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Mass and Momentum

\%
For a homogeneous body of volume ¥, —
Mass, m = p¥
Momentum, P=mV
Volume, ¥
For a fluid of volume ¥,
Volume,V*

m=jdm=deV
¥ "

E=jde=ijdV
¥ ¥
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Mass Flux

The amount of fluid mass flowing through a small portion of a surface §4 during a
short time dt,

dm = pS¥ = p64,64 = p(VSt cos 0)6A = p(V - 71)5t5A
Then, the time rate of 6 m becomes

_6m _ p(V-7)dtsA
-8t St

5V = 8¢, 5A Y,
) A\

S = p(V - 7)sA

=>

(a) (h) (¢)



Mass Flux — Contd.

 The rate of mass of fluid flowing through an area A:

rhzjdm
A

V -1)0tdA
ai= tim P
5t,6A—0 ot

Where,

= p(V.-7)dA = pV - dA

Therefore,
= [ pv - da
A
If p = constant,

i=p[v-da
A



Volume Flux

e Volume flux (or flow rate),

0=[v-aa
A
O Average velocity
V—Q—ldeA
A AJ,— —
O If V = constant
Q=V-4

O If Visnormalto 4
0=va (v=|v)



Momentum Flux

e The rate of momentum carried by fluid flow through an area A:
b= [ vai = [v(pv - da)

A A

If p = constant and V = constant,

E=z]pz-d4=(pz-4)z=mz
A

or, in components

P, = mu
Py=mv
P, = mw

where, V = ui + vj + wk
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System vs. Control volume

System: A collection of (real) matter of fixed identity.

Control volume: A (geometric or an imaginary) volume in space through
which fluid may flow, which may move or deform.

Control Control
surface surface
S YA "
: 1‘ | l—* Control
07D 1 } : surface
— 1
| | } | %
| | > I | -
| " i | |
| |
: f | L | O —_— |
— |
. i | o ] L

(a) (b) (c)



Reynolds Transport Theorem (RTT)

e General RTT for a moving and deforming CV,

DB D
2 | gpdv [ ppve-da
Dt Dt Jey(a) ¢s(x.t)

time rate of change

of B for a system time rate of change net flux of B

of Bin CV across CS

 For afixed CV,

DBsys _ 0 dy + V-dA
YT Cvﬁp Csﬁp_ A

Simplified form for a steady flow with discrete CS’s of uniform flow

0 N o — Y (B




Continuity Eq.

e RTTwithB=mandpf =1,

Dm D
2 -0 =— pd¥+jsz-dA
Dt Dt ), cs

0 :Zmout_zmin

e Conduit flow with one inlet (1) and one outlet (2):

e Simplified form:

p2V2Az —p1V141 =0
If p = constant
V14, = V24,



Momentum Equations

e RTTwithB=mVandp =V,

D(mz)sys—zF—Dj v d¥+j VoVs - dA
Dt  ZL.— Dt CV_p Cs—p—R =

e Simplified form:

DE= Y ), = ) ), e et

_ (..Dm_o)
-T2\ T

or in component form,

> E= ) (iuoue— ) (i
D By =) (iw)ou — ) (i,
DB = Gw)ou = ) (uwdiy



Momentum Equations — Contd.

e External forces:
z E — ESurface + EBody + EOther forces

O Fgyrface = Pressure or shearing forces
0 Fpogy = Gravity forces (i.e., weight)

O Fyther forces = Anchoring forces or reaction forces

Note: Shearing forces can be avoided by carefully selecting the
CV such that the force component is not exposed on the CS
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Example (Bend)

5.34 A converging elbow (see Fig. P5.34)
turns water through an angle of 135° in a vertical
plane. The flow cross section diameter is 400 mm
at the elbow inlet, section (1), and 200 mm at the
elbow outlet, section (2). The elbow flow passage
volume is 0.2 m® between sections (1) and (2).
The water volume flowrate is 0.4 m*/s and the
elbow inlet and outlet pressures are 150 kPa and
90 kPa. The elbow mass is 12 kg. Calculate the
horizontal (x direction) and vertical (z direction)
anchoring forces required to hold the elbow in
place.

1

)

Section |

Section (2)
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Example (Bend) — Contd.

[T1
)

Cz Section |

Section (2)

Q = 0.4 m3/s

D, = 0.4m

D, =02m

Vl_ Q _ Q 0.4

T A, nD%/4 m(04)2/4

V :22 Q = 0.4
27 4,  mwDZ/4 m(0.2)2/4

= 3.18 m/s

= 12.73 m/s

13
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Example (Bend) — Contd.

X-momentum:

I
Section |
V1 {1}‘\‘: Dy =400 mm 135°

P14

> Fe = (i) gue — (i,

Thus,
—Fy, + p1A1 + poA, cos45°
= (pQ) (V5 cos 45°) — (pQ) (V1)

D, =

200 mm or

J Fy = P14 + pyA, cos45° + (pQ)(V; + V, cos 45°)
|74
>’p
= (150,000) + (50,000) cos 45°
+ (999)(4)(3.18 + 12.73 cos 45°)

7(0.4)? 7(0.2)?
4 4

o Fyp = 25700 N

14



57:020 Fluids Mechanics Fall2014

Example (Bend) — Contd.

FAZl

m . Z-momentum:
Section :

V1 {1}‘\‘: Dy =400 mm 135°

P14

; z E, = (ThW)out — (mW)in

Thus,
_FAZ + pzAz Sin 4‘50 - WW - VVe
= (pQ@)(—V; sin45%) — (pQ)(0)

;)S;mm or
Fy; = p24; cos45° —y¥, — W, + (pQ)(V; sin 45°)

¥
V2p

2
”(2f) sin 45° — (9800)(0.2) — (12)(9.81)
+(999)(4)(12.73 sin 45°)

= (50,000)

#F,, =8920N

15
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Typical Example (1): Vane

Energy eq.:

L R
D1 +§PV1 +2z1 =Dy +§PV2 + 2z, + hy,

withp; =p, =0,z = z,,and hy = 0,

]/1 = ]/2 — V]
Continuity:

X-momentum:

E. = m(—=V, cos8) —m(V;)
out in

y-momentum:
Fy — Whuid — Woane = m(_VZ' sin 9) - m(O)

out 1n
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Typical Example (2): Nozzle

17

Continuity:
V1A1 - V2A2

m = pViA, = pVr4;

Energy eq. withp, = 0 and z; = z,:

1 2 1 2
prtopVi =pVs +hy

X-momentum:

Ry + p14A; = m(V;) — m(Vy)
out in

y-momentum:

Ry — Whuid — Whozzle = m(0) —m(0)
out in
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Typical Example (3): Bend

18

Continuity:
Vid1 =134,
m = pViA, = pVr4;
Energy eq.:
1 2 1,
P1 +§PV1 T2z =p2 +§PV2 +2;+ 1y

X-momentum:
Ry + p1A1 — P24, cos 0 = m(V; cos 8) — m(V;)

———

out 1n

y-momentum:
Ry + pZAZ sin @ — Wfluid — Wbend = m(—VZ sin 9) - m(O)

out 1n
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Typical Example (4): Sluice gate

Continuity:
e w?m _ m = pVy(y1b) = pV,(¥,b)
Wty ’;1_”";'::@ ﬁf‘fﬁm Energy (Bernoulli) eq. with p; = p, and h; = 0:
g V= beshed BB ONT Gy s e T ek e
“""n PD= pre = gyny
“ V2 4y = 2 pVE +y
> PV1 1= 5PV2 2

X-momentum:
Faw +7 (% H) 0nb) - v (32) 02b) = 10(Vy) = 1h ()

out 1n

D144 D242

y-momentum:
0 = m(0) — m(0)

out in



Energy Equation

RTTwithB =FE and f = e,

0O—WwW Dlsys _ D j dv + j Ve-dA =0
— W= = ep ep¥r - as =
Dt ~ Dt} cs

Simplified form:

2 2
Pi Vi Pout Vout
$+am2%’g"+zm+hp :%‘I'aout%'i'zout'l'ht'l'}h

« : kinetic energy correction factor (¢ = 1 for uniform flow across CS)

V in energy equation refers to average velocity V



Simplified Energy Equation

Uniform flow across CS’s:

e Turbine head

Pump head

Head loss

P1 V12 b2 sz
7+g+21+hp :7+E+Zl+ht+hL

hy = Wy/mg = W,/pQg = W, /yQ
hy = Wt/mg = Wt/PQg = Wt/VQ
h, =loss/g = (U, —1;)/g — Q/mg >0



Control
surface
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Example (Pump)

Energy equation:

Vv 4
D, =2 s bt iy

y 29 Yy 29
Withp;, =p, =0,V =V, =0,h; =0,and h; =23 m
hp:(Zz_Zl)+hL:45+23:68m

Pump power,

W = hyQ = (68)(9790)(0.03) _

80 h
P 746 P

Note: 1 hp = 746 N-m/s(= W) or 550 ft-Ibf/s
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Example (Turbine)

Energy equation:

P1 V12 P2 Vs

— 4t~z +thy=—+-—"42z,+h. +h

0 o y 2g AT T Ty g T T
W|thp1 = D2 :0,V1 :VZ zO,hp = O,andhL = 35m

100 m?/s
120 m
hy=35m ht=(Zl—Zz)—hL=120—35=85m
Turbine 1 .®
Pump power,
Generator — i W, = h,yQ = (85)(9790)(100) = 83.2 MW

Thurbine—gen
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Fluid Element Kinematics

Element at 7, Element at 7, + 61
,/”/1/////
r |
[
! r’ | | r——————- | ="\ .
j ’—‘;/
f | | | | \ \ / /
1 ) N |, ) x N / /
I = | | | \ \ / /
L——" [ ] || | \ /
J O e [
General Translation Linear Rotation Angular
motion deformation deformation
e Linear deformation(dilatation): V - V
= if the fluid is incompressible V- V=20
e Rotation(vorticity): { = 2w =V XV
= if the fluid is irrotational VXV =0

* Angular deformation is related to shearing stress
(e.g., T;; = 2ug;; for Newtonian fluids )

24



Mass Conservation

For a fluid particle,

d
lim U —pdv+f pV-dA]

. dp
_Cl‘}TOLVlE+V.(pK)]d¥_0

dp B
woo+ V- (pV) =0

For an incompressible flow: V -V =0



Momentum Conservation

. 4
Cl‘}rgol CVEPdV + LSKPZ'd_A] = ZE

or
| oV
lim pl—=—+V-VV d¥=zF
V-0 ), \Odt — —
s p( =+ V- \7V> Z f (f = F per unit volume)
aVv -
= p a—;+z-\7£ = —pgk —Vp + V-1
. body force dueto  pPressure Vismear
:ﬂ:a gravity force force force

surface force



Navier-Stokes Equations

Continuity:

6u+6v+mv_
ox dy 0z

Momentum:

‘au+ au+ 6u+ ou| 6p+ N
Plac " ox " "oy TWaz| T Tox T PIETH

'av_+ 6v_+ 6v_+ v| 6p_+ .
Plac T ox " "oy T Waz| T oy TPIYTH

0wn+ awﬁ_ &M+_ ow| 6p+ N
Plac T %ax "oy " Waz|T a7 T PITH

'azu_kazu 0°%u]
dx?  dy* 0z?
0%v 0%v 0%v]
0x? 0y? 0z?




Cylindrical Coordinates

|

Continuity: ;
% (;:r) " %aaveg " (ZZ B
Momentum:
R T
- v () - e A A
P (aaite T 0;9 * 1;9 601;9 * UT:Q T %)
-G eom el ()
(en 25 )
Formnd (B

|



Exact Solutions of NS Eqgns.

The flow of interest is assumed additionally (than incompressible &
Newtonian) as:

1) Steady (i.e., 3/0t = 0 for any variable)
2) Parallel such that the y-component of velocity is zero (i.e., v = 0)

3) Fully developed (i.e., du/dx from the continuity equation and the
assumptions 2 and 3)

4) Purely two dimensional (i.e., w = 0 and d/0z = 0 for any velocity
component)



Boundary Conditions

Common BC’s:
* No-slip condition (Vsyyia = Vipau; for a stationary wall Vi,q; = 0)
* Interface boundary condition (V4 = Vp and 75 4 = T4 p)

*  Free-surface boundary condition (pyiquia = Pgas and Ts fiiq = 0)

Other BC’s:
* Inlet/outlet boundary condition
e Symmetry boundary condition

e Initial condition (for unsteady flow problem)



1)

2)

3)

4)
5)

6)

Solving the NS Egns

Set up the problem and geometry (e.g., sketches), identifying all relevant
dimensions and parameters.

List all appropriate assumptions, approximations, simplifications, and
boundary conditions.

Simplify the differential equations of motion (continuity and Navier-
Stokes) as much as possible.

Integrate the equations, leading to one or more constants of integration
Apply boundary conditions to solve for the constants of integration.

Verify your results.
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Example: Couette Flow

6.96 The viscous, incompressible flow between the parallel plates
shown in Fig. P6.94 is caused by both the motion of the top

plate and a pressure gradient, dp/ox. As noted in Section 6.9.2, an
important dimensionless parameter for this type of problem is
P =.—(b%2 pU) (3p/ox) where p is the fluid viscosity, Make a plot
of the dimensionless velocity distribution (similar to that shown in (T ey
Fig. 6.32b) for P = 3. For this case where does the maximum ve- Fixed

> » plate
locity occur? M FIGURE P6.9¢
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Example: Couette Flow

Assumptions 1 The plates are infinite in x and z. 2 The flow is steady, i.e.,
d/ot of anything is zero. 3 This is a parallel flow (we assume the y-component
of velocity, v, is zero). 4 The fluid is incompressible and Newtonian with
constant properties, and the flow is laminar. 5 A constant pressure gradient
is applied in the x-direction such that pressure changes linearly with
respect to x

6 The velocity field is purely two-dimen-
sional, meaning here that w = O and d/dz of any velocity component is zero.
7 Gravity acts in the negative zdirection (into the page in Fig. 9-55). We
express this mathematically as g= —gk,or g, =g, = 0and g, =—g.

o o

ay az

d
2 ntlnulty




Example: Couette Flow

Simplified NS-equation:
or

Integrate twice, noting that dp/dx is a constant,

= (P)yeycy e
u_ZM axy 1Y 2

where C; and C, are constants of integration.



Example: Couette Flow

Boundary condition (1): u = 0aty = 0,
1 6p
u_ a XO+C1X0+C2—O = Cz—o

Boundary condition (2): u = U aty = h,

2(P\peycpro=v > ¢ =2-2(%),
uZ,uax 1 B 1b2uc’)x

Finally,

U 1 (dp
by+2#<ax> (v — by)



57:020 Fluids Mechanics Fall2014 36

Example: Couette Flow

<=



Special Case(1): Without dp/0x

U
#

Y 7 Moving
plat
T E
b
| l | { Fixed
plat
U
u(y) = 7Y
du ulU
Ty = H@ = —




Special Case(2): Both plates fixed

=
i

B.C.u(0) =u(b) =0




Buckingham Pi Theorem

e For any physically meaningful equation involving n variables, such as

Uy = f(uz»u3r '"run)

*  With minimum number of m reference dimensions, the equation can
be rearranged into product of r dimensionless pi terms.

Hl = ¢(H21 H3) Tty HT‘)

where,



Repeating Variable Method

Example: The pressure drop per unit length Ap, in a pipe flow is a function of
the pipe diameter D and the fluid density p, viscosity i, and velocity /.

(1) 2)
T p, 1
V
ll) #
- ¢ -




Repeating Variable Method — Contd.

Step 1: List all variables that are involved in the problem

Ap, = f(D,p,u, V)

Step 2: Express each of the variables in terms of basic dimensions (either MLT or
FLT system)

N
ML2T2Y | MUY | MLty ry

Step 3: Determine the required number of pi terms
r=n—-m=5—-3=2
Step 4: Select m = 3 repeating variables

D (for L), V (forT),and p (for M)



Repeating Variable Method — Contd.

Step 5: Form a pi term for one of the non-repeating variables

[, = DV pAp, = (L)*(LT V)P (ML™3)¢(ML?T~?) = M°LOT®
Ap{)D
pV?

Hl — D‘lV_Zp_lAp{) —

Step 6: Repeat step 5 for each of the remaining non-repeating variables

M, = DVPpu = (LT HPML3)(MLIT™1) = MOLOTO

U
~ I, = D_1V_1 -1, —
2 p H DVp



Repeating Variable Method — Contd.

Step 7: Check all the resulting pi terms to make sure they are
dimensionless and independent

Ap,D U
I, = = FOLOTO; I, = —— = FOLOT©
Y Z 27 DVp

Step 8: Express the final form as a relationship among the pi terms
I; = ¢(I13)

Ap,D pVD
pvz T\

or




Similarity and Model Testing

If all relevant dimensionless parameters have the same corresponding
values for model and prototype, flow conditions for a model test are
completely similar to those for prototype.

For,
l_[1 = ¢(H2r ALl Hn)

Similarity requirements:
1_[Z,model = l_[Z,prototype

[y model = l—[n,prototype

Prediction equation:

l_[1,mode1 = l_[1,prototype
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Example: Model Testing

Dimensional:
Apy = f(D,p, 11, V)
Prototype Model
A
o
Vo P, Hn
Dp # Dm Vm
Y Apg,,
A
Pep
D,=1m D, =0.1m
pp =1.23 kg/m? Pm =998 kg/m3
tp =1.79 x 10° N-s/m? Uy =1.12 x 103 N-s/m?

V,=10m/s Vn ="

45
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Example: Model Testing

Non-dimensional:

Ap;D (pVD)

pV? u
Prototype Model
A
P, L,
Vo P, Hon
D, > Dy —
¥ Apy,,
Fa
P )
m =
PpVp Dy M. = PmVmDm
Hz,p 2m — 1
Hp m



Example: Model Testing

* Model design condition (similarity requirements)

Hm iy

P\ (Hm) ( Dp
() () G2
C (123 (112 x 1073\ [ 1 0
B (998) <1.79 X 10-5> (0.1>( )

w V=771 m/s

or

Vin




Example: Model Testing

If Ap,, is measured at 27.6 Pa/m from the model test, then Ap{)p =7?

* Prediction equation

Ape, Dy Apy,, D
PpVy Pm Ve

D,, 7\’
o= (37) ) i) 20
_(01)(L23\( 10\
B ( 1 ><998>(7.71> (27.6)

& Apy, =5.72 X 1073 Pa/m

or




Example: Problems with one Pi

The speed of propagation C of a capillary wave in deep water is known to be a function only of density p,
wavelength A, and surface tension o. Find the proper functional relationship, completing it with a dimensionless

constant. For a given density and wavelength, how does the propagation speed change if surface tension is
doubled?

Wave length

‘ ‘ Wave speed

§

\

Density p  Surface tension o



Example: Problems with one Pi

C=f(pAo)
C | P | A | o
wry | My | W | Mry

11 1
Il = pzA20~2C



Example: Problems with one Pi

pA
~M1=C ? = Constant, K

Let C’ be the wave speed when surface tension o is doubled,

/pfl_ | PA
C J—K and C (20)—1(
A A
c [PA_ | PR
o (20)

A 2
C’=C/p—>< ’Q
o pA
. C' =42C

or

or



Example: Problems with one Pi

Alternatively,

Then,

Thus, C increases as V2, or about 41 percent.
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