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Chapter 8 Flow in Conduits



Pipe Flow: Laminar vs. Turbulent

 Reynolds number

|

gﬂ ) Laminar Re < Recrit ~ 2'000
|

8& ) Transitional Recrit < Re < Retrans
|

8ﬂ ) Turbulent Re > Retrqns ~ 4,000
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Fig. 66 Developing
veloeity profiles and
pressure changes in the
entrance of a duct flow. 0

Entrance Length, L,:
0 Laminar flow: Le/D = 0.06Re (L gy = 0.06Re i ~ 138D)

1
0 Turbulent flow: Le/D = 4.4Rees (20D < L, < 30D for 10* < Re < 10°)

4



Pressure Drop and Shear Stress

e Pressure drop, Ap = p; — p,, is heeded to
overcome viscous shear stress.

 The nature of shear stress is strongly
dependent of whether the flow is laminar or
turbulent.

e Friction factor (or Darcy friction factor)
8T,

f=p7



Fully-developed Laminar Flow

2
e Exact solution, u(r) = V. [1 - (%) ]

e Wall sear stress

du) ~ 8uV
=R

Where, V = Q/A

e Friction factor,
81, 64 B 64

~ pV2 pDV/u  Re




Fully-developed Turbulent Flow

Ty = f(D: V,u,p, £)

- k—r=6-3=31IIs

_BTW_R _,oVD_R b K:
f_pVZ' e = L oug IleSS—D
£
f=¢(R€,5)
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Moody Chart — Contd.

* Colebrook equation

 Haaland equation
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Major Loss and Minor Losses

® Energy equation
P1 I/12 P2 [/22
7+a12—+zl+hp ——7+a22—+zz + h; + hy,

* Headloss: h; = hy + hyy,
— Major loss due to friction:

LV?2
hy =f 5@ (Darcy — Weisbach equation)

— Minor loss due to pipe system components

VZ
h,, = z K; E (K; : Loss coefficient)



Pipe Flow Examples

Type |: Determine head loss h; (or pressure drop)

Type Il: Determine flow rate Q (or the average
velocity V)

Type lll: Determine pipe diameter D

For types Il and I, iteration process is needed



Type | Problem

» Typically, V and D are given — Re and /D

B pVD ¢

ho LV?
o D2g




Type |l Problem

e @ (thusV)isunknown — Re?
* Solve energy equation forV = function(f) for example

hpz_ EE-I_ZKL

Or

2gh,

1+ fE+3K,

\

Guess f > IV — Re — f,.u; Repeat until f is converged



Type Il Problem

 Disunknown — Re and /D7

e Solve energy equation for D = function(f),
for example,

Ul =

8LO2"

D = -
m?ghys /

Ul =

Guess f - D — Re and /D — f,,,,,; Repeat
until f is converged



Chapter 9 Flow over Immersed Bodies



Fluid Flow Categories

e Internal flow: Bounded by walls or fluid interfaces
— Ex) Duct/pipe (Ch. 8), turbo machinery, open channel/river

e External flow: Unbounded or partially bounded.
Viscous and inviscid flow regions

— Ex) Flow around vehicles and structures

e Boundary layer flow: High Reynolds number flow around
streamlined bodies without flow separation

* Bluff body flow: Flow around bluff bodies with flow separation

* Free shear flow: Absence of walls
— Ex) Jets, wakes, mixing layers




Basic Considerations

e Drag, D: Resultant force in the direction of the upstream velocity

D
EB =1 = = -~ j(p P - LdA + jrwt idA
Drag 2P 2'0 S
coefficient Cpp= Pressure drag Cr= Friction drag

(or Form drag)

t/f K1 Cf>» Cp, Streamlined body
t/€~1 Cpp >» Cr Bluffbody

where, t is the thickness and € the length of the body

e Lift, L: Resultant force normal to the upstream velocity

L
C,L =71 = f (P — Do) - jdA
e EszA pVZA

coefficient



Boundary Layer

 Boundary layer theory assumes that viscous effects are
confined to a thin layer, 0

e There is a dominant flow direction (e.g., x) such that
u~Uandv <K u

e Gradients across 0 are very large in order to satisfy the

. . ) )
no-slip condition; thus, 3y > —
ou N v 0
dx dy
du Ju dp  0%u
UZ—+ V- ——+ V—z



Laminar boundary layer

Prandtl/Blasius solution
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u = Uyxf'(n)
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Turbulent boundary layer

1

u 7
i (%) one — seventh — power law 10
1 0.8
~ _g - -
¢ = 0.02Re,® power — law fit oo B
’I||[,J ;_ = (_S_) HH#“‘“——;
>~ 04 Turbulent
/7
6 0.16 0.027 0.031 Laminar\}/
e L A a0 "l 7
7 7 7
Rex Rex ReL 00( 0.5 1.0

Valid for a fully turbulent flow over a smooth
flat plate from the leading edge.

Better results for sufficiently large Re;



Turbulent boundary layer — Contd.

e Alternate forms by using an experimentally determined
shear stress formula:

1
14

+ 1, = 0.0225pU% (=)}

Uuéd
o — 0.058 0.074
® ; — O.37R€x 5; Cf — : 1 ; Cf — : 1
Re; Re]'f’

e Valid only in the range of the experimental data;
Re; =5 % 10°~107 for smooth flat plate



Turbulent boundary layer — Contd.

e Other empirical formulas for smooth flat plates (“tripped”
by some roughness or leading edge disturbance to make
the flow turbulent from the leading edge):

")
7= cr(0.98logRe;, — 0.732)

¢r = (2logRe, — 0.65)723

0.455

C, =
f (logo Re;)?>8




Turbulent boundary layer — Contd.

e Composite formulas (for flows initially laminar and subsequently
turbulent with Re, = 5 x 10°):

o 0.031 1440
r % Re;
ReL
= 0.074 1700
f % ReL
ReL
0.455 1700

Cr = —
f (10810R9L)2'58 Re;




Turbulent boundary layer — Contd.
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Bluff Body Drag

* |n general,
D=fWV,Lp,uct,c,..)

* Drag coefficient:

=2 = g(an
b %pVZA - ’

Re

hlm
~

t C
LV

* For bluff bodies experimental data are used to
determine (Cp



Shape dependence

 The blunter the body, the larger the drag
coefficient

e The amount of streamlining can have a
considerable effect

2.5

L ]
‘ Flat plate
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Reynolds number dependence

Very low Re flow (Re < 1)
— Inertia effects are negligible (creeping flow)
— Cp~Re™l
— Streamlining can actually increase the drag (an increase in the area and shear force)
Moderate Re flow (103< Re < 10°)
1

— For streamlined bodies, C, ~ Re 2
— For blunt bodies, Cp, ~ constant
Very large Re flow (turbulent boundary layer)
— For streamlined bodies, Cp increases
— For relatively blunt bodies, Cj, decreases when the flow becomes turbulent (10° < Re < 10°)

For extremely blunt bodies, CD ~ constant

400
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Separation

e Fluid stream detaches from a
surface of a body at
sufficiently high velocities.

e Only appears in viscous
flows.

e Inside a separation region:
low-pressure, existence of
recirculating /backflows;
viscous and rotational
effects are the most
significant e




Surface roughness

e For streamlined bodies, the drag increases with
increasing surface roughness

e For extremely blunt bodies, the drag is independent
of the surface roughness

e For blunt bodies, an increase in surface roughness can
actually cause a decrease in the drag.
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Lift

120

\———_;
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Magnus Effect

e Lift generation by spinning
* Breaking the symmetry causes a lift

Lift
Stagnation High velocity,
points low pressure

Stagnation
points

v W
Low velocity,

high pressure

(a) Potential flow over a stationary cylinder (b) Potential flow over a rotating cylinder



Minimum Flight Velocity

e Total weight of an aircraft should be equal to
the lift

Thus,
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