 K_L : Loss coefficient

$$h_m = \sum K_L \frac{V^2}{2g}$$

E.g.) Pipe entrance (sharp-edged), K_L =0.8 (well-rounded), K_L =0.04 Regular 90° elbows (flanged), K_L =0.3 Pipe exit, K_L =1.0

Pipe Flow Problems

• Energy equation for pipe flow:

$$\frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 + h_p = \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2 + h_t + h_L$$
$$h_L = h_f + h_m = \left(\frac{f}{D} + \sum K_L\right) \frac{V^2}{2g}$$

- Type I: Determine head loss h_L (or Δp)
- Type II: Determine flow rate Q (or V)
- Type III: Determine pipe diameter D

Iteration is needed for types II and III

Type I Problem

- Typically, V (or Q) and D are given \rightarrow Find the pump power \dot{W}_p required.
 - For example, if $p_1 = p_2$, $V_1 = V_2$ and $\Delta z = z_2 z_1$, $0 + 0 + z_1 + h_p = 0 + 0 + z_2 + \left(f\frac{L}{D} + \sum K_L\right)\frac{V^2}{2g}$ $f = \phi\left(\frac{\rho VD}{\mu}, \frac{\varepsilon}{D}\right) \Rightarrow \text{ from Moody Chart}$

Solve the energy equation for h_p ,

$$h_p = \left(f\frac{L}{D} + \sum K_L\right)\frac{V^2}{2g} - \Delta z$$

Thus,

$$\dot{W}_p = h_p \cdot \gamma Q$$

Type II Problem

- Q (thus V) is unknown $\rightarrow Re$?
- Solve energy equation for V as a function of f. For example, if $p_1 = p_2$, $V_1 = V_2$ and $\Delta z = z_2 z_1$,

$$0 + 0 + z_1 + h_p = 0 + 0 + z_2 + \left(f\frac{L}{D} + \sum K_L\right)\frac{V^2}{2g}$$

$$: V = \sqrt{\frac{2g(h_p - \Delta z)}{f\frac{L}{D} + \sum K_L}}$$

Guess $f \to V \to Re \to f_{new}$; Repeat until f is converged $\Rightarrow V$

Type III Problem

- **D** is unknown $\rightarrow Re$ and ε/D ?
- Solve energy equation for D as a function of f. For example, if $p_1 = p_2$, $V_1 = V_2$, $\Delta z = z_1 z_2$, and $\sum K_L = 0$ and using $V = Q/(\pi D^2/4)$,

$$0 + 0 + z_1 + h_p = 0 + 0 + z_2 + \left(f\frac{L}{D} + 0\right)\frac{1}{2g}\left(\frac{Q}{\pi D^2/4}\right)^2$$

$$\therefore D = \left[\frac{8LQ^2 \cdot f}{\pi^2 g(h_p - \Delta z)}\right]^{\frac{1}{5}}$$

Guess $f \rightarrow D \rightarrow Re$ and $\varepsilon/D \rightarrow f_{new}$; Repeat until f is converged $\Rightarrow D$

Chapter 9

Flow over Immersed Bodies

- External flow: Unconfined, free to expand
- Complex body geometries require experimental data (dimensional analysis)

Drag

• Resultant force in the direction of the upstream velocity

$$C_{D} = \frac{D}{\frac{1}{2}\rho V^{2}A} = \frac{1}{\frac{1}{2}\rho V^{2}A} \left\{ \underbrace{\int_{S} (p - p_{\infty})\underline{n} \cdot \hat{\boldsymbol{\iota}} dA}_{\substack{C_{Dp} = \text{ Pressure drag} \\ \text{(or Form drag)}}} A \underbrace{\int_{S} \tau_{w} \underline{t} \cdot \hat{\boldsymbol{\iota}} dA}_{\substack{C_{f} = \text{Friction drag}}} \right\}$$

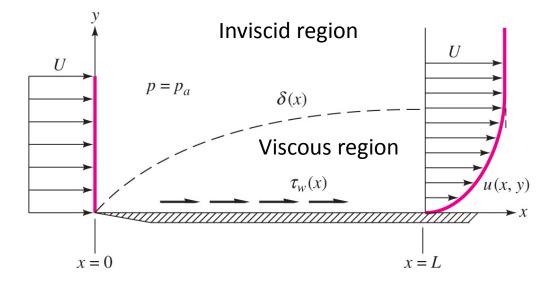
- Streamlined body ($t/\ell \ll 1$): $C_f \gg C_{Dp}$, Boundary layer flow
- Bluff body ($t/\ell \sim 1$): $C_{Dp} >> C_f$

where, t is the thickness and ℓ the length of the body

Boundary Layer

- High Reynolds number flow, $\operatorname{Re}_{\chi} = \frac{U_{\infty} \chi}{\nu} >> 1,000$
- Viscous effects are confined to a thin layer, δ

•
$$\frac{u}{U_{\infty}} = 0.99$$
 at $y = \delta$



Friction Coefficient

- Local friction coefficient $c_f(x) = \frac{2\tau_w(x)}{\rho U^2}$
- Friction drag coefficient

$$C_f = \frac{D_f}{\frac{1}{2}\rho U^2 A}$$

$$\therefore D_f = C_f \cdot \frac{1}{2} \rho U^2 A$$

Note: Darcy friction
factor for pipe flow
$\epsilon 8\tau_w$
$f = \frac{w}{\rho V^2}$

Note:

$$D_f = \int_A \tau_w dA = \int_0^L \tau_w b dx$$

$$C_f = \frac{2}{\rho U^2 b L} \int_0^L \tau_w b dx$$

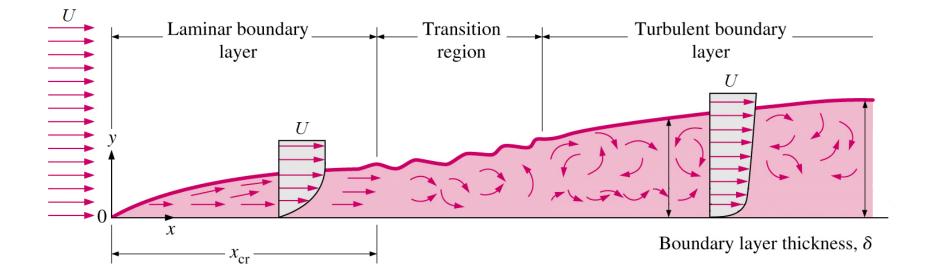
$$= \frac{1}{L} \int_0^L c_f(x) dx$$

$$\therefore C_f = \overline{c_f(x)}$$

Reynolds Number Regime

• Transition Reynolds number

$$Re_{x,tr} = 5 \times 10^5$$

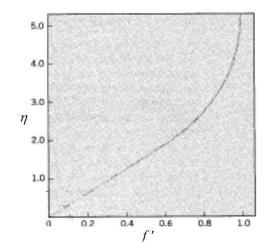


Laminar boundary layer

• Blasius introduced coordinate transformations

$$\eta \equiv y \sqrt{\frac{U_{\infty}}{\nu x}}$$
$$\Psi \equiv \sqrt{\nu x U_{\infty}} f(\eta)$$

Then, rewrote the BL equations as a simple ODE, ff'' + 2f''' = 0



From the solutions,

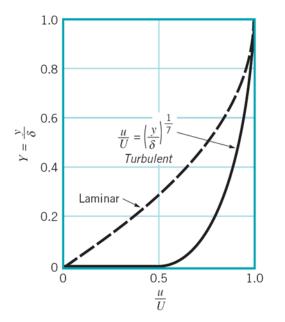
$$\frac{\delta(x)}{x} = \frac{5}{\sqrt{Re_x}}; \quad c_f(x) = \frac{0.664}{\sqrt{Re_x}}; \quad C_f = \frac{1.328}{\sqrt{Re_L}}$$

Turbulent boundary layer

•
$$\frac{u}{U} \approx \left(\frac{y}{\delta}\right)^{\frac{1}{7}}$$
 one – seventh – power law $-\frac{1}{2}$

• $c_f \approx 0.02 R e_{\delta}^{-6}$ power – law fit

•
$$\frac{\delta(x)}{x} = \frac{0.16}{Re_x^{\frac{1}{7}}}; c_f(x) = \frac{0.027}{Re_x^{\frac{1}{7}}}; C_f = \frac{0.031}{Re_L^{\frac{1}{7}}}$$



- Valid for a fully turbulent flow over a smooth flat plate from the leading edge.
- Better results for sufficiently large $Re_L > 10^7$

Alternate forms by using an experimentally determined shear stress formula:

•
$$\tau_w = 0.0225\rho U^2 \left(\frac{\nu}{U\delta}\right)^{\frac{1}{4}}$$

•
$$\frac{\delta(x)}{x} = 0.37 R e_x^{-\frac{1}{5}}; \quad c_f(x) = \frac{0.058}{R e_x^{\frac{1}{5}}}; \quad C_f = \frac{0.074}{R e_L^{\frac{1}{5}}}$$

• Valid only in the range of the experimental data; $Re_L = 5 \times 10^5 \sim 10^7$ for smooth flat plate

• Other formulas for smooth flat plates are by using the logarithmic velocity-profile instead of the 1/7-power law:

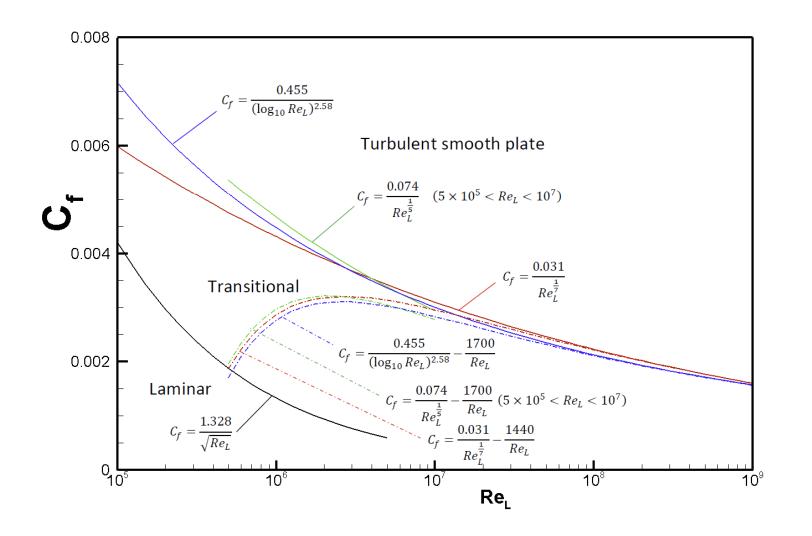
$$\frac{\delta}{L} = c_f (0.98 \log Re_L - 0.732)$$
$$c_f = (2 \log Re_x - 0.65)^{-2.3}$$
$$C_f = \frac{0.455}{(\log_{10} Re_L)^{2.58}}$$

These formulas are valid in the whole range of $Re_L \leq 10^9$

• Composite formulas (for flows initially laminar and subsequently turbulent with $Re_t = 5 \times 10^5$):

$$C_{f} = \frac{0.031}{Re_{L}^{\frac{1}{7}}} - \frac{1440}{Re_{L}}$$
$$C_{f} = \frac{0.074}{Re_{L}^{\frac{1}{7}}} - \frac{1700}{Re_{L}}$$

$$C_f = \frac{0.455}{(\log_{10} Re_L)^{2.58}} - \frac{1700}{Re_L}$$



Bluff Body Drag

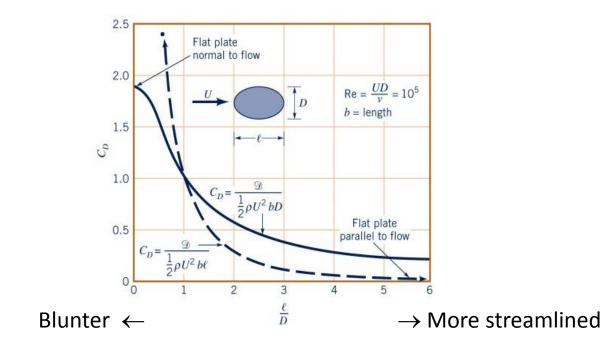
• In general,

$$D = f(V, L, \rho, \mu, c, t, \varepsilon, \dots)$$

- Drag coefficient: $C_D = \frac{D}{\frac{1}{2}\rho V^2 A} = \phi \left(AR, \frac{t}{L}, Re, \frac{c}{V}, \frac{\varepsilon}{L}, \dots\right)$
 - For bluff bodies experimental data are used to determine *C*_D

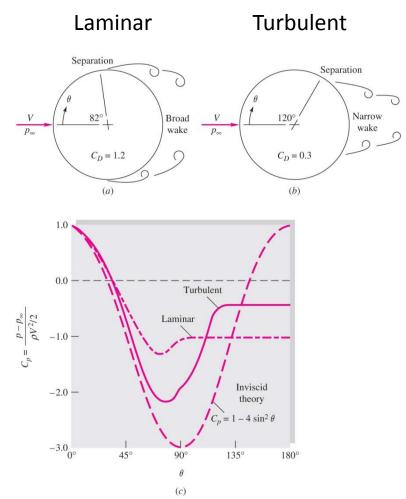
Shape dependence

- The blunter the body, the larger the drag coefficient
- The amount of streamlining can have a considerable effect



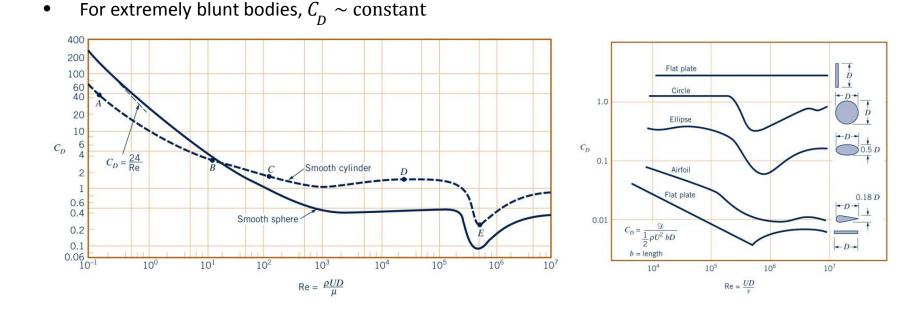
Separation

- Fluid stream detaches from a surface of a body at sufficiently high velocities.
- Only appears in viscous flows.
- Inside a separation region: lowpressure, existence of recirculating /backflows; viscous and rotational effects are the most significant



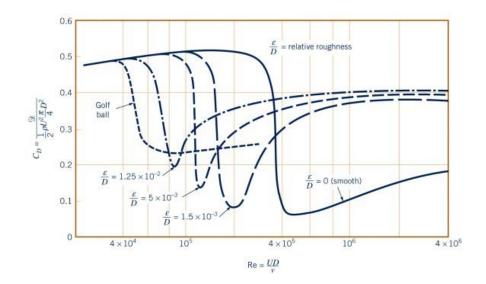
Reynolds number dependence

- Very low Re flow (Re < 1)
 - Inertia effects are negligible (creeping flow)
 - $C_D \sim Re^{-1}$
 - Streamlining can actually increase the drag (an increase in the area and shear force)
- Moderate *Re* flow (10³< *Re* < 10⁵)
 - For streamlined bodies, $C_D \sim Re^{-\frac{1}{2}}$
 - For blunt bodies, $C_D \sim \text{constant}$
- Very large *Re* flow (turbulent boundary layer)
 - For streamlined bodies, C_D increases
 - For relatively blunt bodies, C_D decreases when the flow becomes turbulent (10⁵ < Re < 10⁶)



Surface roughness

- For streamlined bodies, the drag increases with increasing surface roughness
- For blunt bodies, an increase in surface roughness can actually cause a decrease in the drag.
- For extremely blunt bodies, the drag is independent of the surface roughness

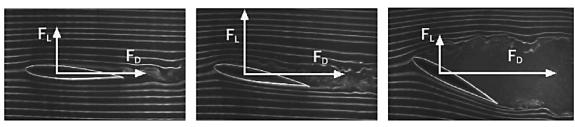


Lift

• Lift, *L*: Resultant force normal to the upstream velocity

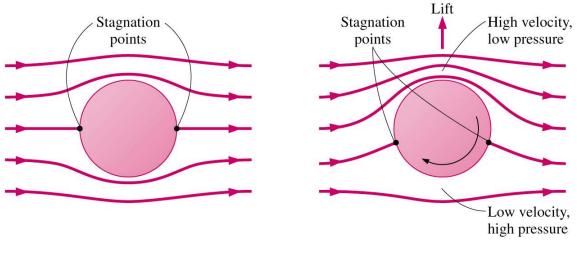
$$C_L = \frac{L}{\frac{1}{2}\rho U^2 A}$$

$$L = C_L \cdot \frac{1}{2} \rho U^2 A$$



Magnus Effect

- Lift generation by spinning
- Breaking the symmetry causes a lift



(a) Potential flow over a stationary cylinder

(b) Potential flow over a rotating cylinder

Minimum Flight Velocity

 Total weight of an aircraft should be equal to the lift

$$W = F_L = \frac{1}{2} C_{L,max} \rho V_{min}^2 A$$

Thus,

$$V_{min} = \sqrt{\frac{2W}{\rho C_{L,max} A}}$$