NAME
Fluids-ID

Quiz 9. The exit plane of a 0.20 m diameter pipe is partially blocked by a plate with a hole in it that produces a 0.10 m diameter stream as shown in the figure. The water velocity in the pipe is $5 \mathrm{~m} / \mathrm{s}$. Gravity and viscous effects are negligible. Determine (a) the pressure at inlet by using Bernoulli's equation and the conservation of mass, (b) the force needed to hold the plate against the pipe.
Hint:

1) Gravity is negligible.
2) Flow is incompressible, steady flow.
3) Density of water, $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$
4) Pressure at (2), $p_{2}=p_{a t m}$


## Momentum equation:

$$
\Sigma \underline{\boldsymbol{F}}=\frac{\partial}{\partial t} \int_{C V} \underline{\boldsymbol{V}} \rho d \forall+\int_{C S} \underline{\boldsymbol{V}} \rho \underline{\boldsymbol{V}} \cdot d \underline{\boldsymbol{A}}
$$

Bernoulli's equation:

$$
p_{1}+\frac{1}{2} \rho V_{1}^{2}+\gamma z_{1}=p_{2}+\frac{1}{2} \rho V_{2}^{2}+\gamma z_{2}
$$



Thus,

$$
V_{2}=\frac{A_{1}}{A_{2}} V_{1}=\frac{\frac{\pi}{4}(0.2 m)^{2}}{\frac{\pi}{4}(0.1 m)^{2}} \times(5 \mathrm{~m} / \mathrm{s})=20 \mathrm{~m} / \mathrm{s}
$$

(+1 point)

Assuming $z_{1}=z_{2}$ and $p_{2}=0$, Bernoulli's equation reduces to

$$
\begin{gathered}
p_{1}=\frac{1}{2} \rho\left(V_{2}^{2}-V_{1}^{2}\right) \\
p_{1}=\frac{1}{2}\left(998 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(\left(20 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-\left(5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}\right)=187 \mathrm{kPa}
\end{gathered}
$$

(+2 points)
(+0.5 point)

## November 7, 2014

Linear momentum equation

$$
\Sigma F=p_{1} A_{1}-F=V_{2} \rho V_{2} A_{2}-V_{1} \rho V_{1} A_{1}
$$

Since $\rho V_{2} A_{2}=\rho V_{1} A_{1}=\dot{m}=157 \mathrm{~kg} / \mathrm{s}$

$$
F=p_{1} A_{1}-\dot{m}\left(V_{2}-V_{1}\right)
$$

Thus,

$$
F=(187 \mathrm{kPa})\left(\frac{\pi}{4}(0.2 m)^{2}\right)-\left(157 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left(\left(20 \frac{\mathrm{~m}}{\mathrm{~s}}\right)-\left(5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)\right)=3520 \mathrm{~N}
$$

(+0.5 points)

