Review for Exam 1

10. 13. 2014

Hyunse Yoon, Ph.D.
Assistant Research Scientist
IIHR-Hydroscience \& Engineering
e-mail: hyun-se-yoon@uiowa.edu

Chapter 1. Introduction
 - Fluid properties

1. Fluids and No-slip condition
2. Dimensions and Units
3. Weight and Mass
4. Properties involving mass or weight of fluid
5. Viscosity
6. Vapor pressure and Cavitation
7. Surface tension

1. Fluids and No-slip condition

- Fluid: Deforms continuously (i.e., flows) when subjected to a shearing stress
- Solid: Resists to shearing stress by a static deflection
- No-slip condition: No relative motion between fluid and boundary at the contact
- The fluid "sticks" to the solid boundaries

A fluid flowing over a stationary surface comes to a complete stop at the surface because of the no-slip condition (left) and the development of a velocity profile due to the no-slip condition as a fluid flows over a blunt

2. Dimensions and Units

- Dimension: Quantitative expression of a physical variable (without numerical values)

0 Primary dimensions: Mass (M), length (L), time (T or t), and temperature (Θ or T). Also referred to as basic dimensions
o Secondary dimensions: All other dimensions can be derived from the primary dimensions

- Unit: A way of attaching a number to quantitative dimensions

0 For example, length is dimension and meter or feet are units
0 SI unit system, BG unit system, EE unit system, and etc.

Variable	Dimension	SI unit	BG unit
Velocity $\underline{\boldsymbol{V}}$	L / T	$\mathrm{~m} / \mathrm{s}$	ft / s
Acceleration $\underline{\boldsymbol{a}}$	L / T^{2}	$\mathrm{~m} / \mathrm{s}^{2}$	$\mathrm{ft} / \mathrm{s}^{2}$
Force $\underline{\boldsymbol{F}}$	$M L / T^{2}$	$\mathrm{~N}\left(\mathrm{Kg} \cdot \mathrm{m} / \mathrm{s}^{2}\right)$	lbf
Pressure \boldsymbol{p}	F / L^{2}	$\mathrm{~Pa}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$	$\mathrm{lbf} / \mathrm{ft}^{2}$
Density $\boldsymbol{\rho}$	M / L^{3}	$\mathrm{Kg} / \mathrm{m}^{3}$	$\mathrm{slug} / \mathrm{ft}^{3}$
Internal energy \boldsymbol{u}	$F L / M$	$\mathrm{~J} / \mathrm{Kg}(\mathrm{N} \cdot \mathrm{m} / \mathrm{kg})$	$\mathrm{BTU} / \mathrm{lbm}$

2. Dimensions and Units -Contd.

- Dimensional homogeneity: All equations must be dimensionally homogeneous. Each additive term in an equation must have the same dimensions
- Consistent units: Each additive terms must have the same units

Ex): Bernoulli equation

$$
\begin{gathered}
p+\frac{1}{2} \rho V^{2}+\rho g z=\text { constant } \\
{\left[M L T^{-2}\right]+\underbrace{[-]\left[M L^{3}\right]\left[L^{2} T^{-2}\right]}_{=\left[M L T^{-2}\right]}+\underbrace{\left[M L^{-3}\right]\left[L T^{-2}\right][L]}_{=\left[M L T^{-2}\right]}=\left[M L T^{-2}\right]}
\end{gathered}
$$

0 SI units: $\left(\frac{\mathrm{N}}{\mathrm{m}^{2}}\right)+(-)\left(\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right)\left(\frac{\mathrm{m}}{\mathrm{s}}\right)^{2}+\left(\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right)\left(\frac{\mathrm{m}}{\mathrm{s}^{2}}\right)(\mathrm{m}) ; \quad(\mathrm{N})=(\mathrm{kg})\left(\mathrm{m} / \mathrm{s}^{2}\right)$
O BG units: $\left(\frac{\mathrm{bft}}{\mathrm{ft}^{2}}\right)+(-)\left(\frac{\mathrm{slugs}}{\mathrm{ft}^{2}}\right)\left(\frac{\mathrm{ft}}{\mathrm{s}}\right)^{2}+\left(\frac{\mathrm{slugs}}{\mathrm{ft}^{2}}\right)\left(\frac{\mathrm{ft}}{\mathrm{s}^{2}}\right)(\mathrm{ft}) ; \quad(\mathrm{lbf})=(\mathrm{slugs})\left(\mathrm{ft} / \mathrm{s}^{2}\right)$

3. Weight and Mass

- Weight W is a force dimension, i.e., $W=m \cdot g$
- In SI unit:

$$
W(\mathrm{~N})=m(\mathrm{~kg}) \cdot \mathrm{g}, \text { where } \mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}
$$

- In BG unit:

$$
W(\mathrm{lbf})=m(\mathrm{slug}) \cdot \mathrm{g}, \text { where } \mathrm{g}=32.2 \mathrm{ft} / \mathrm{s}^{2}
$$

- In EE unit:
$W(\mathrm{lbf})=m(\mathrm{lbm}) / \mathrm{g}_{\mathrm{c}} \cdot \mathrm{g}$, where $\mathrm{g}=32.2 \mathrm{ft} / \mathrm{s}^{2}$

$$
\begin{aligned}
& \text { o } 1 \mathrm{~N}=1 \mathrm{~kg} \times 1 \mathrm{~m} / \mathrm{s}^{2} \\
& \text { o } 1 \mathrm{lbf}=1 \mathrm{slug} \times 1 \mathrm{ft} / \mathrm{s}^{2} \\
& \text { o }_{\mathrm{c}}=32.2 \mathrm{lbm} / \mathrm{slug} \\
& \text { o } 1 \text { slug }=32.2 \mathrm{lbm}
\end{aligned}
$$

Unit System	Mass	Weight
SI	1 kg	$9.81 \mathrm{~N}(=1 \mathrm{kgf})$
BG	1 slug	32.2 lbf
EE	1 lbm	1 lbf

4. Properties involving mass or weight of fluid

- Density

$$
\rho=\frac{\operatorname{mass}(m)}{\operatorname{volume}(\forall)} \quad\left(\mathrm{kg} / \mathrm{m}^{3} \text { or slugs } / \mathrm{ft}^{3}\right)
$$

- Specific Weight

$$
\gamma=\frac{\text { weight }(m g)}{\text { volume }(\mathrm{K})}=\rho g \quad\left(\mathrm{~N} / \mathrm{m}^{3} \text { or } \mathrm{lbf} / \mathrm{ft}^{3}\right)
$$

- Specific Gravity

$$
S G=\frac{\gamma}{\gamma_{\text {water }}}\left(=\frac{\rho}{\rho_{\text {water }}}\right)
$$

5. Viscosity

- Newtonian fluid

$$
\tau=\mu \frac{d u}{d y}
$$

- τ : Shear stress ($\mathrm{N} / \mathrm{m}^{2}$ or $\mathrm{lbf} / \mathrm{ft}^{2}$)
- μ : Dynamic viscosity ($\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$ or lbf $\cdot \mathrm{s} / \mathrm{ft}^{2}$)
- $v=\mu / \rho$: Kinematic viscosity ($\mathrm{m}^{2} / \mathrm{s}$ or $\mathrm{ft}^{2} / \mathrm{s}$)
- \quad Shear force $=\tau \cdot A$
- Non-Newtonian fluid

$$
\tau \propto\left(\frac{d u}{d y}\right)^{n}
$$

6. Vapor pressure and cavitation

- Vapor pressure: Below which a liquid evaporates, i.e., changes to a gas
- Cavitation: If the pressure drop is due to fluid velocity
- Boiling: if the pressure drop is due to temperature effect
- Cavitation number:

$$
C_{a}=\frac{p-p_{v}}{\frac{1}{2} \rho V_{\infty}^{2}}
$$

Note: $C_{a}<0$ implies cavitation

Cavitation formed on a marine propeller

7. Surface tension

- Surface tension force: The force developed at the interface of two immiscible fluids (e.g., liquid-gas) due to the unbalanced molecular cohesive forces at the fluid surface.

Attractive forces acting on a liquid molecule at the surface and deep inside the liquid

$$
F_{\sigma}=\sigma \cdot L
$$

- $\quad F_{\sigma}=$ Line force with direction normal to the cut
- $\quad L=$ Length of cut through the interface
- $\sigma=$ Surface tension $[\mathrm{N} / \mathrm{m}]$, the intensity of the molecular attraction per unit length along L

7. Surface tension - Contd.

- Capillary Effect: The rise (or fall) of a liquid in a smalldiameter tube inserted into a the liquid.
- Capillary rise:

$$
h=\frac{2 \sigma}{\rho g R} \cos \phi
$$

Note: $\phi=$ contact angle

The forces acting on a liquid column that has risen in a tube due to the capillary effect

Chapter 2. Fluid Statics

1. Absolute pressure, gage pressure, and vacuum
2. Pressure variation with elevation
3. Pressure measurements (Manometry)
4. Hydrostatic forces on plane surfaces
5. Hydrostatic forces on curved surfaces
6. Buoyancy
7. Stability
8. Fluids in rigid-body motion

1. Absolute pressure, gage pressure, and vacuum

- Absolute pressure: The actual pressure measured relative to absolute vacuum
- Gage pressure: Pressure measured relative to local atmospheric pressure
- Vacuum pressure: Pressures below atmospheric pressure

Figure 2.7
© John Wiley \& Sons, Inc. All rights reserved.

2. Pressure variation with elevation

- Force balance in an incompressible static fluid (Newton's $2^{\text {nd }}$ law per unit volume):

$$
\begin{gathered}
\rho{\underset{=0}{a}=-\rho g \hat{k}-\nabla p+\mu \underbrace{\nabla^{2} V}_{=0}}_{=0}^{\therefore \nabla p=-\gamma \widehat{\boldsymbol{k}}} \\
\text { or, } \quad \frac{\partial p}{\partial x}=0 ; \frac{\partial p}{\partial y}=0 ; \quad \frac{\partial p}{\partial z}=-\gamma
\end{gathered}
$$

- Since $\gamma=$ constant (e.g., liquids),

$$
p=-\gamma z+p_{0}
$$

By taking $p_{0}=0$ (gage) at $z=0$,

$$
\therefore p=-\gamma z
$$

Thus, the pressure increases linearly with depth

3. Pressure measurements (1): Piezometer tube

- The simplest type of manometer

$$
p_{A}=\gamma_{1} h_{1}
$$

- The fluid must be a liquid
- Suitable only if $p_{A}>p_{a t m}$
- p_{A} must be relatively small so that h_{1} is reasonable

3. Pressure measurements (2) U-Tube manometer

- Starting from one end, add pressure when move downward and subtract when move upward:

$$
p_{A}+\gamma_{1} h_{1}-\gamma_{2} h_{2}=0
$$

Thus,

$$
p_{A}=\gamma_{2} h_{2}-\gamma_{1} h_{1}
$$

or

$$
p_{A}=\gamma_{2}\left(h_{2}-\frac{\gamma_{1}}{\gamma_{2}} h_{1}\right)
$$

- If $\gamma_{1} \ll \gamma_{2}$ (e.g., γ_{1} is a gas and γ_{2} a liquid),

$$
\therefore p_{A} \approx \gamma_{2} h_{2}
$$

3. Pressure measurements (3) Differential U-Tube manometer

Rol john Wiley \& Sons, Inc. All rights reserved.

- To measure the difference in pressure:

$$
p_{A}+\gamma_{1} h_{1}-\gamma_{2} h_{2}-\gamma_{3} h_{3}=p_{B}
$$

or

$$
p_{A}-p_{B}=\gamma_{2} h_{2}+\gamma_{3} h_{3}-\gamma_{1} h_{1}
$$

- For a pipe flow where $\gamma_{1}=\gamma_{3}$ as shown in the boxed figure,

$$
p_{A}-p_{B}=\gamma_{2}\left(1-\frac{\gamma_{1}}{\gamma_{2}} h_{2}\right)
$$

if $\gamma_{1} \ll \gamma_{2}$,

$$
\therefore p_{A}-p_{B} \approx \gamma_{2} h_{2}
$$

4. Hydrostatic forces on plane surfaces (1) Horizontal surfaces

(a) Pressure on tank bottom

- Pressure is uniform on horizontal surfaces (e.g., the tank bottom) as

$$
p=\gamma h
$$

- The magnitude of the resultant force is simply

$$
F_{R}=p A=\gamma h A
$$

Figure 2.16
© John Wiley \& Sons, Inc. All rights reserved.

4. Hydrostatic forces on plane surfaces (2) Inclined surfaces

- Average pressure on the surface

$$
\bar{p}=\gamma h_{c}
$$

- Resultant pressure force

$$
F_{R}=\bar{p} A=\gamma h_{c} A
$$

- Pressure center

$$
y_{R}=y_{c}+\frac{I_{x c}}{y_{c} A}
$$

5. Hydrostatic forces on curved surfaces

- Horizontal force component: $F_{H}=\bar{p}_{p r o j} \cdot A_{p r o j}$
- Vertical force component: $F_{V}=\gamma \bigvee$ (weight of fluid above surface)
- Resultant force: $F_{R}=\sqrt{F_{H}^{2}+F_{V}^{2}}$

6. Buoyancy (1) Immersed bodies

$$
F_{B}=F_{V 2}-F_{V 1}=\gamma \underline{Z}
$$

- Fluid weight equivalent to body volume \forall
- Line of action (or the center of buoyancy) is through the centroid of Z

6. Buoyancy (2) Floating bodies

7. Stability
 (1) Immersed bodies

Figure 2.25
John Wiley \& Sons, Inc. All rights reserved.

Figure 2.26

- John Wiley \& Sons, Inc. All rights reserved.
- If C is above G : Stable (righting moment when heeled)
- If G is above C : Unstable (heeling moment when heeled)

7. Stability
 (2) Floating bodies

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- $G M>0$: Stable (M is above G)
- $G M<0$: Unstable (G is above M)
$\underset{\text { Review for }}{G M}=\frac{I_{00}}{W_{1}}-C G$

8. Fluids in rigid-body motion (1) Translation

- $\nabla p=\rho(\underline{g}-\underline{a})$

○ $\underline{a}=a_{x} \hat{\boldsymbol{\imath}}+a_{z} \widehat{\boldsymbol{k}}$ (constant)

- $\underline{g}=-g \hat{k}$
- $\frac{\partial p}{\partial s}=-\rho G$
- $p=\rho G s$

$$
\begin{aligned}
& \text { ० } \quad G=\left(a_{x}^{2}+\left(g+a_{z}\right)^{2}\right)^{\frac{1}{2}} \\
& \text { ० } \quad \theta=\tan ^{-1} \frac{a_{x}}{g+a_{z}}
\end{aligned}
$$

8. Fluids in rigid-body motion
 (2) Rotation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- $\nabla p=\rho(\underline{g}-\underline{a})$
o $\underline{a}=-r \Omega^{2} \hat{\boldsymbol{e}}_{r} \quad$ (constant Ω)
- $\underline{g}=-g \hat{k}$
- $\frac{\partial p}{\partial r}=\rho r \Omega^{2}$ and $\frac{\partial p}{\partial z}=-\rho g$
- $p=\frac{\rho}{2} r^{2} \Omega^{2}-\rho g z+C$
- $z=\frac{p_{0}-p}{\rho g}+\frac{\Omega^{2}}{2 g} r^{2}$

Chapter 3. Elementary Fluid Dynamics
 - The Bernoulli equation

1. Flow patterns
2. Streamline coordinates
3. Bernoulli equation
4. Application of Bernoulli equation

1. Flow patterns

- Streamline: A line that is everywhere tangent to the velocity vector at a given instant
- Pathline: The actual path traveled by a given fluid particle
- Streakline: The locus of particles which have earlier passed through a particular point
- For steady flow, all three lines coincide

Streamline

Fluid particle at some intermediate time

Pathline

Streakline

2. Streamline coordinates

- Velocity

$$
\underline{V}=v_{S} \hat{\boldsymbol{s}}+\underbrace{v_{n}}_{=0} \widehat{\boldsymbol{n}}
$$

$$
\text { Note: }|\underline{V}|=v_{s}=V
$$

- Acceleration

$$
\begin{aligned}
& \underline{a}=a_{s} \widehat{\boldsymbol{s}}+a_{n} \widehat{\boldsymbol{n}} \\
& 0 \quad a_{s}=\frac{\partial v_{s}}{\partial t}+v_{s} \frac{\partial v_{s}}{\partial s} \\
& 0 \quad a_{n}=\frac{\partial v_{n}}{\partial t}+\frac{v_{s}^{2}}{\mathfrak{R}}
\end{aligned}
$$

2. Streamline coordinates - Contd.

- Euler equation: Application of Newton's $2^{\text {nd }}$ law ($m \underline{a}=\sum \underline{F}$) to inviscid (i.e., frictionless or $\mu=0$) and incompressible* fluid motions

$$
\underbrace{\rho \underline{a}}_{\neq 0}=-\rho g \widehat{\boldsymbol{k}}-\nabla p+\underbrace{\mu \nabla^{2} \underline{V}}_{=0}
$$

- The Euler equation in streamline coordinates
* Note: There is another version of Euler equation available for compressible fluid flows as well.

$$
\rho \underline{a}=-\nabla(p+\gamma z)
$$

where,

$$
\nabla=\frac{\partial}{\partial s} \widehat{\boldsymbol{s}}+\frac{\partial}{\partial n} \widehat{\boldsymbol{n}}
$$

or

$$
\begin{gathered}
\rho\left(\frac{\partial v_{s}}{\partial t}+v_{s} \frac{\partial v_{s}}{\partial s}\right)=-\frac{\partial}{\partial s}(p+\gamma z) \\
\rho\left(\frac{\partial v_{n}}{\partial t}+\frac{v_{s}^{2}}{\Re}\right)=-\frac{\partial}{\partial n}(p+\gamma Z)
\end{gathered}
$$

3. Bernoulli equation (1) Along streamline

- By integrating the Euler equation along s-direction (i.e., along a streamline) for a steady flow,

$$
\int \rho(\underbrace{\frac{\partial v_{s}}{\partial t}}_{\substack{==0 \\ \because \text { steady }}}+v_{s} \frac{\partial v_{s}}{\partial s}) d s=-\int \frac{\partial}{\partial s}(p+\gamma z) d s
$$

or

$$
\begin{gathered}
\int_{1}^{2} \frac{\partial}{\partial s}\left(p+\frac{1}{2} \rho v_{s}^{2}+\gamma z\right) d s=0 \\
\therefore p_{2}+\frac{1}{2} \rho V_{2}^{2}+\gamma z_{2}=p_{1}+\frac{1}{2} \rho V_{1}^{2}+\gamma z_{1} \quad\left(\because v_{s}=V\right)
\end{gathered}
$$

3. Bernoulli equation (2) Across streamline

- By integrating the Euler equation along n-direction (i.e., across streamlines) for a steady flow,

$$
\int \rho(\underbrace{\frac{\partial v_{n}}{\partial t}}_{\substack{=0 \\ \because \text { steady }}}+\frac{v_{s}^{2}}{\mathfrak{R}}) d n=-\int \frac{\partial}{\partial n}(p+\gamma z) d n
$$

or

$$
\begin{gathered}
\int_{1}^{2}\left(\rho \frac{v_{s}^{2}}{\Re} d n+\frac{\partial}{\partial n}(p+\gamma z)\right) d n=0 \\
\therefore p_{2}+\rho \int_{1}^{2} \frac{V^{2}}{\Re} d n+\gamma z_{2}=p_{1}+\gamma z_{1} \quad\left(\because v_{s}=V\right)
\end{gathered}
$$

3. Bernoulli equation
 (3) Restrictions and alternative forms

- Restrictions

1) Inviscid flow (i.e., no friction)
2) Incompressible flow (i.e., $\rho=$ constant)
3) Steady flow

- Static, stagnation dynamic, and Total pressure

- Head form

$$
\therefore \underbrace{\frac{p}{\gamma}}_{\begin{array}{c}
\text { pressure } \\
\text { head }
\end{array}}+\underbrace{\frac{V^{2}}{2 g}}_{\begin{array}{c}
\text { velocity } \\
\text { head }
\end{array}}+\underbrace{Z}_{\begin{array}{c}
\text { elevation } \\
\text { head }
\end{array}}=\underbrace{H}_{\begin{array}{c}
\text { total } \\
\text { head }
\end{array}}
$$

4. Application of Bernoulli equation Example (1): Stagnation tube

$$
p_{1}+\rho \frac{V_{1}^{2}}{2}+\gamma z_{1}=p_{2}+\rho \frac{V_{2}^{2}}{2}+\gamma z_{2}
$$

Since $V_{2}=0$ (stagnation point) and $z_{1}=z_{2}$,

$$
p_{1}+\rho \frac{V_{1}^{2}}{2}=p_{2}
$$

Solve for V_{1} :

$$
V_{1}=\sqrt{\frac{2\left(p_{2}-p_{1}\right)}{\rho}}
$$

Also, $p_{1}=\gamma d$ and $p_{2}=\gamma(d+\ell)$

$$
\therefore V_{1}=\sqrt{2 g \ell}
$$

4. Application of Bernoulli equation Example (2): Pitot tube

$$
p_{1}+\rho \frac{V_{1}^{2}}{2}+\gamma z_{1}=p_{2}+\rho \frac{V_{2}^{2}}{2}+\gamma z_{2}
$$

where $V_{1}=0$ (stagnation point),

$$
p_{1}+\gamma z_{1}=p_{2}+\rho \frac{V_{2}^{2}}{2}+\gamma z_{2}
$$

Solve for V_{2} :

$$
V_{2}=\sqrt{2 g[\underbrace{\left(\frac{p_{1}}{\gamma}+z_{1}\right)}_{=h_{1}}-\underbrace{\left(\frac{p_{2}}{\gamma}+z_{2}\right)}_{=h_{2}}]}
$$

Thus,

$$
\therefore V=V_{2}=\sqrt{2 g \cdot \underbrace{\left(h_{1}-h_{2}\right)}_{\text {from manometer }}}
$$

4. Application of Bernoulli equation Example (3): Free jets

Applying the B.E. between (1) and (2),

$$
p_{1}+\rho \frac{V_{1}^{2}}{2}+\gamma z_{1}=p_{2}+\rho \frac{V_{2}^{2}}{2}+\gamma z_{2}
$$

Since $p_{1}=p_{2}=0$ and $V_{1} \approx 0$, and $z_{1}-z_{2}=h$,

$$
\gamma h=\rho \frac{V_{2}^{2}}{2}
$$

Solve for V_{2} :

$$
V_{2}=\sqrt{2 \frac{\gamma h}{\rho}}=\sqrt{2 g h}
$$

Note: Simplified Form of Continuity Equation

- Volume flow rate

$$
Q=V A
$$

- Mass flow rate

$$
\dot{m}=\rho Q=\rho V A
$$

- Conservation of mass

$$
\rho_{1} V_{1} A_{1}=\rho_{2} V_{2} A_{2}
$$

- Incompressible flow (i.e., $\rho=$ const.)

$$
V_{1} A_{1}=V_{2} A_{2}
$$

4. Application of Bernoulli equation Example (4): Venturimeter

$$
\text { Since } z_{1}=z_{2}
$$

$$
p_{1}+\rho \frac{V_{1}^{2}}{2}=p_{2}+\rho \frac{V_{2}^{2}}{2}
$$

From continuity,

$$
V_{1}=\frac{A_{2}}{A_{1}} V_{2}=\left(\frac{D_{2}}{D_{1}}\right)^{2} V_{2}
$$

Thus,

$$
p_{1}+\frac{1}{2} \rho\left(\left(\frac{D_{2}}{D_{1}}\right)^{2} V_{2}\right)^{2}=p_{2}+\rho \frac{V_{2}^{2}}{2}
$$

Solve for V_{2},

$$
V_{2}=\sqrt{\frac{2\left(p_{1}-p_{2}\right)}{\rho\left[1-\left(D_{2} / D_{1}\right)^{4}\right]}}
$$

Then,

$$
Q=V_{2} A_{2}
$$

Chapter 4. Fluid Kinematics

1. Velocity and Description methods
2. Acceleration and Material derivatives
3. Euler equation
4. Flow classification
5. Control-volume approach and RTT

1. Velocity and Description methods

- Lagrangian description: Keep track of individual fluid particles

$$
\underline{V_{p}}(t)=u_{p}(t) \hat{\boldsymbol{\imath}}+v_{p}(t) \hat{\boldsymbol{\jmath}}+w_{p}(t) \widehat{\boldsymbol{k}}
$$

- Eulerian description: Focus attention on a fixed point in space

$$
\underline{V}(\underline{x}, t)=u(\underline{x}, t) \hat{\boldsymbol{i}}+v(\underline{x}, t) \hat{\boldsymbol{\jmath}}+w(\underline{x}, t) \widehat{\boldsymbol{k}}
$$

2. Acceleration and Material derivatives

- Lagrangian:

$$
\begin{gathered}
\underline{a_{p}}=\frac{d V_{p}}{d t}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k} \\
a_{x}=\frac{d u_{p}}{d t}, a_{y}=\frac{d v_{p}}{d t}, a_{z}=\frac{d w_{p}}{d t}
\end{gathered}
$$

- Eulerian:

$$
\begin{gathered}
\underline{a}=\frac{D \underline{V}}{D t}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}+a_{z} \hat{k} \\
a_{x}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z} \\
a_{y}=\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z} \\
a_{z}=\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}
\end{gathered}
$$

2. Acceleration and material derivatives -Contd.

For 1D flow,

Lagrangian

$$
a_{p}(t)=\lim _{\delta t \rightarrow 0} \frac{u_{p}(t+\delta t)-u_{p}(t)}{\delta t}
$$

$$
\therefore a_{p}(t)=\frac{d u_{p}}{d t}
$$

Eulerian

$$
a(x, t)=\lim _{\delta t \rightarrow 0} \frac{u(x+u \delta t, t+\delta t)-u(x, t)}{\delta t}
$$

$$
=\lim _{\delta t \rightarrow 0} \frac{u(x+u \delta t, t+\delta t)-u(x, t+\delta t)+u(x, t+\delta t)-u(x, t)}{\delta t}
$$

$$
\begin{gathered}
=\lim _{\delta t \rightarrow 0} \frac{u(x+u \delta t, t+\delta t)-u(x, t+\delta t)}{(x+u \delta t)-x} \cdot \frac{(x+u \delta t)-x}{\delta t} \\
+\lim _{\delta t \rightarrow 0} \frac{u(x, t+\delta t)-u(x, t)}{\delta t}
\end{gathered}
$$

$$
=\frac{\partial u}{\partial x} \cdot u+\frac{\partial u}{\partial t}
$$

$$
\therefore a(x, t)=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}
$$

2. Acceleration and material derivatives -Contd.

- Material derivative*:

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+(\underline{V} \cdot \nabla)
$$

where

$$
\nabla=\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}
$$

*Note: Also referred as substantial derivative or total derivative

- Acceleration

$$
\underline{a}=\frac{D \underline{V}}{D t}=\underbrace{\frac{\partial \underline{V}}{\partial t}}_{\begin{array}{c}
\text { Local } \\
\text { acc. }
\end{array}}+\underbrace{(\underline{V} \cdot \nabla) \underline{V}}_{\begin{array}{c}
\text { Convective } \\
\text { acc. }
\end{array}}
$$

$\mathrm{o} \frac{\partial \underline{V}}{\partial t}=$ Local or temporal acceleration. Velocity changes with respect to time at a given point
o $(\underline{V} \cdot \nabla) \underline{V}=$ Convective acceleration. Spatial gradients of velocity

3. Euler equation

- In Cartesian coordinates

$$
\rho \underline{a}=\rho \underline{g}-\nabla p
$$

or

$$
\begin{aligned}
& \rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right)=\rho g_{x}-\frac{\partial p}{\partial x} \\
& \rho\left(\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right)=\rho g_{y}-\frac{\partial p}{\partial y} \\
& \rho\left(\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right)=\rho g_{z}-\frac{\partial p}{\partial z}
\end{aligned}
$$

4. Flow classification

- One-, Two-, and Three-dimensional flow
- Steady vs. Unsteady flow
- Incompressible vs. Compressible flow
- Viscous vs. Inciscid flow
- Rotational vs. Irrotational flow
- Laminar vs. Trubulent viscous flow
- Internal vs. External flow
- Separated vs. Unseparated flow

