EXAM2 November 8, 2010

1. A jet of alcohol ($\rho=788.42 \mathrm{~kg} / \mathrm{m}^{3}$) strikes the vertical plate in Fig. 1. The (absolute) pressure p_{1} $=760 \mathrm{kPa}$ at section 1 . Find (a) the alcohol jet velocity V_{2} at section 2 and (b) the force F required to hold the plate stationary. For part (a), assume there are no losses in the nozzle flow.
2. Water flows through a vertical pipe, as is indicated in Fig.2. The vertical distance $H=50 \mathrm{~cm}$ between the two points marked with dots at the pipe and the mercury ($S G=13.6$) manometer height $h=5 \mathrm{~cm}$ due to the pressure difference between the two points. (a) What is the head loss h_{L} between the two points? (b) Is the flow up or down in the pipe? Explain.

Fig. 1

Fig. 2
3. Consider a steady, incompressible, parallel, laminar flow of a viscous fluid falling between two infinite, vertical walls as shown in Fig. 3. The distance between the walls is h, and gravity acts in the negative z-direction ($g_{z}=-g$, downward in the figure). There is no forced pressure ($\partial p / \partial z=$ 0) driving the flow - the fluid falls by gravity alone. Starting from the following Navier-Stokes equation,
$\rho\left(\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right)=-\frac{\partial p}{\partial z}+\rho g_{z}+\mu\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right)$
(a) drive an expression for w and (b) calculate the centerline velocity (w along the $x=0$ line) if $h=2 \mathrm{~mm}$ and the fluid is glycerin at $20^{\circ} \mathrm{C}(\rho=$

Fig. 3 $1,260 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=1.49 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$). Assume the flow is purely twodimensional ($v=0$ and $\partial / \partial y=0$) and parallel to the walls $(u=0)$.
4. Liquid flows out of a hole in the bottom of a tank as in Fig. 4. Consider the case in which the hole is very small compared to the tank $(d \ll D)$. Experiments reveal that average jet velocity V is nearly independent of d, D, ρ, or μ. In fact, for a wide range of these parameters, it turns out that V depends only on liquid surface height h and gravitational acceleration g. (a) Using dimensional analysis, generate a dimensionless relationship for V as a function of g and h. (b) If the liquid surface height h is doubled, all else being equal, by what factor will the average jet velocity V increase?

Fig. 4

