1. A circular duct of diameter D is connected to a square duct with sides of length D, as shown. Air flows in the circular duct at $100 \mathrm{ft} / \mathrm{sec}$. There is no elevation difference between the circular and the square section. Assume the flow is steady, inviscid, irrotational and incompressible. The specific weight of air is $0.075 \mathrm{lbf} / \mathrm{ft}^{3}$. Find the pressure change between the circular and square section.

2. For this wye fitting, which lies in a horizontal plane, the cross-sectional areas at sections 1,2 , and 3 are $1 \mathrm{ft}^{2}, 1 \mathrm{ft}^{2}$, and $0.25 \mathrm{ft}^{2}$, respectively. At these same respective sections the pressures are $1000 \mathrm{psfg}, 900 \mathrm{psfg}$, and 0 psfg , and the water discharges are $20 c f s$ to the right, $12 c f s$ to the right, and $8 c f s$. What x component of force would have to be applied to the wye to hold it in place?

3. Water is flowing at a rate of $0.25 \mathrm{~m}^{3} / \mathrm{s}$, and it is that $h_{L}=2 V^{2} / 2 g$ from the reservoir to the gage, where V is the velocity in the $30-\mathrm{cm}$ pipe. What power must the pump supply?

4. A drying tower at an industrial site is 10 m in diameter. The air inside the tower has a kinematic viscosity of $4 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ and enters at $10 \mathrm{~m} / \mathrm{s}$. A $1 / 10$ scale model of this tower is fabricated to operate with water that has a kinematic viscosity of $10^{-6} \mathrm{~m}^{2} / \mathrm{s}$. What should the entry velocity of the water be to achieve Reynolds-number scaling?
