NAME
Fluids-ID
Quiz 12. The pump shown in Figure delivers a head of 250 ft to the water. The differene in elevation of the two ponds is 200 ft . $\left(P=\rho \mathrm{g} Q h_{p} ; \rho=1.94\right.$ slugs $/ \mathrm{ft}^{3} ; \mu=2.34 \times 10^{-5} \mathrm{lb} \cdot \mathrm{s} / \mathrm{ft}^{2} ; \mathrm{g}=32.2 \mathrm{ft} / \mathrm{s}^{2} ; 1 \mathrm{hp}=550$ $\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}$; Reynolds number, $\operatorname{Re}=\rho V D / \mu)$

Energy Equation

$$
\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}+h_{p}=\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}+\frac{V^{2}}{2 g}\left(\frac{f \ell}{d}+\sum K_{L}\right)
$$

$\frac{1}{\sqrt{f}}=-1.8 \log \left[\left(\frac{\varepsilon / d}{3.7}\right)^{1.11}+\frac{6.9}{R e}\right]$
Note: Attendance (+2 points), format (+1 point)
a) Simplify energy equation using the given conditions and determine velocity, V, as a function of friction factor, f.
b) Use the given conditions and determine Reynolds number, Re, as a function of velocity, V.
c) Determine velocity V by following the steps listed below

1) Assume $f=0.02$ as your first guess and find V using the equation from (a)
2) Find $R e$ using the equation from (b) and the V from the previous step
3) Find a new f using the Haaland equation and Re from step 2)
4) Find a new V using the f from step 3) and the equation from (a)
5) Repeat the steps 2) through 4) until f is converged to the thousandth decimal point
d) Determine the power P that pump adds to the water.

Solution:

Where $p_{1}=p_{2}, V_{1}=V_{2} \approx 0$, the energy equation becomes

$$
\begin{gathered}
z_{1}+h_{p}=+z_{2}+\frac{V^{2}}{2 g}\left(\frac{f \ell}{d}+\sum K_{L}\right) \\
2 g \times\left(h_{p}+z_{1}-z_{2}\right)=V^{2}\left(\frac{f \ell}{d}+\sum K_{L}\right)
\end{gathered}
$$

$$
\begin{gathered}
2 \times 32.2(250-200)=V^{2}\left(f \frac{500}{0.75}+0.8+4 \times 1.5+5+1\right) \\
(667 f+12.8) V^{2}=3220
\end{gathered}
$$

December 3, 2014
$V=\sqrt{\frac{3220}{(667 f+12.8)}}$ (1)
(+1 point)

Reynolds number

$$
\begin{gathered}
R e=\frac{\rho V D}{\mu}=\frac{1.94 \times V \times 0.75}{2.34 \times 10^{-5}} \\
R e=6.22 \times 10^{4} V(2)
\end{gathered}
$$

(+1 point)
Rearranging friction factor equation

$$
f=\left[-1.8 \log \left(\frac{6.9}{R e}\right)\right]^{-2}(3)
$$

Solving for velocity iteratively using equations (1), (2) and (3)
Assume $f=0.02 \rightarrow V=11.1 \frac{\mathrm{ft}}{\mathrm{s}} \rightarrow R e=6.9 \times 10^{5} \rightarrow f=0.012$
Assume $f=0.012 \rightarrow V=12.4 \frac{f t}{s} \rightarrow R e=7.7 \times 10^{5} \rightarrow f=0.0121$
Thus

$$
V=12.4 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

(+2 point)
Calculating pump power

$$
\begin{gathered}
P=\rho g Q h_{p}=\rho g V A h_{p} \\
P=1.94 \times 32.2 \times 12.4 \times \frac{\pi}{4}(0.75)^{2} \times 250=8.55 \times 10^{4} \frac{\mathrm{ft} \mathrm{lb}}{\mathrm{~s}}=155 \mathrm{hp}
\end{gathered}
$$

