EXAM1 Solutions

Problem 1: Shear stress (Chapter 1)
Fixed plate
Information and assumptions

- $v=1.28 \times 10^{-2} \mathrm{ft}^{2} / \mathrm{s}$
- $\rho_{\text {water }}=1.94$ slugs $/ f^{3}$
- $\quad S G=1.26$
- $u(y)=\frac{B}{2 \mu}\left(y^{2}-h y\right)+V\left(1-\frac{y}{h}\right)$
- $V=0.02 \mathrm{ft} / \mathrm{s}$
- $\quad h=1.0 \mathrm{in}$
- $B=-0.334 \mathrm{lb} / \mathrm{ft}^{3}$

- $A=100 f t^{2}$

Find

- Find (a) shear stress on the plate, (b) required force, and (c) power to pull the plate

Solution
(a) Calculate dynamic viscosity

$$
\mu=v \cdot \rho=v \cdot\left(S G \cdot \rho_{\text {water }}\right)=\left(1.28 \times 10^{-2}\right)(1.26 \times 1.94)=3.13 \times 10^{-2} \mathrm{lb} \cdot \mathrm{~s} / \mathrm{ft}^{2}+1
$$

Shear stress

$$
\begin{gathered}
\tau=\mu \frac{d u}{d y} \\
\tau=\mu\left(\frac{B}{2 \mu}(2 y-h)-\frac{V}{h}\right)
\end{gathered}
$$

Shear stress at the wall (at $\mathrm{y}=0$)

$$
\therefore \tau=\left(3.13 \times 10^{-2}\right)\left(\frac{(-0.334)}{(2)\left(3.13 \times 10^{-2}\right)}\left(2 \times 0-\frac{1}{12}\right)-\frac{(0.02)}{(1 / 12)}\right)=\mathbf{0 . 0 0 6 4} \mathbf{l b} / \mathbf{f t}^{2}+7
$$

(b) Friction force

$$
F=\tau \cdot A=(0.0064)(100)=\mathbf{0 . 6 4} \mathbf{l b}+1
$$

(c) Power

$$
P=F \cdot V=(0.64)(0.02)=\mathbf{0 . 0 1 2 8} \mathbf{l b} \cdot \mathbf{f t} / \mathbf{s}+1
$$

EXAM1 Solutions

Problem 2: Hydrostatic force (Chapter 2)

Information and assumptions

- Length of barrier 8 m
- $\gamma=9.80 \mathrm{kN} / \mathrm{m}^{3}$

Find

- Find (a) the horizontal force (magnitude F_H and location y_cp) and vertical force (magnitude F_V) exerted on the curved surface of the barrier and (c)the barrier weight W

Solution
(a) Horizontal pressure force

$$
\begin{gathered}
F_{H}=\gamma h_{c} A \\
F_{H}=(9.80)(0.5)(8 \times 1)=39.2 \mathbf{k N}+3
\end{gathered}
$$

Location of the horizontal force

$$
\begin{gathered}
y_{c p}=\bar{y}+\frac{I}{\bar{y} A} \\
y_{c p}=0.5+\frac{(8)(1)^{3} / 12}{(0.5)(8 \times 1)}=0.5+0.167=\mathbf{0 . 6 6 7} \mathrm{m}+3
\end{gathered}
$$

(b) Vertical pressure force

$$
\begin{gathered}
F_{V}=\gamma \bigvee \\
F_{V}=(9.80)(\pi)(0.5)^{2}(8)\left(\frac{1}{2}\right)=\mathbf{3 0 . 8} \mathbf{k N}+3
\end{gathered}
$$

(c) Since the contact is frictionless the barrier weight must balance the vertical hydrostatic force,

$$
\begin{aligned}
& \sum F=F_{V}-W=0 \\
& \therefore W=\mathbf{3 0 . 8} \mathbf{~ k N}+1
\end{aligned}
$$

EXAM1 Solutions

Problem 3: Bernoulli equation (Chapter 3)
Information and assumptions

- $\gamma=62.4 \mathrm{lb} / \mathrm{ft}^{3}$
- Ignore friction loss
- $\mathrm{SG}=13.6$ for the manometer fluid
- $g=32.2 \mathrm{ft} / \mathrm{s}^{2}$

Find

- Determine (a) the volume flow rate Q and (b) the waterjet velocity V_{j} leaving nozzle

Solution

(a) Bernoulli equation

$$
p_{1}+\frac{1}{2} \rho V_{1}^{2}+z_{1}=p_{2}+\frac{1}{2} \rho V_{2}^{2}+z_{2}
$$

Applying assumptions $z_{1}=z_{2}$ and $V_{2}=0$

$$
p_{1}+\frac{1}{2} \rho V_{1}^{2}=p_{2}+5
$$

Also, for the manometer,

$$
p_{2}-p_{1}=\gamma(S G-1)(1 \mathrm{in} .)=(62.4)(13.56-1)\left(\frac{1}{12}\right)=65.3 \mathrm{lb} / \mathrm{ft}^{2}+2
$$

By solving the Bernoulli equation for V_{1},

$$
V_{1}=\sqrt{2\left(\frac{p_{2}-p_{1}}{\rho}\right)}=\sqrt{(2) \frac{(65.3)}{62.4 / 32.2}}=8.21 \mathrm{ft} / \mathrm{s}
$$

Thus,

$$
Q=V_{1} A_{1}=(8.21)\left(\frac{\pi}{4}\right)(1)^{2}=\mathbf{6 . 4 5} \mathbf{f t}^{3} / \mathbf{s} \quad+2
$$

(b) From continuity

$$
V_{j}=\frac{Q}{A_{j}}=\frac{6.45}{\left(\frac{\pi}{4}\right)\left(\frac{3}{12}\right)^{2}}=131.4 \mathrm{ft} / \mathbf{s}+1
$$

EXAM1 Solutions

Problem 4: Acceleration and Euler equation (Chapter 4)

Information and assumptions

- Two dimensional flow
- $\underline{V}=U\left(1-a^{2} / x^{2}\right) \hat{\boldsymbol{\imath}}$
- $\rho a_{x}=-d p / d x$
- $\rho=917 \mathrm{~kg} / \mathrm{m}^{3}$
- $U=2 \mathrm{~m} / \mathrm{s}$
- $a=6 \mathrm{~cm}$

Find

- Calculate (a) the fluid velocity u, (b) the acceleration $\boldsymbol{a}_{\boldsymbol{x}}$, and (c) the pressure gradient $\mathrm{dp} / \mathrm{dx}$ at point 1

Solution

(a) Velocity

$$
u=U\left(1-\frac{a^{2}}{x^{2}}\right)_{x=-2 a}=(2)\left(1-\frac{a^{2}}{(2 a)^{2}}\right)=(2)\left(1-\frac{1}{4}\right)=1.5 \mathrm{~m} / \mathbf{s} \quad+2
$$

(b) Acceleration

$$
a_{x}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}
$$

Since u is a function of x only

$$
\begin{gathered}
a_{x}=u \frac{\partial u}{\partial x} \\
a_{x}=U\left(1-\frac{a^{2}}{x^{2}}\right) U\left(\frac{2 a^{2}}{x^{3}}\right)=\frac{2 U^{2}}{a}\left(\frac{a^{3}}{x^{3}}-\frac{a^{5}}{x^{5}}\right)
\end{gathered}
$$

At $x=-2 a$,

$$
\therefore a_{x}=\frac{2 U^{2}}{a}\left(\frac{a^{3}}{(-2 a)^{3}}-\frac{a^{5}}{(-2 a)^{5}}\right)=-\frac{3 U^{2}}{16 a}=-\frac{(3)(2)^{2}}{(16)(0.06)}=-12.5 \mathrm{~m} / \mathrm{s}^{2}+6
$$

(c) Pressure gradient

$$
\frac{d p}{d x}=-\rho a_{x}=-(917)(-12.5)=11462.5 \mathrm{~N} / \mathrm{m}^{3}=11.5 \mathbf{k P a} / \mathbf{m} \quad+2
$$

