NAME

Fluids-ID
Quiz 14. A smooth 0.10-m-diameter cork ball ($\mathrm{SG}=0.21$) is tied to an object on the bottom of a river as is shown in Figure 2. The flow speed U is $1.12 \mathrm{~m} / \mathrm{s}$. Neglect the string drag. Determine (a) buoyancy force B, (b) weight W, and (c) drag force on cork ball D_{f} (Hint: $D_{f}=\frac{1}{2} \rho U^{2} A C_{D}$). (d) Calculate angle θ (Hint: Use $\sum F_{x}=0$ and $\sum F_{y}=0$).

$$
\left(\rho_{\text {water }}=998 \mathrm{~kg} / \mathrm{m}^{3}, v_{\text {water }}=1.12 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, \forall_{\text {sphere }}=\frac{4}{3} \pi R^{3}\right)
$$

Figure 1 - Drag coefficient C_{D} as a function of Reynolds number Re

Figure 2 - (a) Schematic and (b) free body diagram for crock ball
Note: Attendance (+2 points), format (+1 point)

Solution:

a) Buoyancy force

$$
B=\gamma \forall=\gamma \frac{4}{3} \pi R^{3}=\left(998 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\left(\frac{4 \pi}{3}\right)\left(\frac{0.1 \mathrm{~m}}{2}\right)^{3}=5.126 \mathrm{~N}
$$

(+1 point)
b) Weight

$$
W=\gamma_{c o r k} \forall=\left(\frac{\gamma_{c o r k}}{\gamma}\right) \gamma \Downarrow=S G \cdot B=0.21 \times 5.126 \mathrm{~N}=1.077 \mathrm{~N}
$$

c) Calculating drag force

$$
R e=\frac{U D}{v}=\frac{(1.12 \mathrm{~m} / \mathrm{s})(0.1 \mathrm{~m})}{1.12 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}}=1 \times 10^{5}
$$

(+1 points)

From figure 7, $C_{D}=0.5$ at $R e_{D}=10^{5}$
(+1 points)

$$
\begin{gathered}
D_{f}=\frac{1}{2} \rho U^{2} A C_{D} \\
D_{f}=\frac{1}{2}\left(998 \mathrm{~kg} / \mathrm{m}^{3}\right)(1.12 \mathrm{~m} / \mathrm{s})^{2}\left(\frac{\pi}{4}\right)(0.1 \mathrm{~m})^{2}(0.5)=2.458 \mathrm{~N}
\end{gathered}
$$

(+2 point)
d) Calculating angle θ

$$
\begin{gathered}
\sum F_{x}=0: T \cos \theta=D(1) \\
\sum F_{y}=0: T \sin \theta=B-W(2)
\end{gathered}
$$

Dividing equation (2) by equation (1)

$$
\begin{gathered}
\tan \theta=\frac{B-W}{D} \\
\theta=\tan ^{-1} \frac{B-W}{D}=\tan ^{-1} \frac{5.126 \mathrm{~N}-1.077 \mathrm{~N}}{2.458 \mathrm{~N}}=\mathbf{5 8 . 7 ^ { \circ }}
\end{gathered}
$$

