Review for Exam 1

10. 12. 2015

Hyunse Yoon, Ph.D.
Assistant Research Scientist
IIHR-Hydroscience \& Engineering
e-mail: hyun-se-yoon@uiowa.edu

1. Definition of Fluid

- Fluid: Deforms continuously (i.e., flows) when subjected to a shearing stress
- Solid: Resists to shearing stress by a static deflection
- No-slip condition: No relative motion between fluid and boundary at the contact
- The fluid "sticks" to the solid boundaries

Viscous flow induced by relative motion between two parallel plates

2. Weight and Mass

- Weight W is a force dimension,

$$
W=m \cdot \mathrm{~g}
$$

- In SI unit:

$$
W(\mathrm{~N})=m(\mathrm{~kg}) \cdot \mathrm{g} \quad\left(\mathrm{~g}=9.81 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

- In BG unit:

$$
W(\mathrm{lbf})=m(\mathrm{slug}) \cdot \mathrm{g} \quad\left(\mathrm{~g}=32.2 \mathrm{ft} / \mathrm{s}^{2}\right)
$$

3. Properties involving mass or weight of fluid

- Density (mass per unit volume)

$$
\rho=\frac{m}{\forall} \quad\left(\mathrm{~kg} / \mathrm{m}^{3} \text { or slugs } / \mathrm{ft}^{3}\right)
$$

- Specific Weight (weight per unit volume)

$$
\gamma=\frac{W}{\forall}=\frac{m \mathrm{~g}}{\forall}=\rho \mathrm{g} \quad\left(\mathrm{~N} / \mathrm{m}^{3} \text { or } \mathrm{lbf} / \mathrm{ft}^{3}\right)
$$

- Specific Gravity

$$
\mathrm{SG}=\frac{\gamma}{\gamma_{\text {water }}}\left(=\frac{\rho}{\rho_{\text {water }}}\right)
$$

Ex) For mercury, SG $=13.6$ and $\rho_{\text {mercury }}=\mathrm{SG} \cdot \rho_{\text {water }}=(13.6)(1,000)=13,600 \mathrm{~kg} / \mathrm{m}^{3}$

4. Viscosity

- Newtonian fluid

$$
\tau=\mu \frac{d u}{d y}
$$

(a)

(b)

- τ : Shear stress ($\mathrm{N} / \mathrm{m}^{2}$ or $\mathrm{lbf} / \mathrm{ft}^{2}$)
- μ : Dynamic viscosity ($\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$ or $\mathrm{lbf} \cdot \mathrm{s} / \mathrm{ft}^{2}$)
- $v=\mu / \rho$: Kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$ or $\mathrm{ft}^{2} / \mathrm{s}$)
- Shear force $=\tau \cdot A$
- Non-Newtonian fluid

$$
\tau \propto\left(\frac{d u}{d y}\right)^{n}
$$

5. Vapor pressure and cavitation

- Vapor pressure: Below which a liquid evaporates, i.e., changes to a gas
- Boiling: If the pressure drop is due to temperature effect
- Cavitation: If the pressure drop is due to fluid velocity

Cavitation formed on a marine propeller

6. Surface tension

- Surface tension force: The force developed at the interface of two immiscible fluids (e.g., liquid-gas) due to the unbalanced molecular cohesive forces at the fluid surface.

Attractive forces acting on a liquid molecule at the surface and deep inside the liquid

$$
F_{\sigma}=\sigma \cdot L
$$

- $F_{\sigma}=$ Line force with direction normal to the cut
- $\quad \sigma=$ Surface tension $[\mathrm{N} / \mathrm{m}]$, the intensity of the molecular attraction per unit length
- $\quad L=$ Length of cut through the interface

6. Surface tension - Contd.

- Capillary Effect: The rise (or fall) of a liquid in a smalldiameter tube inserted into a the liquid.
- Capillary rise:

$$
F_{\sigma, \text { vertical }}=W
$$

or

$$
\begin{gathered}
\sigma \cdot(2 \pi R) \cos \phi=\rho \mathrm{g}\left(\pi R^{2} h\right) \\
\therefore h=\frac{2 \sigma}{\rho \mathrm{~g} R} \cos \phi
\end{gathered}
$$

The forces acting on a liquid column that has risen in a tube due to the capillary effect

Note: $\phi=$ contact angle

7. Absolute pressure, gage pressure, and vacuum

- Absolute pressure: The actual pressure measured relative to absolute vacuum
- Gage pressure: Pressure measured relative to local atmospheric pressure
- Vacuum pressure: Pressures below atmospheric pressure

[^0]© John Wiley \& Sons, Inc. All rights reserved.

8. Pressure variation with elevation

For fluids at rest,

$$
\frac{\partial p}{\partial x}=\frac{\partial p}{\partial y}=0
$$

and

$$
\frac{\partial p}{\partial z}=-\gamma
$$

For constant γ (e.g., liquids), by integrating the above equations,

$$
p=-\gamma z+C
$$

At $z=0, p=C=0$ (gage),

$$
\therefore p=-\gamma z
$$

\Rightarrow The pressure increases linearly with depth.

9. Pressure measurements (1) U-Tube manometer

- Starting from one end, add pressure
 when move downward and subtract when move upward:

$$
p_{A}+\gamma_{1} h_{1}-\gamma_{2} h_{2}=0
$$

Thus,

$$
\therefore p_{A}=\gamma_{2} h_{2}-\gamma_{1} h_{1}
$$

- If $\gamma_{1} \ll \gamma_{2}$ (e.g., γ_{1} is a gas and γ_{2} a liquid),

$$
p_{A}=\gamma_{2}\left(h_{2}-\frac{\gamma_{1}}{\gamma_{2}} h_{1}\right)
$$

$$
\therefore p_{A} \approx \gamma_{2} h_{2}
$$

9. Pressure measurements (2) Differential manometer)

- To measure the difference in pressure:
$\therefore \Delta p=p_{A}-p_{B}=\gamma_{2} h_{2}+\gamma_{3} h_{3}-\gamma_{1} h_{1}$

10. Hydrostatic forces (1) Horizontal surfaces

- Pressure is uniform on horizontal surfaces (e.g., the tank bottom) as

$$
p=\gamma h
$$

- The magnitude of the resultant force is simply

$$
F_{R}=p A=\gamma h A(=\gamma \nvdash)
$$

10. Hydrostatic forces
 (2) Inclined surfaces

- Average pressure on the surface

$$
\bar{p}=p_{C}=\gamma h_{c}
$$

- The magnitude of the resultant force is simply

$$
F_{R}=\bar{p} A=\gamma h_{c} A
$$

- Pressure center

$$
y_{R}=y_{c}+\frac{I_{x c}}{y_{c} A}
$$

10. Hydrostatic forces (3) Curved surfaces

$$
\begin{gathered}
F_{x}=\bar{p}_{\text {proj }} \cdot A_{\text {proj }} \\
F_{y}=\gamma \forall_{\text {above } A B} \\
W=\gamma \forall_{A B C}
\end{gathered}
$$

- Horizontal force component: $F_{H}=F_{x}$
- Vertical force component: $F_{V}=F_{y}+W=\gamma V_{\text {total volume above } A C}$
- Resultant force: $F_{R}=\sqrt{F_{H}^{2}+F_{V}^{2}}$

11. Buoyancy - (1) Immersed bodies

$$
F_{B}=F_{V 2}-F_{V 1}=\gamma \bigvee
$$

- Fluid weight equivalent to body volume \forall
- Line of action (or the center of buoyancy) is through the centroid of \forall, c

11. Buoyancy - (2) Floating bodies

$F_{B}=\gamma F_{\text {displaced volume }}$ (i.e., the weight of displaced water)
Line of action (or the center of buoyancy) is through the centroid of the displaced volume

12. Stability - (1) Immersed bodies

- If c is above G: Stable (righting moment when heeled)
- If c is below G : Unstable (heeling moment when heeled)

12. Stability - (2) Floating bodies

- $G M>0$: Stable (M is above G)
- $G M<0$: Unstable (G is above M)

13. Rigid-body motion - (1) Translation

- Fluid at rest

$$
\begin{aligned}
& \text { ㅇ } \frac{\partial p}{\partial z}=-\rho \mathrm{g} \\
& \text { ० } p=\rho \mathrm{g} z
\end{aligned}
$$

- Rigid-body in translation with a constant acceleration,

$$
\underline{a}=a_{x} \hat{\imath}+a_{z} \widehat{\boldsymbol{k}}
$$

$$
\begin{aligned}
& \text { ० } \frac{\partial p}{\partial s}=-\rho \mathrm{G} \\
& \text { o } p=\rho \mathrm{G} s \\
& \mathrm{G}=\left(a_{x}^{2}+\left(\mathrm{g}+a_{z}\right)^{2}\right)^{\frac{1}{2}} \\
& \theta=\tan ^{-1} \frac{a_{x}}{\mathrm{~g}+a_{z}}
\end{aligned}
$$

13. Rigid-body motion - (2) Rotation

- Rigid-body in translation with a constant rotational speed Ω,

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14. Flow patterns

- Streamline: A line that is everywhere tangent to the velocity vector at a given instant
- Pathline: The actual path traveled by a given fluid particle
- Streakline: The locus of particles which have earlier passed through a particular point
- For steady flow, all three lines coincide

Streamline

Fluid particle at some intermediate time

Pathline

Streakline

15. Equations of fluid motions

- Newton's $2^{\text {nd }}$ law

$$
m \underline{a}=\sum \underline{F}
$$

per unit volume,

$$
\rho \underline{a}=\sum \underline{f}
$$

- Navier-Stokes equation (for viscous flow)

$$
\rho \underline{a}=-\rho \mathrm{g} \widehat{\boldsymbol{k}}-\nabla p+\mu \nabla^{2} \underline{V}
$$

- Euler equation (for inviscid fluids, i.e., $\mu=0$)

$$
\rho \underline{a}=-\rho \mathrm{g} \widehat{\boldsymbol{k}}-\nabla p
$$

16. Bernoulli equation

1) Inviscid flow (i.e., no friction)
2) Incompressible flow (i.e., $\rho=$ constant)
3) Steady flow

- Along the streamline:

$$
p+\frac{1}{2} \rho V^{2}+\gamma z=\text { Constant }
$$

- Across the streamline:

$$
p+\rho \int \frac{V^{2}}{\Re} d n+\gamma z=\text { Constant }
$$

16. Bernoulli equation - Contd.

Bernoulli equation along the streamline:

$$
p_{1}+\frac{1}{2} \rho V_{1}^{2}+z_{1}=p_{2}+\frac{1}{2} \rho V_{2}^{2}+z_{2}
$$

Since $V_{2}=0$ and $z_{1}=z_{2}$,

$$
\begin{gathered}
p_{1}+\frac{1}{2} \rho V_{1}^{2}+0=p_{2}+0+0 \\
\therefore p_{2}=p_{1}+\frac{1}{2} \rho V_{1}^{2}
\end{gathered}
$$

16. Bernoulli equation - Contd.

Bernoulli equation across the streamline:

- $\Re=\infty$ for the portion from A to B

$$
p+\int \rho \frac{V^{2}}{\Re} d n+\gamma z=\text { Constant }
$$

The same as stationary fluid,

$$
\therefore p_{1}=p_{2}+\gamma h_{2-1}
$$

- For the portion from C to D

$$
\begin{gathered}
p_{4}+\rho \int_{z_{3}}^{z_{4}} \frac{V^{2}}{\Re}(-d z)+z_{4}=p_{3}+\gamma z_{3} \\
\therefore p_{3}=p_{4}+\gamma h_{4-3}-\underbrace{\rho \int_{z_{3}}^{z_{4}} \frac{V^{2}}{\Re} d z}_{>0}
\end{gathered}
$$

Note: Simplified Form of Continuity Equation

- Volume flow rate

$$
Q=V A
$$

- Mass flow rate

$$
\dot{m}=\rho Q=\rho V A
$$

- Conservation of mass

$$
\rho_{1} V_{1} A_{1}=\rho_{2} V_{2} A_{2}
$$

- Incompressible flow (i.e., $\rho=$ const.)

$$
V_{1} A_{1}=V_{2} A_{2}
$$

17. Application of Bernoulli equation Example: Venturimeter

Bernoulli eq. with $z_{1}=z_{2}$,

$$
p_{1}+\rho \frac{V_{1}^{2}}{2}=p_{2}+\rho \frac{V_{2}^{2}}{2}
$$

Continuity eq.,

$$
V_{1}=\frac{A_{2}}{A_{1}} V_{2}=\left(\frac{D_{2}}{D_{1}}\right)^{2} V_{2}
$$

Thus,

$$
p_{1}+\frac{1}{2} \rho\left(\left(\frac{D_{2}}{D_{1}}\right)^{2} V_{2}\right)^{2}=p_{2}+\rho \frac{V_{2}^{2}}{2}
$$

Solve for V_{2},

$$
V_{2}=\sqrt{\frac{2\left(p_{1}-p_{2}\right)}{\rho\left[1-\left(D_{2} / D_{1}\right)^{4}\right]}}
$$

Then,

$$
Q=V_{2} A_{2}
$$

18. Velocity and Description methods (1)

- Lagrangian description: Keep track of individual fluid particles

$$
\begin{gathered}
\underline{V_{p}}(t)=\frac{d \underline{x}}{d t}=u_{p}(t) \hat{\boldsymbol{\imath}}+v_{p}(t) \hat{\boldsymbol{\jmath}}+w_{p}(t) \widehat{\boldsymbol{k}} \\
u_{p}=\frac{d x}{d t}, v_{p}=\frac{d y}{d t}, w_{p}=\frac{d z}{d t} \\
\underline{a_{p}}=\frac{d \underline{V_{p}}}{d t}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k} \\
a_{x}=\frac{d u_{p}}{d t}, a_{y}=\frac{d v_{p}}{d t}, a_{z}=\frac{d w_{p}}{d t}
\end{gathered}
$$

18. Velocity and Description methods (2)

- Eulerian description: Focus attention on a fixed point in space

$$
\begin{aligned}
\underline{V}(\underline{x}, t) & =u(\underline{x}, t) \hat{\boldsymbol{\imath}}+v(\underline{x}, t) \hat{\boldsymbol{\jmath}}+w(\underline{x}, t) \hat{\boldsymbol{k}} \\
\underline{a} & =\frac{D \underline{V}}{D t}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k}
\end{aligned}
$$

Or,

$$
\begin{aligned}
& a_{x}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z} \\
& a_{y}=\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z} \\
& a_{z}=\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}
\end{aligned}
$$

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+(\underline{V} \cdot \nabla)
$$

19. Euler equation and acceleration

$$
\rho \underline{a}=-\rho \mathrm{g} \widehat{k}-\nabla p
$$

Where,

$$
\nabla p=\frac{\partial p}{\partial x} \hat{\imath}+\frac{\partial p}{\partial y} \hat{\jmath}+\frac{\partial p}{\partial z} \hat{k}
$$

Thus,

$$
\begin{gathered}
\frac{\partial p}{\partial x}=-\rho a_{x} \\
\frac{\partial p}{\partial y}=-\rho a_{y} \\
\frac{\partial p}{\partial z}=\rho \mathrm{g}-\rho a_{z}
\end{gathered}
$$

[^0]: Figure 2.7

