NAME

Fluids-ID
Quiz 3. A 6-ft-diameter cylindrical drainage conduit of the type shown in figure is half full of water at rest. The length of the drainage (into to the paper) is 1 -ft. Air pressure inside the drainage is same pressure as the atmospheric pressure. $\left(\gamma_{\text {water }}=62.4 \mathrm{lb} / \mathrm{ft}^{3}\right)$
(a) Determine the magnitude and location of the horizontal component of the force on curved section $B C$ of the conduit wall.
(Hint: Moment of inertia for a rectangle $I=\frac{b h^{3}}{12}$)

(b) Determine the magnitude and location of the vertical component of
the force on curved section BC of the conduit wall. (Hint: Centroid of quarter circle area $\frac{4 R}{3 \pi}$)
Note: Attendance (+2 points), Format (+1 point)
Solution:

(a)

$$
\begin{align*}
& F_{H}=\gamma h_{c} A \tag{+2point}\\
& F_{H}=\gamma\left(\frac{h}{2}\right)(h \times b)=\left(\frac{62.4 l b}{f t^{3}}\right)\left(\frac{3}{2} f t\right)\left(3 \times 1 f t^{2}\right)=281 l b \tag{+0.5point}\\
& y_{H}=\frac{I}{y_{c} A}+y_{c} \\
& y_{H}=\frac{b h^{3} / 12}{(h / 2)(b h)}+\frac{h}{2}=\frac{1 \times \frac{3^{3}}{12} f t^{4}}{\left(\frac{3}{2} f t\right) \times\left(1 \times 3 f t^{2}\right)}+\frac{3}{2} f t=2 f t
\end{align*}
$$

(+1 point)
(+0.5 point)
(b)

$$
\begin{align*}
& F_{V}=\gamma V \\
& F_{V}=\left(62.4 l b / f t^{3}\right)\left(9 \pi / 4 f t^{2} \times 1 f t\right)=441 l b \\
& y_{V}=\frac{4 R}{3 \pi} \\
& y_{V}=\frac{4 \times 3 \mathrm{ft}}{3 \pi}=1.27 \mathrm{ft} \tag{+0.5point}
\end{align*}
$$

(+2 point)
(+0.5 point)

