Review for Exam 1

10. 13. 2014

Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering e-mail: hyun-se-yoon@uiowa.edu

Chapter 1. Introduction - Fluid properties

- 1. Fluids and No-slip condition
- 2. Dimensions and Units
- 3. Weight and Mass
- 4. Properties involving mass or weight of fluid
- 5. Viscosity
- 6. Vapor pressure and Cavitation
- 7. Surface tension

1. Fluids and No-slip condition

- Fluid: Deforms continuously (i.e., flows) when subjected to a shearing stress
 - Solid: Resists to shearing stress by a static deflection

- No-slip condition: No relative motion between fluid and boundary at the contact
 - The fluid "sticks" to the solid boundaries

A fluid flowing over a stationary surface comes to a complete stop at the surface because of the no-slip condition (left) and the development of a velocity profile due to the no-slip condition as a fluid flows over a blunt

2. Dimensions and Units

- **Dimension:** Quantitative expression of a physical variable (without numerical values)
 - **Primary dimensions**: Mass (M), length (L), time (T or t), and temperature (Θ or T). Also referred to as **basic dimensions**
 - **Secondary dimensions**: All other dimensions can be derived from the primary dimensions
- Unit: A way of attaching a number to quantitative dimensions
 - For example, length is dimension and meter or feet are units
 - SI unit system, BG unit system, EE unit system, and etc.

Variable	Dimension	SI unit	BG unit	
Velocity <u>V</u>	L/T	m/s	ft/s	
Acceleration <u>a</u>	L/T^2	m/s ²	ft/s ²	
Force <u>F</u>	ML/T^2	N (Kg \cdot m/s ²)	lbf	
Pressure <i>p</i>	F/L^2	Pa (N/m ²)	lbf/ft ²	
Density $ ho$	M/L^3	Kg/m ³	slug/ft ³	
Internal energy u	FL/M	J/Kg (N · m/kg)	BTU/lbm	
	Review for Exam 1 2014			

2. Dimensions and Units –Contd.

- **Dimensional homogeneity:** All equations must be dimensionally homogeneous. Each additive term in an equation must have the same dimensions
- **Consistent units**: Each additive terms must have the same units

Ex): Bernoulli equation

$$p + \frac{1}{2}\rho V^2 + \rho gz = \text{constant}$$

$$[MLT^{-2}] + \underbrace{[-][ML^3][L^2T^{-2}]}_{=[MLT^{-2}]} + \underbrace{[ML^{-3}][LT^{-2}][L]}_{=[MLT^{-2}]} = [MLT^{-2}]$$

• SI units:
$$\left(\frac{N}{m^2}\right) + (-)\left(\frac{kg}{m^3}\right)\left(\frac{m}{s}\right)^2 + \left(\frac{kg}{m^3}\right)\left(\frac{m}{s^2}\right)(m); \quad (N) = (kg)(m/s^2)$$

O BG units: $\left(\frac{\text{lbf}}{\text{ft}^2}\right) + (-)\left(\frac{\text{slugs}}{\text{ft}^2}\right)\left(\frac{\text{ft}}{\text{s}}\right)^2 + \left(\frac{\text{slugs}}{\text{ft}^2}\right)\left(\frac{\text{ft}}{\text{s}^2}\right)(\text{ft}); \quad (\text{lbf}) = (\text{slugs})(\text{ft/s}^2)$

3. Weight and Mass

- Weight W is a force dimension, i.e., $W = m \cdot g$
 - In SI unit:

 $W(N) = m(kg) \cdot g$, where g = 9.81 m/s²

– In BG unit:

 $W(lbf) = m(slug) \cdot g$, where g = 32.2 ft/s²

– In EE unit:

 $W(lbf) = m(lbm)/g_c \cdot g$, where g = 32.2 ft/s²

- \circ 1 N = 1 kg \times 1 m/s²
- \circ 1 lbf = 1 slug \times 1 ft/s²
- \circ g_c = 32.2 lbm/slug
- o 1 slug = 32.2 lbm

Unit System	Mass	Weight
SI	1 kg	9.81 N (= 1 kgf)
BG	1 slug	32.2 lbf
EE	1 lbm	1 lbf

4. Properties involving mass or weight of fluid

• Density

$$\rho = \frac{\text{mass}(m)}{\text{volume}(\Psi)}$$
 (kg/m³ or slugs/ft³)

• Specific Weight

$$\gamma = \frac{\text{weight } (mg)}{\text{volume } (\Psi)} = \rho g$$
 (N/m³ or lbf/ft³)

• Specific Gravity

$$SG = \frac{\gamma}{\gamma_{water}} \left(=\frac{\rho}{\rho_{water}}\right)$$

5. Viscosity

- Newtonian fluid
 - $\tau = \mu \frac{du}{dy}$

- τ : Shear stress (N/m² or lbf/ft²)
- μ : Dynamic viscosity (N·s/m² or lbf·s/ft²)
- $\nu = \mu/\rho$: Kinematic viscosity (m²/s or ft²/s)
- Shear force = $\tau \cdot A$
- Non-Newtonian fluid

$$\tau \propto \left(\frac{du}{dy}\right)^n$$

6. Vapor pressure and cavitation

- Vapor pressure: Below which a liquid evaporates, i.e., changes to a gas
- **Cavitation**: If the pressure drop is due to fluid velocity
 - Boiling: if the pressure drop is due to temperature effect
- Cavitation number:

$$C_a = \frac{p - p_v}{\frac{1}{2}\rho V_\infty^2}$$

Note: $C_a < 0$ implies cavitation

Cavitation formed on a marine propeller

7. Surface tension

• Surface tension force: The force developed at the interface of two immiscible fluids (e.g., liquid-gas) due to the unbalanced molecular cohesive forces at the fluid surface.

Attractive forces acting on a liquid molecule at the surface and deep inside the liquid

$$F_{\sigma} = \sigma \cdot L$$

- F_{σ} = Line force with direction normal to the cut
- *L* = Length of cut through the interface
- σ = Surface tension [N/m], the intensity of the molecular attraction per unit length along L

7. Surface tension – Contd.

- **Capillary Effect**: The rise (or fall) of a liquid in a small-diameter tube inserted into a the liquid.
- Capillary rise:

$$h = \frac{2\sigma}{\rho g R} \cos \phi$$

Note: ϕ = contact angle

The forces acting on a liquid column that has risen in a tube due to the capillary effect

Chapter 2. Fluid Statics

- 1. Absolute pressure, gage pressure, and vacuum
- 2. Pressure variation with elevation
- 3. Pressure measurements (Manometry)
- 4. Hydrostatic forces on plane surfaces
- 5. Hydrostatic forces on curved surfaces
- 6. Buoyancy
- 7. Stability
- 8. Fluids in rigid-body motion

1. Absolute pressure, gage pressure, and vacuum

- Absolute pressure: The actual pressure measured relative to absolute vacuum
- Gage pressure: Pressure measured relative to local atmospheric pressure
- Vacuum pressure: Pressures below atmospheric pressure

Figure 2.7 © John Wiley & Sons, Inc. All rights reserved.

2. Pressure variation with elevation

• Force balance in an incompressible static fluid (Newton's 2nd law per unit volume):

$$\rho \underbrace{\underline{a}}_{=0} = -\rho g \hat{k} - \nabla p + \mu \underbrace{\nabla^2 \underline{V}}_{=0}$$

$$\therefore \nabla p = -\gamma \widehat{k}$$

or,
$$\frac{\partial p}{\partial x} = 0; \ \frac{\partial p}{\partial y} = 0; \ \frac{\partial p}{\partial z} = -\gamma$$

• Since γ = constant (e.g., liquids),

 $p = -\gamma z + p_0$

By taking $p_0 = 0$ (gage) at z = 0,

 $\therefore p = -\gamma z$

Thus, the pressure increases linearly with depth

3. Pressure measurements (1): Piezometer tube

The simplest type of manometer

$$p_A = \gamma_1 h_1$$

- The fluid must be a liquid
- Suitable only if $p_A > p_{atm}$
- p_A must be relatively small so that h_1 is reasonable

3. Pressure measurements (2) U-Tube manometer

 Starting from one end, add pressure when move downward and subtract when move upward:

$$p_A + \gamma_1 h_1 - \gamma_2 h_2 = 0$$

Thus,

$$p_A = \gamma_2 h_2 - \gamma_1 h_1$$

or

$$p_A = \gamma_2 \left(h_2 - \frac{\gamma_1}{\gamma_2} h_1 \right)$$

If γ₁ ≪ γ₂ (e.g., γ₁ is a gas and γ₂ a liquid),

$$\therefore p_A \approx \gamma_2 h_2$$

3. Pressure measurements(3) Differential U-Tube manometer

© John Wiley & Sons, Inc. All rights reserved

• To measure the *difference* in pressure:

 $p_A+\gamma_1h_1-\gamma_2h_2-\gamma_3h_3=p_B \label{eq:pA}$ or

$$p_A - p_B = \gamma_2 h_2 + \gamma_3 h_3 - \gamma_1 h_1$$

• For a pipe flow where $\gamma_1 = \gamma_3$ as shown in the boxed figure,

$$p_A - p_B = \gamma_2 \left(1 - \frac{\gamma_1}{\gamma_2} h_2 \right)$$

if $\gamma_1 \ll \gamma_2$,
 $\therefore p_A - p_B \approx \gamma_2 h_2$

4. Hydrostatic forces on plane surfaces (1) Horizontal surfaces

 Pressure is uniform on horizontal surfaces (e.g., the tank bottom) as

$$p = \gamma h$$

• The magnitude of the resultant force is simply

$$F_R = pA = \gamma hA$$

4. Hydrostatic forces on plane surfaces (2) Inclined surfaces

Average pressure on the surface

 $\bar{p} = \gamma h_c$

- Resultant pressure force
 - $F_R = \bar{p}A = \gamma h_c A$
- Pressure center

$$y_R = y_c + \frac{I_{xc}}{y_c A}$$

5. Hydrostatic forces on curved surfaces

- Horizontal force component: $F_H = \bar{p}_{proj} \cdot A_{proj}$
- Vertical force component: $F_V = \gamma \Psi$ (weight of fluid above surface)

• Resultant force:
$$F_R = \sqrt{F_H^2 + F_V^2}$$

6. Buoyancy (1) Immersed bodies

$$F_B = F_{V2} - F_{V1} = \gamma \Psi$$

- Line of action (or the center of buoyancy) is through the centroid of ₩

6. Buoyancy (2) Floating bodies

7. Stability (1) Immersed bodies

- If *C* is above *G*: Stable (righting moment when heeled)
- If G is above C: Unstable (heeling moment when heeled)

7. Stability(2) Floating bodies

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- GM > 0: Stable (*M* is above *G*)
- *GM* < 0: Unstable (*G* is above *M*)

$$GM = \frac{I_{00}}{\frac{V}{12}} - CG$$
Review for that 1 2014

8. Fluids in rigid-body motion (1) Translation

$$\nabla p = \rho \left(\underline{g} - \underline{a} \right)$$

$$\circ \underline{a} = a_x \hat{i} + a_z \hat{k} \quad \text{(constant)}$$

$$\circ \underline{g} = -g \hat{k}$$

•
$$\frac{\partial p}{\partial s} = -\rho G$$

$$p = \rho Gs$$

$$\circ G = (a_x^2 + (g + a_z)^2)^{\frac{1}{2}}$$

$$\circ \theta = \tan^{-1} \frac{a_x}{g + a_z}$$

8. Fluids in rigid-body motion (2) Rotation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• $\nabla p = \rho \left(\underline{g} - \underline{a} \right)$ $\circ \underline{a} = -r\Omega^2 \hat{e}_r$ (constant Ω) $\circ \underline{g} = -g\hat{k}$

•
$$\frac{\partial p}{\partial r} = \rho r \Omega^2$$
 and $\frac{\partial p}{\partial z} = -\rho g$

•
$$p = \frac{\rho}{2}r^2\Omega^2 - \rho gz + C$$

•
$$z = \frac{p_0 - p}{\rho g} + \frac{\Omega^2}{2g} r^2$$

Chapter 3. Elementary Fluid Dynamics - The Bernoulli equation

- 1. Flow patterns
- 2. Streamline coordinates
- 3. Bernoulli equation
- 4. Application of Bernoulli equation

1. Flow patterns

- **Streamline**: A line that is everywhere tangent to the velocity vector at a given instant
- **Pathline**: The actual path traveled by a given fluid particle
- **Streakline**: The locus of particles which have earlier passed through a particular point
- For steady flow, all three lines coincide

Review for Fxam 1 2014

2. Streamline coordinates

• Velocity

$$\underline{V} = v_s \hat{s} + \underbrace{v_n}_{=0} \hat{n}$$

Note:
$$|\underline{V}| = v_s = V$$

Acceleration

$$\underline{a} = a_s \hat{s} + a_n \hat{n}$$

$$\circ \quad a_s = \frac{\partial v_s}{\partial t} + v_s \frac{\partial v_s}{\partial s}$$

$$\circ \quad a_n = \frac{\partial v_n}{\partial t} + \frac{v_s^2}{\Re}$$

2. Streamline coordinates – Contd.

• Euler equation: Application of Newton's 2nd law ($m\underline{a} = \sum \underline{F}$) to inviscid (i.e., frictionless or $\mu = 0$) and incompressible* fluid motions

$$\underbrace{\rho \underline{a}}_{\neq \overline{0}} = -\rho g \widehat{k} - \nabla p + \underbrace{\mu \nabla^2 \underline{V}}_{=0}$$

* Note: There is another version of Euler equation available for compressible fluid flows as well.

• The Euler equation in streamline coordinates

$$\rho \underline{a} = -\nabla (p + \gamma z)$$

where,

$$\nabla = \frac{\partial}{\partial s}\hat{s} + \frac{\partial}{\partial n}\hat{n}$$

or

$$\rho\left(\frac{\partial v_s}{\partial t} + v_s \frac{\partial v_s}{\partial s}\right) = -\frac{\partial}{\partial s}(p + \gamma z)$$
$$\rho\left(\frac{\partial v_n}{\partial t} + \frac{v_s^2}{\Re}\right) = -\frac{\partial}{\partial n}(p + \gamma z)$$

Review for Exam 1 2014

3. Bernoulli equation (1) Along streamline

 By integrating the Euler equation along s-direction (i.e., along a streamline) for a steady flow,

$$\int \rho \left(\frac{\frac{\partial v_s}{\partial t}}{\frac{\partial t}{\frac{\partial v_s}{\partial s}}} + v_s \frac{\partial v_s}{\partial s} \right) ds = -\int \frac{\partial}{\partial s} (p + \gamma z) ds$$

"steady"

or

$$\int_{1}^{2} \frac{\partial}{\partial s} \left(p + \frac{1}{2} \rho v_{s}^{2} + \gamma z \right) ds = 0$$

$$\therefore p_2 + \frac{1}{2}\rho V_2^2 + \gamma z_2 = p_1 + \frac{1}{2}\rho V_1^2 + \gamma z_1 \quad (\because v_s = V)$$

3. Bernoulli equation (2) Across streamline

• By integrating the Euler equation along *n*-direction (i.e., across streamlines) for a **steady** flow,

$$\int \rho \left(\frac{\partial v_n}{\partial t} + \frac{v_s^2}{\Re} \right) dn = -\int \frac{\partial}{\partial n} (p + \gamma z) dn$$

\vert steady

or

$$\int_{1}^{2} \left(\rho \frac{v_{s}^{2}}{\Re} dn + \frac{\partial}{\partial n} (p + \gamma z) \right) dn = 0$$

$$\therefore p_2 + \rho \int_1^2 \frac{V^2}{\Re} dn + \gamma z_2 = p_1 + \gamma z_1 \quad (\because v_s = V)$$

3. Bernoulli equation (3) Restrictions and alternative forms

Restrictions

Head form

- 1) Inviscid flow (i.e., no friction)
- 2) Incompressible flow (i.e., ρ = constant)
- 3) Steady flow
- Static, stagnation dynamic, and Total pressure

head

head

4. Application of Bernoulli equation Example (1): Stagnation tube

Since $V_2 = 0$ (stagnation point) and $z_1 = z_2$,

$$p_1 + \rho \frac{V_1^2}{2} = p_2$$

Solve for V_1 :

$$V_1 = \sqrt{\frac{2(p_2 - p_1)}{\rho}}$$

Also,
$$p_1 = \gamma d$$
 and $p_2 = \gamma (d + \ell)$

$$\therefore V_1 = \sqrt{2g\ell}$$

4. Application of Bernoulli equation Example (2): Pitot tube

$$p_1 + \rho \frac{V_1^2}{2} + \gamma z_1 = p_2 + \rho \frac{V_2^2}{2} + \gamma z_2$$

where $V_1 = 0$ (stagnation point),

$$p_1 + \gamma z_1 = p_2 + \rho \frac{V_2^2}{2} + \gamma z_2$$

Solve for V_2 :

$$V_{2} = \sqrt{2g\left[\underbrace{\left(\frac{p_{1}}{\gamma} + z_{1}\right)}_{=\hat{h}_{1}} - \underbrace{\left(\frac{p_{2}}{\gamma} + z_{2}\right)}_{=\hat{h}_{2}}\right]}$$

Review fo

$$\therefore V = V_2 = \sqrt{2g \cdot \underbrace{(h_1 - h_2)}_{\text{from manometer}}}$$

4. Application of Bernoulli equation Example (3): Free jets

Applying the B.E. between (1) and (2),

Since $p_1 = p_2 = 0$ and $V_1 \approx 0$, and $z_1 - z_2 = h$,

$$\gamma h = \rho \frac{V_2^2}{2}$$

Solve for V_2 :

Note: Simplified Form of Continuity Equation

- Volume flow rate Q = VA
- Mass flow rate $\dot{m} = \rho Q = \rho V A$
- Conservation of mass $\rho_1 V_1 A_1 = \rho_2 V_2 A_2$
- Incompressible flow (i.e., ρ = const.) $V_1A_1 = V_2A_2$

Unnumbered 3 p120 © John Wiley & Sons, Inc. All rights reserved.

4. Application of Bernoulli equation Example (4): Venturimeter

Since
$$z_1 = z_2$$
,

$$p_1 + \rho \frac{V_1^2}{2} = p_2 + \rho \frac{V_2^2}{2}$$

From continuity,

$$V_1 = \frac{A_2}{A_1} V_2 = \left(\frac{D_2}{D_1}\right)^2 V_2$$

Thus,

$$p_1 + \frac{1}{2}\rho\left(\left(\frac{D_2}{D_1}\right)^2 V_2\right)^2 = p_2 + \rho \frac{V_2^2}{2}$$

Solve for V_2 ,

$$V_2 = \sqrt{\frac{2(p_1 - p_2)}{\rho [1 - (D_2/D_1)^4]}}$$

Then,

$$Q = V_2 A_2$$

Review for Exam 1 2014

Chapter 4. Fluid Kinematics

- 1. Velocity and Description methods
- 2. Acceleration and Material derivatives
- 3. Euler equation
- 4. Flow classification
- 5. Control-volume approach and RTT

1. Velocity and Description methods

• Lagrangian description: Keep track of individual fluid particles

$$\underline{V_p}(t) = u_p(t)\hat{\boldsymbol{i}} + v_p(t)\hat{\boldsymbol{j}} + w_p(t)\hat{\boldsymbol{k}}$$

• **Eulerian** description: Focus attention on a fixed point in space

$$\underline{V}(\underline{x},t) = u(\underline{x},t)\hat{\boldsymbol{i}} + v(\underline{x},t)\hat{\boldsymbol{j}} + w(\underline{x},t)\hat{\boldsymbol{k}}$$

2. Acceleration and Material derivatives

• Lagrangian:

$$\underline{a_p} = \frac{dV_p}{dt} = a_x\hat{i} + a_y\hat{j} + a_z\hat{k}$$
$$a_x = \frac{du_p}{dt}, a_y = \frac{dv_p}{dt}, a_z = \frac{dw_p}{dt}$$

• Eulerian:

$$\underline{a} = \frac{D\underline{V}}{Dt} = a_x\hat{\imath} + a_y\hat{\jmath} + a_z\hat{k}$$

$$a_{x} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}$$
$$a_{y} = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z}$$
$$a_{z} = \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z}$$

2. Acceleration and material derivatives –Contd.

For 1D flow,

2. Acceleration and material derivatives –Contd.

• Material derivative*:

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \left(\underline{V} \cdot \nabla\right)$$

where

$$\nabla = \frac{\partial}{\partial x}\hat{\imath} + \frac{\partial}{\partial y}\hat{\jmath} + \frac{\partial}{\partial z}\hat{k}$$

*Note: Also referred as substantial derivative or total derivative

Acceleration

$$\underline{a} = \frac{D\underline{V}}{Dt} = \frac{\partial \underline{V}}{\partial \underline{t}} + \underbrace{(\underline{V} \cdot \nabla)\underline{V}}_{\text{Local acc.}}$$

- $\circ \frac{\partial V}{\partial t}$ = Local or temporal acceleration. Velocity changes with respect to time at a given point
- $\circ (\underline{V} \cdot \nabla) \underline{V}$ = Convective acceleration. Spatial gradients of velocity

3. Euler equation

• In Cartesian coordinates

$$\rho \underline{a} = \rho \underline{g} - \nabla p$$

or

$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) = \rho g_x - \frac{\partial p}{\partial x}$$
$$\rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right) = \rho g_y - \frac{\partial p}{\partial y}$$
$$\rho \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right) = \rho g_z - \frac{\partial p}{\partial z}$$

4. Flow classification

- One-, Two-, and Three-dimensional flow
- Steady vs. Unsteady flow
- Incompressible vs. Compressible flow
- Viscous vs. Inciscid flow
- Rotational vs. Irrotational flow
- Laminar vs. Trubulent viscous flow
- Internal vs. External flow
- Separated vs. Unseparated flow