December 12, 2012

1. A cube, 4 ft on a side, weights $3,000 \mathrm{lb}$ and floats half-submerged in an open tank as shown in Fig. 1. For a liquid depth of 10 ft , determine (a) the specific weight of the liquid, γ, (b) the force of the liquid on the inclined section $A B$ of the tank wall, F_{R}, and (c) the location of the pressure center from the free surface, y_{R}, along the inclined wall. The width of the wall is 8 ft . (Note: $I_{x c}=a b^{3} / 12$ for a rectangle with base a and height b)

2. In Fig. 2, water $\left(\gamma=9,790 \mathrm{~N} / \mathrm{m}^{3}\right)$ exits from a nozzle into atmospheric pressure, $p_{a t m}$. The manometer fluid has a specific gravity of $S G=13.56$ and the reading is $h=58 \mathrm{~cm}$. With friction neglected, what is (a) the upstream pressure at section $1, p_{1}$, (b) the average velocity at sections 1 and $2, V_{1}$ and V_{2}, respectively, and (c) the axial flange force, F_{x}, required to keep the nozzle attached to pipe (1)?

Fig 2

December 12, 2012

3. The drag on a $30-\mathrm{ft}$ long, vertical, 1.25 -ft-diameter pole subjected to a $30-\mathrm{mph}(44 \mathrm{ft} / \mathrm{s})$ wind ($\rho=2.38 \times 10^{-3}$ slugs $/ \mathrm{ft}^{3}$ and $\mu=3.74 \times 10^{-7} \mathrm{lb} \cdot \mathrm{s} / \mathrm{ft}^{2}$) is to be determined with a model study. It is expected that the drag, D, is a function of the pole length, l, and diameter, d, the fluid density, ρ, and viscosity, μ, and the fluid velocity, V; in a dimensionless functional form

$$
\frac{D}{\rho V^{2} d^{2}}=\phi\left(\frac{d}{l}, \frac{\rho V d}{\mu}\right)
$$

Laboratory model tests were performed in a high-speed water ($\rho=1.94$ slugs $/ \mathrm{ft}^{3}$ and $\mu=$ $2.34 \times 10^{-5} \mathrm{lb} \cdot \mathrm{s} / \mathrm{ft}^{2}$) tunnel using a model pole having a length of 2 ft and a diameter of 1 in . Some model drag data are shown in Fig. 3. Based on these data, predict the drag on the full-sized pole.

Fig 3
4. Water $\left(\rho=999 \mathrm{~kg} / \mathrm{m}^{3}\right.$ and $\left.\mu=1.12 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\right)$ drains from a large tank through a pipe system as shown in Fig. 4. The head of the turbine is equal to 116 m . If entrance effects are negligible, determine the flow rate, Q. Use the following equation for friction factor.

$$
\frac{1}{\sqrt{f}}=-1.8 \log \left[\left(\frac{\varepsilon / D}{3.7}\right)^{1.1}+\frac{6.9}{R e}\right]
$$

December 12, 2012

5. A pizza store has a delivery car with a sign attached. The sign (a flat plate) has a height $H=1.5 \mathrm{ft}$ and a length $L=5 \mathrm{ft}$. Calculate the drag D (in lbf) on the sign alone at a speed $V=40 \mathrm{mph}(58.7$ ft / s) when the sign is placed (a) parallel to the wind (Fig. 5 left) and (b) facing (or normal to) the wind (Fig. 5 right). For the parallel orientation case assume the flow is initially laminar and for the blunt (normal orientation) case use a drag coefficient of $C_{D}=1.2$. (Note: $\rho=2.38 \times$
10^{-3} slugs $/ \mathrm{ft}^{3}$ and $\mu=3.74 \times 10^{-7} \mathrm{lb} \cdot \mathrm{s} / \mathrm{ft}^{2}$ for air and $R e_{\text {trans }}=5 \times 10^{5}$)

Fig 5
6. A buoyant ball of specific gravity $S G=0.5$ is released free from the bottom of a calm water as shown in Fig. 6. How long time will it take for the ball to reach to the water surface if the ball diameter $D=10 \mathrm{~cm}$ and the water depth $h=10 \mathrm{~m}$? Assume a constant drag coefficient $C_{D}=0.5$ and neglect the initial transient state such that the ball rises up at a constant velocity (the terminal velocity), V, from the beginning. (Note: $\rho=999 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=1.12 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$ for water; Volume of a sphere $V=\pi D^{3} / 6$)

Fig 6

