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System vs. Control volume
• System: A collection of real matter of fixed identity.

• Control volume (CV): A geometric or an imaginary volume in space 
through which fluid may flow. A CV may move or deform.

57:020 Fluids Mechanics Fall2015 2



Laws of Mechanics for a System
57:020 Fluids Mechanics Fall2015 3

Laws of mechanics are written for a system, i.e., for a fixed amount of matter
• Conservation of mass

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= 0

• Conservation of momentum
𝐷𝐷 𝐷𝐷𝑉𝑉
𝐷𝐷𝐷𝐷 = 𝐷𝐷𝑎𝑎 = 𝐹𝐹

• Conservation of energy
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷 = �̇�𝑄 − �̇�𝑊

Note:
𝐷𝐷 𝐷𝐷𝑉𝑉
𝐷𝐷𝐷𝐷 = �

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷
=0

𝑉𝑉 + 𝐷𝐷 �
𝐷𝐷𝑉𝑉
𝐷𝐷𝐷𝐷
=𝑎𝑎

= 𝐷𝐷𝑎𝑎

Governing Differential Eq. (GDE):

∴
𝐷𝐷
𝐷𝐷𝐷𝐷 𝐷𝐷,𝐷𝐷𝑉𝑉,𝐷𝐷

system extensive
properties, 𝐵𝐵sys

= RHS



Reynolds Transport Theorem (RTT)
• In fluid mechanics, we are usually interested in a region of space, i.e., 

CV and not particular systems. Therefore, we need to transform GDE’s 
from a system to a CV, which is accomplished through the use of RTT

𝐷𝐷𝐵𝐵sys
𝐷𝐷𝐷𝐷

time rate of change
of 𝐵𝐵 for a system

=
𝐷𝐷
𝐷𝐷𝐷𝐷

�
CV 𝑥𝑥,𝑡𝑡

𝛽𝛽𝛽𝛽𝛽𝛽𝑉𝑉

time rate of change
of 𝐵𝐵 in CV

+ �
CS 𝑥𝑥,𝑡𝑡

𝛽𝛽𝛽𝛽𝑉𝑉𝑅𝑅 ⋅ 𝛽𝛽𝐴𝐴

net flux of 𝐵𝐵
across CS

where, 𝛽𝛽 = 𝑑𝑑𝐵𝐵
𝑑𝑑𝑑𝑑

= 1,𝑉𝑉, 𝑒𝑒 for 𝐵𝐵 = (𝐷𝐷,𝐷𝐷𝑉𝑉,𝐷𝐷)

• Fixed CV,

𝐷𝐷𝐵𝐵sys
𝐷𝐷𝐷𝐷 =

𝜕𝜕
𝜕𝜕𝐷𝐷 �CV

𝛽𝛽𝛽𝛽𝛽𝛽𝑉𝑉 + �
CS
𝛽𝛽𝛽𝛽𝑉𝑉 ⋅ 𝛽𝛽𝐴𝐴
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Note:

𝐵𝐵CV = �
CV
𝛽𝛽𝛽𝛽𝐷𝐷 = �

CV
𝛽𝛽𝛽𝛽𝛽𝛽𝑉𝑉

�̇�𝐵CS = �
CS
𝛽𝛽𝛽𝛽�̇�𝐷 = �

CS
𝛽𝛽𝛽𝛽𝑉𝑉 ⋅ 𝛽𝛽𝐴𝐴



Continuity Equation
• RTT with 𝐵𝐵 = 𝐷𝐷 and 𝛽𝛽 = 1,

𝜕𝜕
𝜕𝜕𝐷𝐷
�
CV
𝛽𝛽𝛽𝛽𝑉𝑉 + �

CS
𝛽𝛽𝑉𝑉 ⋅ 𝛽𝛽𝐴𝐴 = 0

• Steady flow,

�
CS
𝛽𝛽𝑉𝑉 ⋅ 𝛽𝛽𝐴𝐴 = 0

• Simplified form,

∑�̇�𝐷out − ∑�̇�𝐷in = 0

• Conduit flow with one inlet (1) and one outlet (2):

𝛽𝛽2𝑉𝑉2𝐴𝐴2 − 𝛽𝛽1𝑉𝑉1𝐴𝐴1 = 0

If 𝛽𝛽 = constant,
𝑉𝑉1𝐴𝐴1 = 𝑉𝑉2𝐴𝐴2
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Note: �̇�𝐷 = 𝛽𝛽𝑄𝑄 = 𝛽𝛽𝑉𝑉𝐴𝐴



Momentum Equation
• RTT with 𝐵𝐵 = 𝐷𝐷𝑉𝑉 and 𝛽𝛽 = 𝑉𝑉,

𝜕𝜕
𝜕𝜕𝐷𝐷
�
CV
𝑉𝑉𝛽𝛽𝛽𝛽𝑉𝑉 + �

CS
𝑉𝑉𝛽𝛽𝑉𝑉 ⋅ 𝛽𝛽𝐴𝐴 = ∑𝐹𝐹

• Simplified form:

∑ �̇�𝐷𝑉𝑉 out − ∑ �̇�𝐷𝑉𝑉 in = ∑𝐹𝐹

or in component forms,

∑ �̇�𝐷𝑢𝑢 out − ∑ �̇�𝐷𝑢𝑢 in = ∑𝐹𝐹𝑥𝑥
∑ �̇�𝐷𝑣𝑣 out − ∑ �̇�𝐷𝑣𝑣 in = ∑𝐹𝐹𝑦𝑦
∑ �̇�𝐷𝑤𝑤 out − ∑ �̇�𝐷𝑤𝑤 in = ∑𝐹𝐹𝑧𝑧
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Note: If 𝑉𝑉 = 𝑢𝑢�̂�𝒊 + 𝑣𝑣�̂�𝒋 + 𝑤𝑤�𝒌𝒌
is normal to CS, �̇�𝐷 = 𝛽𝛽𝑉𝑉𝐴𝐴, 
where 𝑉𝑉 = 𝑉𝑉 .



Momentum Equation – Contd.
• External forces:

∑𝐹𝐹 = ∑𝐹𝐹body + ∑𝐹𝐹surface + ∑𝐹𝐹other

o ∑𝐹𝐹body = ∑𝐹𝐹gravity

• ∑𝐹𝐹gravity: gravity force (i.e., weight)

o ∑𝐹𝐹Surface = ∑𝐹𝐹pressure + ∑𝐹𝐹friction + ∑𝐹𝐹other

• ∑𝐹𝐹pressure: pressure forces normal to CS
• ∑𝐹𝐹friction: viscous friction forces tangent to CS

o ∑𝐹𝐹other: anchoring forces or reaction forces
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Note: Surface forces arise as the CV is isolated from its surroundings, similarly to 
drawing a free-body diagram. A well-chosen CV exposes only the forces that are to 
be determined and a minimum number of other forces



Example (Bend)
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Inlet (1):
�̇�𝐷1 = 𝛽𝛽𝑉𝑉1𝐴𝐴1
𝑢𝑢1 = 𝑉𝑉1
𝑣𝑣1 = 0

Outlet (2):
�̇�𝐷2 = 𝛽𝛽𝑉𝑉2𝐴𝐴2
𝑢𝑢2 = −𝑉𝑉2 cos 45∘
𝑣𝑣2 = −𝑉𝑉2 sin 45∘

�̇�𝐷𝑢𝑢 out − �̇�𝐷𝑢𝑢 in = 𝛽𝛽𝑉𝑉2𝐴𝐴2 −𝑉𝑉2 cos 45∘ − 𝛽𝛽𝑉𝑉1𝐴𝐴1 𝑉𝑉1
�̇�𝐷𝑣𝑣 out − �̇�𝐷𝑣𝑣 in = 𝛽𝛽𝑉𝑉2𝐴𝐴2 −𝑉𝑉2 sin 45∘ − 𝛽𝛽𝑉𝑉1𝐴𝐴1 0

Since 𝛽𝛽𝑉𝑉1𝐴𝐴1 = 𝛽𝛽𝑉𝑉2𝐴𝐴2,
�̇�𝐷𝑢𝑢 out − �̇�𝐷𝑢𝑢 in = − 𝛽𝛽𝑉𝑉2𝐴𝐴2 𝑉𝑉2 cos 45∘ + 𝑉𝑉1
�̇�𝐷𝑣𝑣 out − �̇�𝐷𝑣𝑣 in = −𝛽𝛽𝑉𝑉22𝐴𝐴2 sin 45∘

𝑢𝑢2
𝑣𝑣2

𝑢𝑢1

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Example – Contd.
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∑𝐹𝐹𝑥𝑥:
1) Body force = 0
2) Pressure force = 𝑝𝑝1𝐴𝐴1 + 𝑝𝑝2𝐴𝐴2 cos 45∘
3) Anchoring force = −𝐹𝐹𝐴𝐴𝑥𝑥

∑𝐹𝐹𝑦𝑦:
1) Body force = −𝑊𝑊𝑤𝑤 −𝑊𝑊𝑒𝑒
2) Pressure force = 𝑝𝑝2𝐴𝐴2 sin 45∘
3) Anchoring force = −𝐹𝐹𝐴𝐴𝑧𝑧

Thus,
− 𝛽𝛽𝑉𝑉2𝐴𝐴2 𝑉𝑉2 cos 45∘ + 𝑉𝑉1 = 𝑝𝑝1𝐴𝐴1 + 𝑝𝑝2𝐴𝐴2 cos 45∘ − 𝐹𝐹𝐴𝐴𝑥𝑥
−𝛽𝛽𝑉𝑉22𝐴𝐴2 sin 45∘ = −𝛾𝛾𝑉𝑉𝑤𝑤 −𝑊𝑊𝑒𝑒 + 𝑝𝑝2𝐴𝐴2 sin 45∘ − 𝐹𝐹𝐴𝐴𝑧𝑧

∴ 𝐹𝐹𝐴𝐴𝑥𝑥 = 𝛽𝛽𝑉𝑉2𝐴𝐴2 𝑉𝑉2 cos 45∘ + 𝑉𝑉1 + 𝑝𝑝1𝐴𝐴1 + 𝑝𝑝2𝐴𝐴2 cos 45∘
𝐹𝐹𝐴𝐴𝑧𝑧 = 𝛽𝛽𝑉𝑉22𝐴𝐴2 sin 45∘ − 𝛾𝛾𝑉𝑉𝑤𝑤 −𝑊𝑊𝑒𝑒 + 𝑝𝑝2𝐴𝐴2 sin 45∘

𝑝𝑝2𝐴𝐴2 cos 45∘
𝑝𝑝2𝐴𝐴2 sin 45∘

𝑝𝑝2𝐴𝐴2

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Energy Equation
• RTT with 𝐵𝐵 = 𝐷𝐷 and 𝛽𝛽 = 𝑒𝑒,

𝜕𝜕
𝜕𝜕𝐷𝐷
�
CV
𝑒𝑒𝛽𝛽𝛽𝛽𝑉𝑉 + �

CS
𝑒𝑒𝛽𝛽𝑉𝑉 ⋅ 𝛽𝛽𝐴𝐴 = �̇�𝑄 − �̇�𝑊

• Simplified form:

𝑝𝑝in
𝛾𝛾 + 𝛼𝛼in

𝑉𝑉in2

2g + 𝑧𝑧in + ℎ𝑝𝑝 =
𝑝𝑝out
𝛾𝛾 + 𝛼𝛼out

𝑉𝑉out2

2g + 𝑧𝑧out + ℎ𝑡𝑡 + ℎ𝐿𝐿

• 𝑉𝑉 in energy equation refers to average velocity �𝑉𝑉

• 𝛼𝛼 : kinetic energy correction factor = �
1 for uniform flow across CS

2 for laminar pipe flow
≈ 1 for turbulent pipe flow
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Energy Equation - Contd.
Uniform flow across CS’s:

𝑝𝑝1
𝛾𝛾

+
𝑉𝑉12

2g
+ 𝑧𝑧1 + ℎ𝑝𝑝 =

𝑝𝑝2
𝛾𝛾

+
𝑉𝑉22

2g
+ 𝑧𝑧1 + ℎ𝑡𝑡 + ℎ𝐿𝐿

• Pump head ℎ𝑝𝑝 = �̇�𝑊𝑝𝑝

�̇�𝑑g
= �̇�𝑊𝑝𝑝

𝜌𝜌𝜌𝜌g
= �̇�𝑊𝑝𝑝

𝛾𝛾𝜌𝜌
⇒ �̇�𝑊𝑝𝑝 = �̇�𝐷gℎ𝑝𝑝 = 𝛽𝛽g𝑄𝑄ℎ𝑝𝑝 = 𝛾𝛾𝑄𝑄ℎ𝑝𝑝

• Turbine head ℎ𝑡𝑡 = �̇�𝑊𝑡𝑡
�̇�𝑑g

= �̇�𝑊𝑡𝑡
𝜌𝜌𝜌𝜌g

= �̇�𝑊𝑡𝑡
𝛾𝛾𝜌𝜌

⇒ �̇�𝑊𝑡𝑡 = �̇�𝐷gℎ𝑡𝑡 = 𝛽𝛽g𝑄𝑄ℎ𝑡𝑡 = 𝛾𝛾𝑄𝑄ℎ𝑡𝑡

• Head loss ℎ𝐿𝐿 = ⁄loss g = ⁄�𝑢𝑢2 − �𝑢𝑢1 g − ⁄�̇�𝑄 �̇�𝐷g > 0

57:020 Fluids Mechanics Fall2015 11



Example (Pump)
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Energy equation:

𝑝𝑝1
𝛾𝛾

+
𝑉𝑉12

2g
+ 𝑧𝑧1 + ℎ𝑝𝑝 =

𝑝𝑝2
𝛾𝛾

+
𝑉𝑉22

2g
+ 𝑧𝑧2 + ℎ𝑡𝑡 + ℎ𝐿𝐿

With 𝑝𝑝1 = 𝑝𝑝2 = 0, 𝑉𝑉1 = 𝑉𝑉2 ≈ 0, ℎ𝑡𝑡 = 0, and ℎ𝐿𝐿 = 23 m

ℎ𝑝𝑝 = 𝑧𝑧2 − 𝑧𝑧1 + ℎ𝐿𝐿 = 45 + 23 = 68 m

Pump power,

�̇�𝑊𝑝𝑝 = 𝛾𝛾𝑄𝑄ℎ𝑝𝑝 =
68 9790 0.03

746 = 80 hp

(Note: 1 hp = 746 N⋅m/s = 550 ft⋅lbf/s)

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Differential Analysis
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A microscopic description of fluid motions for a fluid particle by using differential 

equations*,

• Continuity equation

𝜕𝜕𝛽𝛽
𝜕𝜕𝐷𝐷 + 𝛻𝛻 ⋅ 𝛽𝛽𝑉𝑉 = 0

• Momentum equation

𝛽𝛽
𝜕𝜕𝑉𝑉
𝜕𝜕𝐷𝐷 + 𝑉𝑉 ⋅ 𝛻𝛻𝑉𝑉 = 𝛽𝛽g − 𝛻𝛻𝑝𝑝 + 𝛻𝛻 ⋅ 𝜏𝜏𝑖𝑖𝑖𝑖

*CV analysis is a macroscopic description of fluid motions by using integral 

equations (RTT).



Navier-Stokes Equations
For incompressible, Newtonian fluids,

• Continuity:

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑤𝑤
𝜕𝜕𝑧𝑧

= 0

• Momentum:

𝛽𝛽
𝜕𝜕𝑢𝑢
𝜕𝜕𝐷𝐷

+ 𝑢𝑢
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

+ 𝑣𝑣
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

+ 𝑤𝑤
𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧

= −
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

+ 𝛽𝛽g𝑥𝑥 + 𝜇𝜇
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

+
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

+
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑧𝑧2

𝛽𝛽
𝜕𝜕𝑣𝑣
𝜕𝜕𝐷𝐷

+ 𝑢𝑢
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

+ 𝑣𝑣
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

+ 𝑤𝑤
𝜕𝜕𝑣𝑣
𝜕𝜕𝑧𝑧

= −
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

+ 𝛽𝛽g𝑦𝑦 + 𝜇𝜇
𝜕𝜕2𝑣𝑣
𝜕𝜕𝜕𝜕2

+
𝜕𝜕2𝑣𝑣
𝜕𝜕𝜕𝜕2

+
𝜕𝜕2𝑣𝑣
𝜕𝜕𝑧𝑧2

𝛽𝛽
𝜕𝜕𝑤𝑤
𝜕𝜕𝐷𝐷

+ 𝑢𝑢
𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕

+ 𝑣𝑣
𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕

+ 𝑤𝑤
𝜕𝜕𝑤𝑤
𝜕𝜕𝑧𝑧

= −
𝜕𝜕𝑝𝑝
𝜕𝜕𝑧𝑧

+ 𝛽𝛽g𝑧𝑧 + 𝜇𝜇
𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕2

+
𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕2

+
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑧𝑧2

57:020 Fluids Mechanics Fall2015 14



Exact Solutions of NS Eqns.
The flow of interest is assumed additionally (than incompressible & 
Newtonian), for example,

1) Steady (i.e., ⁄𝝏𝝏 𝝏𝝏𝝏𝝏 = 𝟎𝟎 for any variable)
2) Parallel such that the 𝜕𝜕-component of velocity is zero (i.e., 𝒗𝒗 = 𝟎𝟎)
3) Purely two dimensional (i.e., 𝒘𝒘 = 𝟎𝟎 and ⁄𝝏𝝏 𝝏𝝏𝝏𝝏 = 𝟎𝟎 for any velocity 

component)
4) Fully developed (i.e., ⁄𝝏𝝏 𝝏𝝏𝝏𝝏 = 𝟎𝟎 for any velocity component)

e.g.)

𝛽𝛽
�𝜕𝜕𝑢𝑢
𝜕𝜕𝐷𝐷

1)

+ 𝑢𝑢
�𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

4)

+ ⏞𝑣𝑣
2) 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 +

�
𝑤𝑤
𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧

3)

= −
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 + 𝛽𝛽g𝑥𝑥 + 𝜇𝜇

�𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

4)

+
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2 +

�𝜕𝜕2𝑢𝑢
𝜕𝜕𝑧𝑧2

3)

or

𝜇𝜇
𝛽𝛽2𝑢𝑢
𝛽𝛽𝜕𝜕2 =

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 − 𝛽𝛽g𝑥𝑥
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Boundary Conditions
Common BC’s:

• No-slip condition (𝑉𝑉fluid = 𝑉𝑉wall; for a stationary wall 𝑉𝑉fluid = 0)

• Interface boundary condition (𝑉𝑉𝐴𝐴 = 𝑉𝑉𝐵𝐵 and 𝜏𝜏𝑠𝑠,𝐴𝐴 = 𝜏𝜏𝑠𝑠,𝐵𝐵)

• Free-surface boundary condition (𝑝𝑝liquid = 𝑝𝑝gas and 𝜏𝜏𝑠𝑠,liquid = 0)

Other BC’s:

• Inlet/outlet boundary condition

• Symmetry boundary condition

• Initial condition (for unsteady flow problem)

57:020 Fluids Mechanics Fall2015 16



Example: No pressure gradient
57:020 Fluids Mechanics Fall2015 17

𝜇𝜇
𝛽𝛽2𝑢𝑢
𝛽𝛽𝜕𝜕2

= 0

Integrate twice,
𝑢𝑢 𝜕𝜕 = 𝐶𝐶1𝜕𝜕 + 𝐶𝐶2

B.C.,
𝑢𝑢 0 = (𝐶𝐶1) 0 + 𝐶𝐶2 = 0 ⇒ 𝐶𝐶2 = 0

𝑢𝑢 𝑏𝑏 = 𝐶𝐶1 𝑏𝑏 + 𝐶𝐶2 = 𝑈𝑈 ⇒ 𝐶𝐶1 =
𝑈𝑈
𝑏𝑏

∴ 𝑢𝑢 𝜕𝜕 =
𝑈𝑈
𝑏𝑏 𝜕𝜕

Analysis:

𝜏𝜏𝑤𝑤 = 𝜇𝜇 �
𝛽𝛽𝑢𝑢
𝛽𝛽𝜕𝜕 𝑦𝑦=0

= 𝜇𝜇
𝑈𝑈
𝑏𝑏 =

𝜇𝜇𝑈𝑈
𝑏𝑏

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Example: with Pressure Gradient
𝜇𝜇
𝛽𝛽2𝑢𝑢
𝛽𝛽𝜕𝜕2

=
𝛽𝛽𝑝𝑝
𝛽𝛽𝜕𝜕

Integrate twice,

𝑢𝑢 𝜕𝜕 =
1
2𝜇𝜇

𝛽𝛽𝑝𝑝
𝛽𝛽𝜕𝜕

𝜕𝜕2 + 𝐶𝐶1𝜕𝜕 + 𝐶𝐶2
B.C.,

𝑢𝑢 0 =
1
2𝜇𝜇

𝛽𝛽𝑝𝑝
𝛽𝛽𝜕𝜕

0 2 + 𝐶𝐶1 0 + 𝐶𝐶2 = 0 ⇒ 𝐶𝐶2 = 0

𝑢𝑢 𝑏𝑏 =
1
2𝜇𝜇

𝛽𝛽𝑝𝑝
𝛽𝛽𝜕𝜕

𝑏𝑏 2 + 𝐶𝐶1 𝑏𝑏 + 𝐶𝐶2 = 0 ⇒ 𝐶𝐶1 = −
1
2𝜇𝜇

𝛽𝛽𝑝𝑝
𝛽𝛽𝜕𝜕

𝑏𝑏

∴ 𝑢𝑢 𝜕𝜕 =
1
2𝜇𝜇

𝛽𝛽𝑝𝑝
𝛽𝛽𝜕𝜕

𝜕𝜕2 − 𝑏𝑏𝜕𝜕

Analysis:

𝑞𝑞 = �
−ℎ

ℎ
𝑢𝑢𝛽𝛽𝜕𝜕 = −

𝑏𝑏3

12𝜇𝜇
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

𝜏𝜏𝑤𝑤 = 𝜇𝜇 �
𝛽𝛽𝑢𝑢
𝛽𝛽𝜕𝜕 𝑦𝑦=0

= −
𝑏𝑏
2

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕
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Fixed plate

Fixed plate
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Example: Inclined wall
𝜇𝜇
𝛽𝛽2𝑢𝑢
𝛽𝛽𝜕𝜕2

= −𝛽𝛽g𝑥𝑥
Integrate twice,

𝑢𝑢 𝜕𝜕 = −
𝛽𝛽g𝑥𝑥
2𝜇𝜇

𝜕𝜕2 + 𝐶𝐶1𝜕𝜕 + 𝐶𝐶2
B.C.,

𝑢𝑢 0 = −
𝛽𝛽g𝑥𝑥
𝜇𝜇

0 2 + 𝐶𝐶1 0 + 𝐶𝐶2 = 0 ⇒ 𝐶𝐶2 = 0

�
𝛽𝛽𝑢𝑢
𝛽𝛽𝜕𝜕 𝑦𝑦=ℎ

= −
𝛽𝛽g𝑥𝑥
𝜇𝜇

ℎ + 𝐶𝐶1 = 0 ⇒ 𝐶𝐶1 =
𝛽𝛽g𝑥𝑥
𝜇𝜇

ℎ

∴ 𝑢𝑢 𝜕𝜕 =
𝛽𝛽g𝑥𝑥
𝜇𝜇

ℎ𝜕𝜕 −
𝜕𝜕2

2
Analysis:

𝑞𝑞 = �
0

ℎ
𝑢𝑢𝛽𝛽𝜕𝜕 =

𝛽𝛽g𝑥𝑥
𝜇𝜇

ℎ3

3

𝜏𝜏𝑤𝑤 = 𝜇𝜇 �
𝛽𝛽𝑢𝑢
𝛽𝛽𝜕𝜕 𝑦𝑦=0

= 𝜇𝜇
𝛽𝛽g𝑥𝑥
𝜇𝜇

ℎ = 𝛽𝛽g𝑥𝑥ℎ
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Note:
g = g𝑥𝑥�̂�𝚤 + g𝑦𝑦 ̂𝚥𝚥

where,
g𝑥𝑥 = g sin𝜃𝜃

g𝑦𝑦 = −g cos𝜃𝜃

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Buckingham Pi Theorem

• For any physically meaningful equation involving 𝒏𝒏 variables, such as

𝑢𝑢1 = 𝑓𝑓 𝑢𝑢2,𝑢𝑢3,⋯ , 𝑢𝑢𝑛𝑛

with minimum number of 𝒎𝒎 reference dimensions, the equation can be 
rearranged into product of 𝒓𝒓 dimensionless pi terms.

Π1 = 𝜙𝜙 Π2,Π3,⋯ ,Π𝑟𝑟

where,
𝒓𝒓 = 𝒏𝒏 −𝒎𝒎
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Similarity and Model Testing
If all relevant dimensionless parameters have the same corresponding 
values for model and prototype, flow conditions for a model test are 
completely similar to those for prototype.

For,
Π1 = 𝜙𝜙 Π2, … ,Π𝑛𝑛

Similarity requirements:
Π2,model = Π2,prototype

⋮
Π𝑛𝑛,model = Π𝑛𝑛,prototype

Prediction equation:
Π1,model = Π1,prototype

57:020 Fluids Mechanics Fall2015 21



Example (Repeating Variable Method)

Example: The pressure drop per unit length Δ𝑝𝑝ℓ in a pipe flow is a function of 
the pipe diameter 𝐷𝐷 and the fluid density 𝛽𝛽, viscosity 𝜇𝜇, and velocity 𝑉𝑉.

57:020 Fluids Mechanics Fall2015 22

Δ𝑝𝑝ℓ = 𝑓𝑓 𝐷𝐷,𝛽𝛽, 𝜇𝜇,𝑉𝑉

𝑟𝑟 = 𝑛𝑛 − 𝐷𝐷 = 5 − 3 = 2

Δ𝑝𝑝ℓ 𝐷𝐷 𝛽𝛽 𝜇𝜇 𝑉𝑉

𝑀𝑀𝐿𝐿−2𝑇𝑇−2 𝐿𝐿 𝑀𝑀𝐿𝐿−3 𝑀𝑀𝐿𝐿−1𝑇𝑇−1 𝐿𝐿𝑇𝑇−1

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Example – Contd.
Select 𝐷𝐷 = 3 repeating variables, 𝐷𝐷,𝑉𝑉,𝛽𝛽 for 𝐿𝐿,𝑇𝑇,𝑀𝑀 , then

Π1 = 𝐷𝐷𝑎𝑎𝑉𝑉𝑏𝑏𝛽𝛽𝑐𝑐Δ𝑝𝑝ℓ =̇ 𝐿𝐿 𝑎𝑎 𝐿𝐿𝑇𝑇−1 𝑏𝑏 𝑀𝑀𝐿𝐿−3 𝑐𝑐 𝑀𝑀𝐿𝐿−2𝑇𝑇−2 =̇ 𝑀𝑀0𝐿𝐿0𝑇𝑇0

𝑎𝑎 + 𝑏𝑏 − 3𝑐𝑐 − 2 = 0
−𝑏𝑏 − 2 = 0
𝑐𝑐 + 1 = 0

⇒ 𝑎𝑎 = −1, 𝑏𝑏 = −2, 𝑐𝑐 = −1

⇒ Π1 = 𝐷𝐷−1𝑉𝑉−2𝛽𝛽−1Δ𝑝𝑝ℓ =
Δ𝑝𝑝ℓ𝐷𝐷
𝛽𝛽𝑉𝑉2

Π2 = 𝐷𝐷𝑎𝑎𝑉𝑉𝑏𝑏𝛽𝛽𝑐𝑐𝜇𝜇 =̇ 𝐿𝐿 𝑎𝑎 𝐿𝐿𝑇𝑇−1 𝑏𝑏 𝑀𝑀𝐿𝐿−3 𝑐𝑐 𝑀𝑀𝐿𝐿−1𝑇𝑇−1 =̇ 𝑀𝑀0𝐿𝐿0𝑇𝑇0

𝑎𝑎 + 𝑏𝑏 − 3𝑐𝑐 − 1 = 0
−𝑏𝑏 − 1 = 0
𝑐𝑐 + 1 = 0

⇒ 𝑎𝑎 = −1, 𝑏𝑏 = −1, 𝑐𝑐 = −1

⇒ Π2 = 𝐷𝐷−1𝑉𝑉−1𝛽𝛽−1𝜇𝜇 =
𝜇𝜇

𝐷𝐷𝑉𝑉𝛽𝛽

∴
Δ𝑝𝑝ℓ𝐷𝐷
𝛽𝛽𝑉𝑉2

= 𝜙𝜙
𝛽𝛽𝑉𝑉𝐷𝐷
𝜇𝜇
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Example (Model Testing)

Δ𝑝𝑝ℓ𝐷𝐷
𝛽𝛽𝑉𝑉2 = 𝜙𝜙

𝛽𝛽𝑉𝑉𝐷𝐷
𝜇𝜇

57:020 Fluids Mechanics Fall2015 24

Model Prototype

If,
𝛽𝛽𝑑𝑑𝑉𝑉𝑑𝑑𝐷𝐷𝑑𝑑
𝜇𝜇𝑑𝑑

=
𝛽𝛽𝑝𝑝𝑉𝑉𝑝𝑝𝐷𝐷𝑝𝑝
𝜇𝜇𝑝𝑝

similarity requirement

Then,
Δ𝑝𝑝ℓ𝑑𝑑𝐷𝐷𝑑𝑑
𝛽𝛽𝑑𝑑𝑉𝑉𝑑𝑑2

=
Δ𝑝𝑝ℓ𝑝𝑝𝐷𝐷𝑝𝑝
𝛽𝛽𝑝𝑝𝑉𝑉𝑝𝑝2

(Prediction equation)

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Example – Contd.
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Model (in water)
• 𝐷𝐷𝑑𝑑 = 0.1 m
• 𝛽𝛽𝑑𝑑 = 998 kg/m3

• 𝜇𝜇𝑑𝑑 = 1.12 × 10-3 N⋅s/m2

• 𝑉𝑉𝑑𝑑 = ?
• Δ𝑝𝑝ℓ𝑑𝑑 = 27.6 Pa/m

Prototype (in air)
• 𝐷𝐷𝑝𝑝 = 1 m
• 𝛽𝛽𝑝𝑝 = 1.23 kg/m3

• 𝜇𝜇𝑝𝑝 = 1.79 × 10-5 N⋅s/m2

• 𝑉𝑉𝑝𝑝 = 10 m/s
• Δ𝑝𝑝ℓ𝑑𝑑 = ?

Similarity requirement:

𝑉𝑉𝑑𝑑 =
𝛽𝛽𝑝𝑝
𝛽𝛽𝑑𝑑

𝜇𝜇𝑑𝑑
𝜇𝜇𝑝𝑝

𝐷𝐷𝑝𝑝
𝐷𝐷𝑑𝑑

𝑉𝑉𝑝𝑝 =
1.23
998

1.12 × 10−3

1.79 × 10−5
1

0.1 10 = 𝟕𝟕.𝟕𝟕𝟕𝟕 ⁄𝐦𝐦 𝐬𝐬

Prediction equation:

Δ𝑝𝑝ℓ𝑝𝑝 =
𝐷𝐷𝑑𝑑
𝐷𝐷𝑝𝑝

𝛽𝛽𝑝𝑝
𝛽𝛽𝑑𝑑

𝑉𝑉𝑝𝑝
𝑉𝑉𝑑𝑑

2

Δ𝑝𝑝ℓ𝑑𝑑 =
0.1
1

1.23
998

10
7.71

2

27.6 = 𝟓𝟓.𝟕𝟕𝟕𝟕 × 𝟕𝟕𝟎𝟎−𝟑𝟑 ⁄𝐏𝐏𝐏𝐏 𝐦𝐦

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Pipe Flow: Laminar vs. Turbulent

• Reynolds number regimes

Re =
𝛽𝛽𝑉𝑉𝐷𝐷
𝜇𝜇

26

Re < Recrit ∼ 2,000

Recrit < Re < Retrans

Re > 𝑅𝑅𝑒𝑒trans ∼ 4,000
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Flow in Pipes

• Basic piping problems:
– Given the desired flow rate, what pressure drop (e.g., 

pump power) is needed to drive the flow (i.e., to overcome 
the head loss through piping)?

– Given the pressure drop (e.g., pump power) available, 
what flow rate will ensue?

– Given the pressure drop and the flow rate desired, what 
pipe diameter is needed?
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Head Loss
ℎ𝐿𝐿 = ℎ𝐿𝐿major + ℎ𝐿𝐿 minor

• ℎ𝐿𝐿 major (or ℎ𝑓𝑓): Major loss, the loss due to viscous effects
• ℎ𝐿𝐿 minor: Minor loss, the loss in the various pipe components

Darcy-Weisbach equation

ℎ𝑓𝑓 = 𝑓𝑓
𝐿𝐿
𝐷𝐷
𝑉𝑉2

2g

• 𝑓𝑓 = 8𝜏𝜏𝑤𝑤
𝜌𝜌𝑉𝑉2

: Friction factor

• 𝐿𝐿: Pipe length
• 𝐷𝐷: Pipe diameter
• 𝑉𝑉: Average flow velocity across the pipe cross-section
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Laminar Pipe Flow
• Exact solution exists by solving the NS equation

𝑢𝑢 𝑟𝑟 = 𝑉𝑉max 1 −
𝑟𝑟
𝑅𝑅

2
, 𝑉𝑉max = 2𝑉𝑉

• Wall shear stress

𝜏𝜏𝑤𝑤 = −𝜇𝜇 �
𝛽𝛽𝑢𝑢
𝛽𝛽𝑟𝑟 𝑟𝑟=𝑅𝑅

=
8𝜇𝜇𝑉𝑉
𝐷𝐷

• Friction factor

𝑓𝑓 =
8𝜏𝜏𝑤𝑤
𝛽𝛽𝑉𝑉2

=
64𝜇𝜇
𝛽𝛽𝐷𝐷𝑉𝑉

=
64
Re

• Head loss

ℎ𝑓𝑓 = 𝑓𝑓
𝐿𝐿
𝐷𝐷
𝑉𝑉2

2g
=
32𝜇𝜇𝐿𝐿𝑉𝑉
𝛾𝛾𝐷𝐷2

=
128𝜇𝜇𝐿𝐿𝑄𝑄
𝜋𝜋𝛾𝛾𝐷𝐷4

2957:020 Fluids Mechanics Fall2015

Notes: 
𝑄𝑄 = 𝑉𝑉𝐴𝐴

𝐴𝐴 =
𝜋𝜋𝐷𝐷2

4



Turbulent Pipe Flow
• From a dimensional analysis

𝑓𝑓 = 𝜙𝜙 Re, ⁄𝜀𝜀 𝐷𝐷

• Moody chart: Empirical functional dependency of 𝑓𝑓 on Re and ⁄𝜀𝜀 𝐷𝐷
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Turbulent Pipe Flow – Cond.
• Colebrook equation (difficult in its use as implicit)

1
𝑓𝑓

= −2 log
⁄𝜀𝜀 𝐷𝐷

3.7
+

2.51
𝑅𝑅𝑒𝑒 𝑓𝑓

• Haaland equation (easier to use as explicit but approximation) 

1
𝑓𝑓

= −1.8 log
⁄𝜀𝜀 𝐷𝐷

3.7

1.1

+
6.9
𝑅𝑅𝑒𝑒
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Example (pipe flow)
3257:020 Fluids Mechanics Fall2015

Energy equation:
𝑝𝑝1
𝛾𝛾 + 𝛼𝛼1

𝑉𝑉12

2g + 𝑧𝑧1 =
𝑝𝑝2
𝛾𝛾 + 𝛼𝛼2

𝑉𝑉22

2g + 𝑧𝑧2 + ℎ𝑓𝑓
Since 𝑝𝑝1 = 𝑝𝑝2 = 0 and 𝑉𝑉1 = 𝑉𝑉2,

ℎ𝑓𝑓 = 𝑧𝑧1 − 𝑧𝑧2 = Δ𝑧𝑧
Friction factor,

1
𝑓𝑓

= −1.8 log
0.00033

3.7

1.1

+
6.9

1.75 × 106 ⇒ 𝑓𝑓 = 0.0159

Head loss

ℎ𝑓𝑓 = 𝑓𝑓
𝐿𝐿
𝐷𝐷
𝑉𝑉2

2g = 0.0159
(1700)

(1.5)
14.1 2

2 (32.2) = 56 ft

∴ Δ𝑧𝑧 = 𝟓𝟓𝟓𝟓 𝐟𝐟𝐟𝐟

If D = 1.5 ft and Q = 25 ft3/s, ∆z = z1 – z2? 
Neglect minor losses.

𝑉𝑉 =
𝑄𝑄
𝐴𝐴 =

25
⁄𝜋𝜋 1.5 2 4 = 14.1 ⁄ft s

Re =
𝑉𝑉𝐷𝐷
𝜈𝜈 =

(14.1)(1.5)
1.21 × 10−5 = 1.75 × 106 (turbulent)

⁄𝜀𝜀 𝐷𝐷 = ⁄0.0005 1.63 = 0.00033

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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