NAME
Fluids-ID

Quiz 8. When the pump in the figure draws $220 \mathrm{~m}^{3} / \mathrm{h}$ of water at $20^{\circ} \mathrm{C}$ from the reservoir, the total friction head loss is 5 m . The flow discharges through a nozzle to the atmosphere. Estimate the pump power in kW delivered to the water.

1) gravity, $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
2) density, $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$
3) $\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}+h_{p}=\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{L}$

4) Pump power, $P=\rho g Q h_{p}$

Note: Attendance (+2 points), format (+1 point)

Solution

Assume $V_{1}=0$ and $p_{1}=p_{2}=0$

$$
h_{p}=\frac{V_{2}^{2}}{2 g}+\left(z_{2}-z_{1}\right)+h_{L}
$$

Calculating velocity at location 2

$$
V_{2}=\frac{Q}{A_{2}}=\frac{\frac{220}{3600}}{\pi(0.025)^{2}}=31.12 \mathrm{~m} / \mathrm{s}
$$

(+1 point)
Thus,

$$
h_{p}=\frac{(31.12)^{2}}{2(9.81)}+2+5=56.4 \mathrm{~m}
$$

(+1 point)
The pump power, P ,

$$
P=\rho g Q h_{p}=(998)(9.81)\left(\frac{220}{3600}\right)(56.4)=33.7 \mathrm{~kW}
$$

