NAME
Fluids-ID

Quiz 11. The drag force, R, on a sphere located in a pipe through which a fluid is flowing is to be determined experimentally. Assume that the drag is a function of the sphere diameter,
 d , the pipe diameter, D , the fluid velocity, V , and the fluid density, ρ. (a) What dimensionless parameters would you use for this problem? (b) Some experiments using water indicate that for $\mathrm{d}=0.2 \mathrm{in}$., $\mathrm{D}=0.5 \mathrm{in}$., and $\mathrm{V}=2 \mathrm{ft} / \mathrm{s}$, the drag is $1.5 \times 10-3 \mathrm{lb}$. Estimate the drag on a sphere located in a 2 - ft -diameter pipe through which water is flowing with a velocity of $6 \mathrm{ft} / \mathrm{s}$. The sphere diameter is such that geometric similarity is maintained.

Note: Attendance (+2 points), format (+1 point)

Solution:
(a) Given $R=f(d, D, V, \rho)$, where $R \doteq F, d \doteq L, D \doteq L, V \doteq L T^{-1}$, and $\rho \doteq F L^{-4} T^{2}, 5-3=2$ pi terms required. By inspection

$$
\Pi_{1}=\frac{d}{D}
$$

and by using the exponent method

$$
\Pi_{2}=R \rho^{a} V^{b} D^{c}=(F)\left(F L^{-4} T^{2}\right)^{a}\left(L T^{-1}\right)^{b}(L)^{c}=F^{0} L^{0} T^{0}
$$

or

$$
\begin{equation*}
\Pi_{2}=\frac{R}{\rho V^{2} D^{2}} \tag{+2points}
\end{equation*}
$$

(b) The similarity requirement is

$$
\begin{equation*}
\frac{d_{m}}{D_{m}}=\frac{d}{D} \tag{+1point}
\end{equation*}
$$

so that

$$
\begin{equation*}
d=\frac{d_{m}}{D_{m}} \cdot D=\frac{0.2 \mathrm{in}}{0.5 \mathrm{in}} \cdot(2 \mathrm{ft})=0.8 \mathrm{ft} \tag{+0.5points}
\end{equation*}
$$

And,

$$
\begin{equation*}
\frac{R}{\rho V^{2} D^{2}}=\frac{R_{m}}{\rho_{m} V_{m}^{2} D_{m}^{2}} \tag{+1point}
\end{equation*}
$$

so that (with $\rho=\rho_{m}$)

November 14, 2014

$$
R=\frac{\rho}{\rho_{m}}\left(\frac{V}{V_{m}}\right)^{2}\left(\frac{D}{D_{m}}\right)^{2} R_{m}=\left(\frac{6 \mathrm{ft} / \mathrm{s}}{2 f t / s}\right)^{2}\left(\frac{2 \mathrm{ft}}{0.5 / 12 \mathrm{ft}}\right)^{2}\left(1.5 \times 10^{-3} \mathrm{lb}\right)=31.1 \mathrm{lb} \quad \text { (+0.5 points) }
$$

