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Reynolds Transport Theorem (RTT)

For any extensive property B,

DBsys d
= 2 poav + [ Bove-da
N 2 cv cs
time rate of change  imerate of change net flux of B
of B for a system of Bin CV across CS

where,
e B = (m, mK,E); f=B/m= (1,K,€) for mass, momentum
and energy conservation laws, respectively

e Vp =V —Vs; V =fluid velocity; Vs = CS velocity



Continuity Equation

ForB=mthusf =1,

Dmgy,s 0
== pd¥+ij-d4=0
Dt dt cv cs
Special cases:
: : 2

 Incompressible fluid (p =constant) fcsz -dA = _Efcv dy
* Steady flow JogPV -dA =0
e I =constant over discrete dA fcs pV -dA=>.pV-A
* Steady 1D flow in a conduit YespV - A=0=p V1A = pV,A,

= if p = constant, V;4; = VA4, or Q1 = Q,



Useful Definitions

* Mass flux (mass flow rate) m=[ pV-dA
 Volume flux (flow rate) Q=J,V-dA
« Average velocity V=0/A
Note:
* IfV =constant Q=V-A

S
Il

e If p =constant

pQ



Momentum Equation

For B =mV thusf =V,

14 ]
F = 2= — | Vpd¥+ | VpV-dA
ot ) . — == =
cv CS

Special cases:

0
e Steady flow oy YpdV =0
e Uniform flow across A:

L SVpV dA = vav z(mv)ou Z(mv)m

pQ=

e |f the flow is also steady,

D Ee= ) (o = ) (i
D By =) (h)ou = ) (0)in
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Typical Example (1): Vane

Continuity Eq. or

Flow type YF Yy |
Bernoulli Eq.
pV{
X-component: Pttt
m - (=V, cos 8) pV}?
Tt =Pt 12
ZFXZFX _m'(Vl)
n p1=p2=0
ZF)’ Fy WFlulud y-component: 1 2
—Wnozzle V=V, =A;
m - (=V,sin @)
ut
Ou —m - (0) V1A, = V74,
| A=A =4

6
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Typical Example (2): Nozzle

Continuity Eq. or

Flow type YF Yy |
Bernoulli Eq.
AV, = A,V
LFE =p141 + Ry | x-component: 1 2"z

m- (Vz) —m- (V1) V.2 V2

ZFy O{Lt l;’l pl +p21 — p22

= Ry - WFluiud

- WNozzle

y-component: 0

( Z1 = Z1,03 = 0)
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Typical Example (3): Bend

Continuity Eq. or

Flow type YF Yy |
Bernoulli Eq.
Xx-component:
2E = Ry + p14; U (Vz. cos 6) =
out A V; = AV,
—p,A, cos 6 )
m - (V1)
in 2
|74
ZFy 1 + pzl + Zl ==
= R, + p,A, sin6 |y-component: 2
—Wrigiua — m - (=V,sin6) , + Prz + 7,
- 2
WNozzle out
—m - (0)

_.'_/
mn
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Typical Example (4): Sluice Gate

Flow type

Continuity Eq. or
Bernoulli Eq.
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+y (%) (y1b)

— v () ()

YE, =0

X-component:

y-component:

m-0—m-0=0

Vi(y1b) = V,(y2b)

— 2
+ 1y




Energy Equation

For B =E thusf =,

W DEsys _ 0 d¥+j V-dA
¢ Dt Ot Cvep Csep— =
where,
VZ
e=ﬁ+ek+ep:ﬁ+7+gz
and

W:I/i/s+(wfp+wfs)=M{9+Wfp=(wt_wp)+wfp



Simplified Energy Equation
For steady, one-dimensional flow:

_+Zin+hp:_‘l‘aoutg‘l‘zout‘l‘ht‘l‘hll

e Pump head h, = Wp/mg = Wp/pQg = Wp/yQ

e Turbinehead h, = W,/mg =W,/pQg = W,/yQ

* Head loss h; =loss/g = (i, —11)/g — Q/mg >0

e «a : kinetic energy correction factor (¢ = 1 for uniform flow across CS)

« V in energy equation refers to average velocity V
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Hydraulic and Energy Grade Lines

2
Energy Grade Line EGL = % +z+ a‘zl—g
Hydraulic Grade Line HGL = % + z

EGLiTl + hp = EGLout + ht + hL

P "'T Hél/,—-" EGL=HGLifV=0
EGL;=EGL; + Iy T '.x?f“*m EGL ‘ LYV 2
= = = -H"‘H._. e .-"/ = —_—
forhy=h;=0 5, e . hp=1 —
\Z/?;'T}H_‘ J W 1.e., linear variation in L for D,
o V., and f constant
e
l[ T e f = friction factor
r = ;3 t=1(Re)
FIGURE 7.4 o
ol and HGL in 2
mhf F]:PL-_ [Ctum
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Fluid Element Kinematics

Element at 7, Element at 7y + 67
,/’//1/////
r i
e
\ ! ,‘ ! | — | ="\ .
1 T P
| | | | L \ / /
’ | N |+ \ . / /
| - ! ' | \ \ / /
L—"" [ ] || I \ /
J == [
General Translation Linear Rotation Angular
motion deformation deformation
e Linear deformation(dilatation): V - V
= if the fluid is incompressible V- V=20
e Rotation(vorticity): { = 2w =V XV
= if the fluid is irrotational VXV =0

* Angular deformation is related to shearing stress
(e.g., T;j = 2ug;; for Newtonian fluids )

13



Mass Conservation

For a fluid particle,

. dp
lim j —d¥+J pV -dA

. dp
=, [ [5t + 7 ()| av =

ap B
..E+|7-(pz)_0

For an incompressible flow: V -V =0



Momentum Conservation

lim U —pd¥+ VoV - dA] ZF
CV=0|Jcy O cs

or
7]
lim [ p(=+v-vv d¥=2F
V-0 )., \Ot — — —
) (— +V- VV) 2 f (f = F per unit volume)
)4 _
= p E+K-\7£ = —pgk —Vp + V-1
body force dueto  pressure Vismear
gravity force force force

surface force



Navier-Stokes Equations

Continuity:
ou N dv N ow
ox dy 0z
Momentum:
[Ou N ou N ou N dul  ap N N (0%u N d%u N 0%u]
Plac " ax T Vay T Vaz| T “ax T PP T H|ax2 T ay2 T 822
(0v N ov N ov N dv]  dp N N 0%V N d%v N 0%V
Plac " ax "oy " Vaz| T oy T P9 T H|axz T ay2 T 822
6W+ 6W+ 6W+ ow|  dp N N —62W+62W+62W
Ploc " "ax " "oy "W az| T "0z PI T H|ox2 T 9y2 T a22




Cylindrical Coordinates

Continuity:

10(rv,) N 10vg 0dv,

Momentum:

av, v, vgdv, v§ v,
p(at Uy T a0 T Ve

" or 738 oz

|

op 10 ( dv,\ v, 10%v,. 20vy 0°%v,
__6_+pgr+u[r6r( 6r>_r_2+r_2 362 1239 ' 022
dvg dvg Vg 0dvg V,Vg dvg
p(at U T 0 T r s
ap+ N 10 ([ 0vg\ vy N 1 0%vy 2 0v, 0%y
a6 T PIo T HIT 5\ Tor r2 r?2900% r?200 @ 0z?
av, 0z vgdv, v,
’0<E+Ur6r+ r 90 2oz
op 10 ( 0v, 1 0%v, 0%y,
__a_+pgz+“[rar< 6r>+r_2 362 ' 372

|



Exact Solutions of NS Eqgns.

The flow of interest is assumed additionally (than incompressible &
Newtonian) as:

1) Steady (i.e., d/0t = 0 for any variable)
2) Parallel such that the y-component of velocity is zero (i.e., v = 0)

3) Purely two dimensional (i.e., w = 0 and d/9z = 0 for any velocity
component)

4) Fully developed (i.e., du/dx from the continuity equation and the
assumptions 2 and 3)



1)
2)
3)

4)
5)
6)

Boundary Conditions

No-slip condition (V¢;iq = Viyau; for a stationary wall Vi, = 0)
Interface boundary condition (V4 = Vz and 75 4 = 74 p)

Free-surface boundary condition (piquia = Pgas and Ts, fiuia = 0)

Inlet/outlet boundary condition
Symmetry boundary condition

Initial condition (for unsteady flow problem)



1)

2)

3)

4)
5)

6)

Solving the NS Egns

Set up the problem and geometry (e.g., sketches), identifying all relevant
dimensions and parameters.

List all appropriate assumptions, approximations, simplifications, and
boundary conditions.

Simplify the differential equations of motion (continuity and Navier-
Stokes) as much as possible.

Integrate the equations, leading to one or more constants of integration
Apply boundary conditions to solve for the constants of integration.

Verify your results.
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Example: Couette Flow

Momentum:

B.C..u(b) =U,u(0) =0

1 (0 U
su(y) = o (%) (2 — by) + yT



Special Case(1): Without dp/0dx

# .
y — 7 Moving
I g plate
u
—
b
L
| { Fixed
plate
Momentum:
0 d*u

B.C..u(b) =U,u(0) =0

yU

su(y) = -

du ulU
Tyw = U
dy =0



Special Case(2): Both plates fixed

T Y ‘ } U ~ §
; e
RN

( )

Momentum:
0 op N d?u
“ox dy?

B.C..u(h) =u(—=h) =0



Buckingham Pi Theorem

e For any physically meaningful equation involving k variables, such as

U = f(u2'u3' ”"uk)

e with minimum number of reference dimensions 7, the equation can be
rearranged into product of k — r pi terms.

I, = ¢(l'[2, I3, Hk—r)



Repeating Variable Method

Step 1: List all variables that are involved in the problem

Ap{’ = f(D;,D:.u;V)
Step 2: Express each of the variables in terms of basic dimensions (either MLT or

FLT system)
Apoy = FL™ 3D =L;p=FL ™ *T?,u =FL™°T;V = LT !

Step 3: Determine the required number of pi terms

k—r=5—-3=2



Repeating Variable Method — Contd.

Step 4: Select a number () of repeating variables
D,V,p
Step 5: Form a pi term for one of the non-repeating variables
I, = Ap,DV?Pp¢
Step 6: Repeat step 5 for each of the remaining non-repeating variables

HZ — ‘llDaprc



Repeating Variable Method — Contd.

Step 7: Check all the resulting pi terms to make sure they are
dimensionless and independent

- FOLOTO

ApeD U
I, = = FOL°T? T, = ——
1™ pp2 27 DVp

Step 8: Express the final form as a relationship among the pi terms

Ap,D pVD
vz =P\




Similarity and Model Testing

If all relevant dimensionless parameters have the same corresponding
values for model and prototype, flow conditions for a model test are
completely similar to those for prototype.

For,
[; = ¢y, ..., IIy)
if
1_[Z,model = Hz,prototype
l_[n,model = Hn,prototype
then,

11, model = 1_[1,prototype



Example: Model Testing

Ap,D pVD
vz = P\,

Model design condition (similarity requirements)

PmVmDm  pVD B ( p ) ( D ) (um>
— = U, = V
Hm H Pm/) \Dm K

Prediction equation

2
Ap,D  Apy,Dm D.N{p\(V

= = A =< ) A
pVZE ~ paliZ Pe=\p o)\ ) “Pim
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