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Chapter 1. Introduction

- Fluid properties
Fluids and No-slip condition
Dimensions and Units
Weight and Mass
Properties involving mass or weight of fluid
Viscosity
Vapor pressure and Cavitation

. Surface tension



1. Fluids and No-slip condition

e Fluid: Deforms continuously (i.e., flows) when
subjected to a shearing stress

— Solid: Resists to shearing stress by a static deflection

* No-slip condition: No
relative motion between
fluid and boundary at the
contact

— The fluid “sticks” to the solid
boundaries

A fluid flowing over a stationary surface comes to a
complete stop at the surface because of the no-slip
condition (left) and the development of a velocity profile
due to the no-slip condition as a fluid flows over a blunt
nose (right)



2. Dimensions and Units

 Dimension: Quantitative expression of a physical variable (without

numerical values)
O Primary dimensions: Mass (M), length (L), time (T or t), and
temperature (O or T). Also referred to as basic dimensions
O Secondary dimensions: All other dimensions can be derived from the

primary dimensions

e Unit: A way of attaching a number to quantitative dimensions
O For example, length is dimension and meter or feet are units
O Sl unit system, BG unit system, EE unit system, and etc.

Variable Dimension Sl unit BG unit
Velocity V L/T m/s ft/s
Acceleration a L/T? m/s? ft/s?
Force F ML/T? N (Kg - m/s?) Ibf
Pressure p F/L? Pa (N/m?) Ibf/ft?
Density p M/L3 Kg/m3 slug/ft3
Internal energy u FL/M J/Kg (N - m/kg) BTU/lbm
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2. Dimensions and Units —Contd.

 Dimensional homogeneity: All equations must be dimensionally
homogeneous. Each additive term in an equation must have the same

dimensions

e Consistent units: Each additive terms must have the same units

Ex): Bernoulli equation

1
p + E’OVZ + pgz = constant

[MLT 2] + [=][ML3][L*T 2] + [ML73][LT?][L] = [MLT 2]
=[MLT 2] =[MLT 2]

0 Slunits: (=) + () (%) (?)2 +(E)(3) ) M) = (kg)(m/s?)

0 BG units: (33) + () (52) (5)2 + (52 () () (bf) = (slugs)(ft/s?)

fi ft2 s ft2



3. Weight and Mass

e Weight W is a force dimension, i.e., W =m -g
— In Sl unit:
W(N) = m(kg) -g, where g =9.81 m/s?
— In BG unit:
W (Ibf) = m(slug) -g, where g = 32.2 ft/s?
— In EE unit:
W (Ibf) = m(lbm)/g.-g, where g = 32.2 ft/s?

_ 2
0 1N=1kgx1m/s mw

0 11Ibf=1slug x 1 ft/s? 1 kg 9.81 N (= 1 kgf)
0 g.=32.2 lbm/slug BG 1slug  32.2 Ibf
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4. Properties involving mass or weight of fluid

* Density
p = Vr;?:’;éng;) (kg/m3 or slugs/ft3)
e Specific Weight
ight
y =BT — pg  (N/m? or Ibf/f)

e Specific Gravity

s6 =1 (<L)
ywater pwater



5. Viscosity

. . 50 u(y)
Newtonian fluid SR |
: Vel();ll:y
] —= u=3%u rofile
du !/ /’ ‘ du ’

/ / -
‘Eir[ "8“'2// dy | /A I:' fr=wu du

T:,Ud_y 5 , dy

! / No slip at wall
/ dx / 0

T: Shear stress (N/m? or Ibf/ft?) @ ®
(: Dynamic viscosity (N-s/m? or Ibf-s/ft?)

- v = u/p: Kinematic viscosity (m?/s or ft?/s)
Shear force=7- A

Bingham plastic

Shear thinning —=,

Newtonian

Shearing stress, 7

Non-Newtonian fluid

o du\"
T &

~—— Shear thickening

. . du
Rate of shearing strain, dy
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6. Vapor pressure and cavitation

e Vapor pressure: Below which a liquid evaporates, i.e., changes
to a gas

e Cavitation: If the pressure drop is due to fluid velocity

— Boiling: if the pressure drop is due to temperature effect

e Cavitation number:

P — Py
Coa =45
2P Voo

Note: C, < 0 implies cavitation

Cavitation formed on a marine propeller
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7. Surface tension

Surface tension force: The force
developed at the interface of two
immiscible fluids (e.g., liquid-gas) due to
the unbalanced molecular cohesive
forces at the fluid surface.

E; = Line force with direction normal to the cut
L = Length of cut through the interface

o = Surface tension [N/m], the intensity of the
molecular attraction per unit length along L

e
N

- A molecule
on the surface

— A molecule
inside the
liquid

Attractive forces acting on a
liguid molecule at the surface
and deep inside the liquid

odL

odL

odL



7. Surface tension — Contd.

Capillary Effect: The rise (or fall) of a liquid in a small-
diameter tube inserted into a the liquid.

e Capillary rise:

2mRao;
N Y
20 B
h=——cos¢ i Ll
pgR Liquid 4

Note: ¢ = contact angle

The forces acting on a liquid column that has
risen in a tube due to the capillary effect



Chapter 2. Fluid Statics

. Absolute pressure, gage pressure, and vacuum

Pressure variation with elevation
Pressure measurements (Manometry)

Hydrostatic forces on plane surfaces

Hydrostatic forces on curved surfaces

. Buoyancy

Stability
Fluids in rigid-body motion



1. Absolute pressure, gage pressure,
and vacuum

Absolute pressure: The actual pressure measured relative to absolute vacuum
Gage pressure: Pressure measured relative to local atmospheric pressure
Vacuum pressure: Pressures below atmospheric pressure

3

1
— & —;

Gage pressure @ 1

Local atmospheric

[}

5 pressure reference

[7p]

4 2

a (<) y Gage pressure @ 2
Absolute pressure ) (suction or vacuum)

@1
Absolute pressure
@2

Absolute zero reference

Figure 2.7
© John Wiley & Sons, Inc. All rights reserved.



2. Pressure variation with elevation

on 0x " dy

Since y = constant (e.g., liquids),

P=—YZ+Dpo

By taking po = 0 (gage) at z =0,

“p =Yz

Thus, the pressure increases linearly with depth

Force balance in an incompressible static fluid (Newton’s 2" law per unit volume):




3. Pressure measurements
(1): Piezometer tube

"

Open

|__
g

The simplest type of manometer

Pa=Y1hy

The fluid must be a liquid

Suitable only if p4 > Parm

p4 must be relatively small so that
h, is reasonable



3. Pressure measurements
(2) U-Tube manometer

e Starting from one end, add pressure
Open when move downward and subtract

when move upward:
h _
% _T pa+Vvihy —y2h, =0
A & — () Iy Thus,
hy i Pa = V2hy —vihy
or
B —L (2) ® (3)
V1
Vi Pa=7Y2 <h2 _—h1>
(gage ™ |
fluid)
\ J .
@ L e Ify; <y, (e.g.,y;isagasandy, a
" - liquid),

S Ppa = Yahy



3. Pressure measurements
(3) Differential U-Tube manometer

 To measure the difference in
pressure:

Pa+Vihi —y2hy; —y3hs = pp
or

Pa — P = YV2hy +y3hs —yihy

e For a pipe flow where y; = y3 as
shown in the boxed figure,

V1
Pa— P =72 (1 —_h2>
V2

If yl K ]/2;
S Pa— D = V2h;
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4. Hydrostatic forces on plane surfaces
(1) Horizontal surfaces

Free surface

i p=0 \ o i e Pressure is uniform on horizontal
Y . s e surfaces (eg , the tank bottom)
Specific weight =y as
p=vh
h ‘ F, ,P=7h
l l l l  The magnitude of the resultant
Y v YYY YY YYVYY force IS Slmply
/ \ p=0
VAN Fr = pA =yhA

(a) Pressure on tank bottom

Figure 2.16
© John Wiley & Sons, Inc. All rights reserved.



=

Hydrostatic forces on plane surfaces
(2) Inclined surfaces

Average pressure on the surface

p = vh,

Resultant pressure force

Fr =pA=vh:A

Pressure center

IXC

VcA

Yr = Yc t+

© John Wiley & Sons, Inc. All rights reserved.

Review for Exam 1 2014 19



5. Hydrostatic forces on curved surfaces

|
|
| air

|\_,/\_/\_,_/\_/\_/\._.4\_)i

Curved surface
projection onto
Fy vertical plane

4,

|

|

|

|

|

|

|

|
. | .
Fy— Iy

T

Fy

* Horizontal force component: Fy = Pproj * Aproj

e \Vertical force component: F, = y¥ (weight of fluid above surface)

e Resultant force: Fg = /th, + Ff
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6. Buoyancy

(1) Immersed bodies

e Surface Fg =Fyo = k1 =v¥
— 1
e Fluid weight equivalent to body
volume ¥
e Line of action (or the center of
buoyancy) is through the
centroid of ¥
Surface
2
Fy(2)

Review for Exam 1 2014
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6. Buoyancy
(2) Floating bodies

Neglect the displaced air up here.

(Displaced volume) x ( v of fluid) = body weight

Review for Exam 1 2014
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7. Stability

(1) Immersed bodies

S— A —— AV —
Restoring Overturning
couple couple
Stable Unstable

Figure 2.25 Figure 2.26
& John Wi iley & Sons, Inc. All rights reser ved, & John Wi iley & Sons, Inc. All rights reser ved,

e If Cisabove G: Stable (righting moment when heeled)
e |If G is above C: Unstable (heeling moment when heeled)
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7. Stability
(2) Floating bodies

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

. ) Small Small
Line of AG disturbance A disturbance
symmetry \ angle \ angle

\\/ \
Either Restoring moment or Overturning moment
(a) (b) ()

e GM > 0:Stable (M is above G)
e GM < 0:Unstable (G is above M)

I
cM==2_cc

Review for %m 12014
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8. Fluids in rigid-body motion
(1) Translation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

+ 7p=r(g-q)
a=a,l+ azﬁ (constant)

O
0 g=—gk
op _
35 = PG
* p=pGs
1
0 G=(a;+(g+a,)?):
0 6 =tan ! —%
gta;

25

Review for Exam 1 2014




8. Fluids in rigid-body motion
(2) Rotation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Vp=p(g—2)

= —r(?%e, (constant ()

__ Still-water
level

[
|
I
=
=
S
N
Q
>
o
|
I
|
=)
S

Axis of __y
\

rotation | P
n_s< e p :Erzﬂz —pgz+C
ight © T-he McGraw-Hill C lnc ion required for or display. p O — p Q 2 2
Ex: T °» 7 = +—r
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Chapter 3. Elementary Fluid Dynamics

- The Bernoulli equation

Flow patterns
Streamline coordinates
Bernoulli equation

= w e

Application of Bernoulli equation



— [ ]

—
=

1. Flow patterns

Streamline: A line that is everywhere tangent to the velocity vector
at a given instant

Pathline: The actual path traveled by a given fluid particle

Streakline: The locus of particles which have earlier passed through
a particular point

For steady flow, all three lines coincide

_: l Dye or smoke

] Fluid p[lr[i:(.'lt‘ al f = "x|.-|r| lIIjCClL'l.g fuid particle

: e [ Streakline
-4 * .

1 Pathline ‘4-‘
- ™ —r = * o T .a'

3 > o I - ® -

1 >

] Fluid particle at 1 = f_4 Ay { e
L vl — — \Grere
3 Fluid particle at some v X

e o | | - intermediate time
.
0 1 2 3 4 5 g
A [
Streamline Pathline Streakline

Review for Exam 1 2014

28



2. Streamline coordinates

R = Ris) n=n;

n n=0
v

|___/s
i Streamlines

* \Velocity

V=vs+v,n

—
=0

S

Note: |Z| =v, =V

e Acceleration

Review for Exam 1 2014
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0vg 0vg
O ag E-I_USE
ovy, . V2
o a, F‘Fa
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2. Streamline coordinates — Contd.

* Euler equation: Application of Newton’s 2" law (ma = ), F) to
inviscid (i.e., frictionless or u = 0) and incompressible* fluid motions

~——— * Note: There is another
*0 =0 version of Euler equation
available for compressible
fluid flows as well.

pa =—pgk —Vp + uv’y

e The Euler equation in streamline coordinates

pa=-V(p+yz)
where,

or

ovs | s\ _ _ 2
’D(E-I_vs as)_ as(p-l_yz)

p(Zr+%)=-Z(p+y2)



3. Bernoulli equation
(1) Along streamline

By integrating the Euler equation along s-direction (i.e., along a
streamline) for a steady flow,

j av5+avsd_ja(+)d
Ploac " %as |7 T ) as P T
=0
wsteady
or
20 1
jas p+= va+yz ds =0
L 2 1 2
“P2+ 5PV tyvzy =pr+5pVl +yvzy (Bus=V)

2 2



3. Bernoulli equation
(2) Across streamline

By integrating the Euler equation along n-direction (i.e., across
streamlines) for a steady flow,

ov, V2 0
jp E +§ dn——J%(p+yz)dn

=0
wsteady

or
2 2
(7 d B
Jl (pmdn+an(p+yz)>dn—0

Zv2
S P2t P gd" +yz;=p1+vzy (Cug=V)
1



3. Bernoulli equation
(3) Restrictions and alternative forms

* Restrictions
1) Inviscid flow (i.e., no friction)
2) Incompressible flow (i.e., p = constant)
3) Steady flow

e Static, stagnation dynamic, and Total pressure

1
2 —
pot3Vt A v o= o
static — hydrostatic Total
pressure gr}*,élsasrlrll;g pressure pressure

N—

stagnation pressure

e Head form

p v

- + — + z =H

14 29 i v

< < elevation  total
pressure  yelocity head head

head head



4. Application of Bernoulli equation
Example (1): Stagnation tube

Ve Vs
P1 +P7+VZ1 = D2 +P7+VZZ

Since V, = 0 (stagnation point) and z; = z,

Ve
p1 t P =Dz
Solve for V;:
2 —
v, = (p2 — p1)
p

Also,p; = ydandp, =y(d + ¢)

o Vl = 4/ ng



4. Application of Bernoulli equation
Example (2): Pitot tube

V2 V.2

1 2
Ptptyza=ptpo-tyz
Stagnation pressure tap — N where V; = 0 (stagnation point),
j;autic pressute tap V22
P1tVZ1 = D2 ‘|‘,07+)/Z2
\ Solve for V5:
i/
— - =)/
¢ V2= |29 <&+Z)—<&+Z>
2 y 1 ” 2
=h1 =h2

from manometer



4. Application of Bernoulli equation
Example (3): Free jets

Applying the B.E. between (1) and (2),

VE V7
P1 +P7+VZ1 = D2 +P7+VZZ

Sincep; =p, =0andV; = 0,and z; — z, = h,

VZ

h=p-—=

Solve for V,:

V2= 2&:1/2‘9}1

p



Note: Simplified Form of Continuity Equation

Volume flow rate
V, =2V,
A A A A Q = VA

(2)

Mass flow rate
m = pQ = pVA

Conservation of mass
p1V14, = p,V,A,

T
[ J

Incompressible flow (i.e., p = const.)
Vid, = V4,

e (1)

Vi

Unnumbered 3 p120
© John Wiley & Sons, Inc. All rights reserved.



4. Application of Bernoulli equation
Example (4): Venturimeter

Since z1 = z,,
+ Vi _ + Va
0 p1 TP 2 =DP2TPp 2

. From continuity,
D, (I) (2)e 5 A D 2
: V, = =2V (—2> v,

T A2 \D

Thus,

2
o[ (22 2V = p, + Vi
P1 ZP D, 2| = P2 PZ

Solve for V/,,

V. = 2(P1 —Pz)
27 |pl[1 = (Dy/D)*]

Q =V,4,

Then,



Chapter 4. Fluid Kinematics

. Velocity and Description methods

. Acceleration and Material derivatives
Euler equation

Flow classification

. Control-volume approach and RTT



1. Velocity and Description methods

e Lagrangian description: Keep track of

PR D M= S individual fluid particles
/ I":n!:]i:u: ‘,“‘ ‘7’
[ Vo (©) = (O + vy (O] + wy (O

\ Fluid particle at r=1_,

Fluid particle at some
intermediate time

e Eulerian description: Focus attention
on a fixed point in space

V(x, t) = u(g, t)i + v(x, t)j + W(g, t)E




2. Acceleration and Material derivatives

 Lagrangian:

dly .
@=d—?= axi+ a,j+ azk
du dv dw
G ==L, q, =P g =P
dt dt dt
e Eulerian:
DV A . ~
a=——=axl+ay,j+ask

t

B 6u+ 6u+ 6u+ Jdu
e T Yax T Vay T oz
B av+ 6v+ 6v+ v
Y= Yax T Tay TV az



2. Acceleration and material derivatives —Contd.

For 1D flow,
Lagrangian Eulerian
Uy (1) Uy, (t + 6t) u(x, t) u(x + udt, t + t)
o—> o > o—> @ >
L Uy (t + 6t) — uy(t) _ . u(x+udt t+6t) - u(x,t)
ap(t) = 61%1—130 St alxt) = Sl%r—r}o 5t
du o u(x +udt, t+ 6t) —ulx, t + 6t) +ulx, t + 6t) —u(x, t)
S (t) = —p = hm 5
p dt 5t—0 t
o ulx+udt,t +6t) —ulx,t +6t) (x+udt) —x
= lim .
5t—0 (x +udt) — x ot
o ulx, t+ 6t) —u(x, t)
+ lim
5t—0 ot
B ou N ou
“ox T 3t
ou Ju
a(x,t) s + ua—
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2. Acceleration and material derivatives —Contd.

Material derivative*:

where

Acceleration

v
TN
given point

(0

D—a+(v 7)

Dt ot
V—a“+aA+al€
“ox "oyl "oz
-2 aK+(V )%

4= t QE — ‘=

Local Congggtlve

dCcC.

*Note: Also referred as
substantial derivative or total
derivative

= Local or temporal acceleration. Velocity changes with respect to time at a

o) (K : V)K = Convective acceleration. Spatial gradients of velocity



3. Euler equation

e |n Cartesian coordinates

pa=pg—"Vp

or

d dx dy 0z

<0u ou ou 6u> op
P TU— TV —TW =pGx — =
0x
<5v ov ov 617) op

p

P +ua+v@+waz

0W+ 6W+ 6W+ ow\ dp
P\t " “ox ”ay Wz ) =PIz



4. Flow classification

One-, Two-, and Three-dimensional flow
Steady vs. Unsteady flow
Incompressible vs. Compressible flow
Viscous vs. Inciscid flow

Rotational vs. Irrotational flow

Laminar vs. Trubulent viscous flow
Internal vs. External flow

Separated vs. Unseparated flow
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