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57:020 Fluids Mechanics Fall2015

System vs. Control volume

e System: A collection of real matter of fixed identity.

e Control volume (CV): A geometric or an imaginary volume in space
through which fluid may flow. A CV may move or deform.
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Laws of Mechanics for a System

Laws of mechanics are written for a system, i.e., for a fixed amount of matter

* Conservation of mass

Dm —0
Dt
e Conservation of momentum
D(mV)
— = =F
Dt ma = r
e Conservation of energy
DE_ ) 1
Dt ¢

Governing Differential Eq. (GDE):

D
o (m,mV,E) = RHS
system extensive
properties, Bgys

Note
D(mV) bm DV _
Dt Dt— Dt
Surroundings
Boundary
V4 System
m



Reynolds Transport Theorem (RTT)

* In fluid mechanics, we are usually interested in a region of space, i.e.,
CV and not particular systems. Therefore, we need to transform GDE’s
from a system to a CV, which is accomplished through the use of RTT

D Bgys D
~oc| ppav+ [ ppv-da
Dt Dt CV(x,t) CcS(x,t)
time rate of change , . ;
f B for a svstem time rate of change net flux of B
0 d of Bin CV across CS
where ﬁ:d—B: (1 vV e)forB = (m,mV, E)
’ dm VA ) v,
e Fixed CV,
DBsys 0
Dt =a 'de¥+ 'szdé Note:
cv cS Bey = fc pam= | poa

BCS =J. 'Bdmz
S

[ pov-aa
C S

C
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Continuity Equation

RTTwithB=mandf =1,

0 -
| o [ pvean=o
0t Jey cs \|\“} ”E;:
Steady flow, \/ Fixed ‘\\
7/ control
V . dA — 0 [ volume |
fCSp_ B I%\ - ///

Simplified form, " om?ﬁx_i\\
' t

XMout — XMin =0 :
Note: m = pQ = pVA

Conduit flow with one inlet (1) and one outlet (2):

p2V2A; — p1V14; =0 m—1

|
V| | - /.,
If p = COﬂStant, A‘-: p = constant :

V,A, = V,A, ———

ViA1=LA,
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Momentum Equation

e RTTwithB=mVandp =V,

0
| voav+ [ vov-an=3r
0t Jey cs

e Simplified form:
»(my), . —X(my), =3%F
or in component forms,

Z(mu)out —yx(mu)y, = 2Fx
Z(mv)out _ Z(mv)in ZFy
Z(mw)out - Z(mw)in = 2K

- — Out
. - \ ,
my, ~Jn 7 — M3

|
AN
§‘ Fixed N
/ control \l
In volume y
o PN
M.V, N _
A oul / Oul\\S 2F

MeV; .

Note: If V = ui + vj + wk
is normal to CS, m = pVA4,
where V = |K|
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Momentum Equation — Contd.

e External forces:

(Pressure

force)
ZE - ZEbOdy + ZEsurface + ZEother PZ'QHQBA{ (Eezaction pmgageih

_force) ____ 4

| A7
0 Z “body — Z 1 gravity i ‘
2 Eoravity: gravity force (i.e., weight) LN
t (Reaction force)
F

O Z urface — Z ressure T ZEfriction + ZEother An 180" elbow SuPported by the ground N
In most flow systems, the force F
. E ‘- pressure forces normal to CS consists of weights, pressure forces,
Z_pressure p o and reaction forces. Gage pressures
* Y Ffriction: Viscous friction forces tangent to CS are used here since atmospheric

pressure cancels out on all sides

O Y. F,iher: anchoring forces or reaction forces of the control surface.

Note: Surface forces arise as the CV is isolated from its surroundings, similarly to
drawing a free-body diagram. A well-chosen CV exposes only the forces that are to
be determined and a minimum number of other forces
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Example (Bend)

L Inlet (1):
my = pV14,

|
Section |
Vi (" D, =400 mm

t u, =V
vy =0
Outlet (2):
my = pVy4;
u, = —V, cos45°
v, = —V, sin45°

(Mmu) oyt — (Mu)iy, = (pVo42)(—=V, cos45°) — (pV14,)(V4)
(M) oyt — (M) = (pV242)(—V, sin45°) — (pV14,)(0)

Since pV; A, = pV5A,,
(Mu) oue — (Mwin = —(pV242)(V; cos 45° + V;)
(M) out — (MV)in = —pV5 A, sin 45°

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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Example — Contd.

FAZ
rI_IT l Z ZFX:

Section
(1)*\ ”1 =400 mm

1) Body force =0
2) Pressure force = p;A; + p,A, cos 45°
3) Anchoring force = —F,,,
XE:
1) Body force = —W,, — W,
2) Pressure force = p,A, sin 45°
p, A, sin 45¢ ! 7 3) Anchoring force = —F,,

¥ : poA, cos 45°

Thus,
_(pVZAZ)(VZ cos45° + Vl) = plAl + pZAZ cos 45° — FAX
—pV4A,sin45° = —y¥, — W, + p,A,sin45° — F,,

~ Fye = (pVoA)(V, cos45° + V) + p1 Ay + pA, cos 45°
F,, = pV£A, sin45° — y¥, — W, + p,A, sin 45°

9

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Energy Equation

RTTwithB =FE and f = e,

0 L
— epd¥+j epV -dA=Q—-W

at Jey cs

Simplified form:

Pn, Vi Pout
y h2g 1%

2
Vo ut

+Zil‘l+hp =—+aout2—g+zout+ht+hL

V in energy equation refers to average velocity V

« : kinetic energy correction factor =

1 for uniform flow across CS
2 for laminar pipe flow
~ 1 for turbulent pipe flow



Energy Equation - Contd.

Uniform flow across CS’s:

P1 V12 P2 V22
7+2—g+Zl+hp=7+2—g+Zl+ht+hL

W, 1% 1% . .
e Pump head h, = m’; = prg = yg = W, = mgh, = pgQh, = yQh,
e Turbinehead h; = n% = pLth = % = W, = mgh, = pgQh; = yQh,

* Head loss h; =loss/g = (i, —0,)/g— Q/mg >0
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Example (Pump)

Energy equation:

P1 V1 P2 Vz
— 4=tz th,=—+-=+z,+h +h
y  2g y = 2g o

W|thp1:p2—0 Vl V2~0 ht—O andhL—23m

hp:(Zz_Zl)+hL:45+23:68m

______ | Pump power,

: (68)(9790)(0.03)
W, =vQh, = 716 = 80 hp

Control
surface

(Note: 1 hp = 746 N-m/s = 550 ft:Ibf/s)

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Differential Analysis

A microscopic description of fluid motions for a fluid particle by using differential
equations?®,

* Continuity equation

dp
—+V-(pV)=0
ac * 7 (PL)
e Momentum equation
aVv
Pl TV )=pg-Vp+V 1

*CV analysis is a macroscopic description of fluid motions by using integral

equations (RTT).



Navier-Stokes Equations

For incompressible, Newtonian fluids,
e Continuity:

6u+6v+aw_
dx dy 0z

e Momentum:

6u+ 6u+ 6u+ ou 6p+ N 62u+62u+62u
P “ v v ax | PBx T 5x2 dy?  0z2

dt 0x dy 0z
<6v ov  Ov 6v> op %v  9%v 6217)
p

E-Fua'i'va'i'W& —@+pgy+u<ax2+ay2+azz

(aw ow  ow 6W> op 0*w 0w 62W>
p

ot " Yox Yoy Tz =_£+pgz+“<ax2 57 T oz



Exact Solutions of NS Eqgns.

The flow of interest is assumed additionally (than incompressible &
Newtonian), for example,
1) Steady (i.e., d/0t = 0 for any variable)
2) Parallel such that the y-component of velocity is zero (i.e., v = 0)
3) Purely two dimensional (i.e., w = 0 and d/9z = 0 for any velocity
component)
4) Fully developed (i.e., 3/dx = 0 for any velocity component)

e.g.)
1) 4) 3) 4) 3)
: + 9 +2) u+ = ap-l— + 5%_'_6211_'_5%
Plac ™ Yox dy Voz| T “ax " Pex T |Gz dy? /522
or
d*u

dp




Boundary Conditions

Common BC’s:
* No-slip condition (Vfuiq = Vivan; for a stationary wall Vgy,iq = 0)
* Interface boundary condition (V, = Vg and 75 4 = 74 p)

* Free-surface boundary condition (pjiquia = Pgas and Tsliquia = 0)

Other BC’s:
* Inlet/outlet boundary condition
e Symmetry boundary condition

e |nitial condition (for unsteady flow problem)
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Example: No pressure gradient

U
# .
y — 7 Moving
I g plate
u
ey
b
l y
| { Fixed
plate

d*u
Integrate twice,
u(y) = C1y + G,

0

B.C.,

u(0) = (C)0)+C, =0 = C,=0
U
u) =)D +C,=U = (= -

U
suy) =2y
Analysis:

17

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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Example: with Pressure Gradient

Fixed plate
! {
y 2]
] -~ max 7‘7
Fixed plate

d*u _dp
'udy2 dx
Integrate twice,

1dp ,
u@y) =5--y°+ Gy + G,

2u dx
B.C.,
u(0) = id_p 02+ (O +C, =0 = C,=0
~\2udx 1 2 = 2 =
u(b) = (id_p b2+ (B +C,=0=> €, = —id—pb
- \2udx 1 2T L7 2udx
_ 1 (dp )
= u(y) _Z<E> (y* = by)
Analysis:

_fhd_ b3 ap
1= _huy— 12u \ ox

du) b <6p>
w=po—] =-5|5
dy =0 2 \0x

18

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Note:
8= 8xi+8yJ

where,
g, = gsinf
gy = —gcost
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Example: Inclined wall

d?u
“d_yz = —P8x
Integrate twice,
_ pgx 2
u(y) = —ﬂy +Cy +C;

u(0) = (— p%) 0)2+(CHO)+C, =0 = C,=0

du
_) :(_@)@m:o S ¢ =By
y=h % %

P ) R
uly) == (hy )

2

Analysis:
q= fhudy = &h—g
0 uo3

du pg
Ty = ud—> = (W <—x h) = pgxh
Y/ u

19

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Buckingham Pi Theorem

e For any physically meaningful equation involving n variables, such as

U, = f(u2'u3r ”"un)

with minimum number of m reference dimensions, the equation can be
rearranged into product of r dimensionless pi terms.

Hl = ¢(H2' H3r Y H‘r)

where,



Similarity and Model Testing

If all relevant dimensionless parameters have the same corresponding
values for model and prototype, flow conditions for a model test are
completely similar to those for prototype.

For,
Hl = ¢(H2) ey Hn)

Similarity requirements:

I3 model = 1_[2,prototype

[y model = 1_[n,prototype

Prediction equation:
11, model = 1_[1,prototype
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Example (Repeating Variable Method)

Example: The pressure drop per unit length Ap, in a pipe flow is a function of
the pipe diameter D and the fluid density p, viscosity u, and velocity V.

! p. It
V Apg | D | p | U | V
D ) {ML—ZT-2}| () | (ML-3) | {ML—lT-1}| (Lr-1)
Y
[ ¢ >~ r=n—-m=5-3=2

Ap, = (p, — po)it

22

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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Example — Contd.

Select m = 3 repeating variables, (D, V, p) for (L,T, M), then

M, = DVPpAp, = (L)*(LT"HP(ML™3)(ML™2T~2) = M°LOT?

a+b—3c—2 = 0
—b—2 = 0 =2 a=-1,b=-2,c=-1
c+1 = 0 AwD
vy — Py
=0, =D 1V 2%p 1Ap, =
1 p p‘f sz

M, =D*Ppu = (L)*(LT " HP(ML3)(MLIT~1) = MOLOTO

a+b—-3c—1 =
—b—1
c+1 =
=>I, =DV 1p 1=

=2 a=-1,b=-1,c=-1

Il
o oo

DVp

_Ap,D pVD
v =¢ M

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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Example (Model Testing)

Model Prototype
A
Py My
P Ap,D pVD Vp
Vm — —_ D #
Dy e sz < U ) g
Apy,, Y
A
Pep
If,
V..D VD
PmImZm _ Pp'p~p (similarity requirement)
Um Hp
Then,

(Prediction equation)

24

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Example —

Model (in water)
e D,=01m
* pm =998 kg/m3
* Uy, =1.12x%x103N-s/m?
e V,=7?
* App, =27.6Pa/m

Similarity requirement:

57:020 Fluids Mechanics Fall2015

Contd.

Prototype (in air)

* Dp=1m

* p, =1.23kg/m?

* 1, =179 x 105 N-s/m?
 V,=10m/s

* Apy, =7

()R- (R

Prediction equation:

1.79 x 107>

0.1

1.12x 1073 1
>< >(10) =7.71 m/s

o =(52) (2) ) v = ()

10 \* )
)( > (27.6) =5.72x 1073 Pa/m

7.71

25

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.



Pipe Flow: Laminar vs. Turbulent

e Reynolds number regimes

|

gﬂ ) Laminar Re < Recrit ~ 2'000
|

g‘l ) Transitional Recrit < Re < Retrans
|

gﬂ ) Turbulent Re > Retrans ~ 4;000




Flow in Pipes

e Basic piping problems:

— Given the desired flow rate, what pressure drop (e.g.,
pump power) is needed to drive the flow (i.e., to overcome
the head loss through piping)?

— Given the pressure drop (e.g., pump power) available,
what flow rate will ensue?

— Given the pressure drop and the flow rate desired, what
pipe diameter is needed?



Head Loss

hy = hy major T RL minor

*  hy major (Or hf): Major loss, the loss due to viscous effects

* Ry minor: Minor loss, the loss in the various pipe components

Darcy-Weisbach equation

hf: Bz—g

. F o BTw oo
f= ek Friction factor

L: Pipe length

D: Pipe diameter

I/ Average flow velocity across the pipe cross-section



Laminar Pipe Flow

Exact solution exists by solving the NS equation

7\ 2
u(r) = Vimax [1 — (E) ]; Vmax = 2V
Wall shear stress
du SuV
WETG)  TTh
=R

Friction factor
_8t, 64y 64

[ =2V2= 5DV ~ Re

Head loss

L pLVE_32ulV [ 128uLQ
I~/ Dp2g~ yD2 ~ myD4
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Turbulent Pipe Flow

 From a dimensional analysis

f=¢Ree/D)

* Moody chart: Empirical functional dependency of f on Re and /D

0.1
0.09
0.08

0.07

0.06

0.05

0.04

£ 003

0.025

0.02

0.015

0.01
0.009
0.008

Laminar

flow

NI

e

Transition range

-

Wholly turbulent fiow
N
P

L1
6 8

1 LT [T |
2110 4 6 8 2010 4 6 8 2010 4 6 8

10* 10° 10°

10’

2010y 4 6 8

0.05
0.04

0.03

0.02
0.015

0.01
0.008
0.006

&
0004 D
0.002
0.001
0.0008
0.0006

0.0004

0.0002
0.0001
0.00005

0.00001



Turbulent Pipe Flow — Cond.

e Colebrook equation (difficult in its use as implicit)

g/D 251

1
G

 Haaland equation (easier to use as explicit but approximation)

e/D\"" L 69
3.7 Re

1
—— = —1.8log

\/7
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Example (pipe flow)

Elevation z;
Total length = 1700 ft e Neglect minor losses.

Elevation z, A 0 2t
(2) V=== = 14.1ft
= A~ (m(15)%/4 /s
b=15f VD  (14.1)(1.5)
£ = 0.0005 f — — = 1.75 % 10°
R =121 x 105 1.75 X 10° (turbulent)
e/D = 0.0005/1.63 = 0.00033
Energy equation:
b1 Vi b2 ;
—+0(12—1g+21 _—+a22—":g+z2 + hy
Sincep; =p, =0andV; =V,,
hf =2y — 2z, = Az

Friction factor,

1 | 810q | (000033 i ,_ 69 0,015

—_— = —1. - — | = =0.
%6I\737 1.75 x 106 !

f

Head loss
. Lv? (0.0159) (1700) (14.1)* _ c6 ft
F =/ p2g ™ (1.5) (2)(32.2)
~ Az =56 ft

This slide contains an example problem and its contents (except for general formula) should NOT be included in your cheat-sheet.
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