November 5, 2012

1. A reducing elbow shown in Fig. 1 is used to deflect water ($\rho = 998 \text{ kg/m}^3$) flow at a rate of 0.03 m³/s in a horizontal pipe upward by an angle $\theta = 45^\circ$ from the flow direction while accelerating it. The elbow discharges water into the atmosphere. The cross-sectional area of the elbow is 150 cm² at the inlet and 25 cm² at the exit. The elevation difference between the centers of the exit and the inlet is 40 cm. Determine (a) the mass flow rate \dot{m} and water velocity at sections (1) and (2), V_1 and V_2 , respectively, (b) the pressure at section (1), p_1 , and (c) the horizontal component of the anchoring force, F_{Ax} , needed to hold the elbow in place. Assume frictionless flow.

Fig. 1

Water (γ = 62.4 lb/ft³) is to be pumped from one large, open tank to a second large, open tank at a higher elevation as shown in Fig. 2. The pipe diameter throughout is 6 in. and the head loss associated is estimated as h_L = 11 V
²/2g, where V is the average velocity of water inside the pipe involved. If a flow rate of 1,600 gal/min is desired, find (a) the average velocity V and (b) the head loss h_L and determine (c) the pump power W_p required in horse power. Note that 7.48 gal = 1 ft³ and 1 hp = 550 ft·lb/s and g = 32.2 ft²/s.

Fig. 2

November 5, 2012

3. Two large, horizontal, infinite, parallel plates are in contact as shown in Fig.3. The top moving plate is sliding over the bottom fixed plate at a constant speed V. To reduce friction, the small gap of height h between the plates is filled with an incompressible, viscous lubricant oil of viscosity μ . The pressure gradient in the *x*-direction is zero and the only body force is due to the fluid weight. The flow is assumed steady, fully-developed, and laminar. (a) Use the following Navier-Stokes equation to derive an expression for the velocity distribution between the plates (*Show all your assumptions used*). (b) If the lubricant oil viscosity is $\mu = 0.38 \text{ N} \cdot \text{s/m}^2$, top plate speed V = 0.1 m/s, and the gap height h = 0.1 mm, find the shear stress on the bottom fixed wall surface.

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = -\frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$$

4. The pressure drop per unit length, Δp_{ℓ} , for the flow of blood through a horizontal small diameter tube shown in Fig. 4 is a function of the volume rate of flow, Q, the diameter, D, and the blood viscosity, μ . By use of a dimensional analysis, develop a suitable set of dimensionless parameters for this problem.

Fig. 4